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Abstract

In this paper, we redefine the concepts of join spaces and product spaces of M-fuzzifying
convex spaces. Then we further investigate the S; (i = 0,1,2) separated degrees of an
M-fuzzifying convex space in a logical viewpoint. Finally, we study the S; (i =0, 1,2) sep-
arated degrees of an M-fuzzifying convex space from the aspect of convergence structures.
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1. Introduction

Convexity plays an important role in many mathematical environments, such as vector
spaces, metric spaces, lattices, graphs, matroids and so on. Combining with the axiomatic
approach, the concept of convex structures [20] is introduced by abstracting the common
properties of convex sets in different mathematical structures. In an axiomatic viewpoint,
convex structures provide a more general framework of studying convexity.

Since Zadeh [32] introduced fuzzy sets, many mathematical structures have been com-
bined with fuzzy set theory, such as fuzzy topology [1,6,19,31], fuzzy order [29,30], fuzzy
convergence [3,4,33-36] and so on. Convex structures have also been generalized to the
fuzzy case. Rosa [14] first introduced the concept of fuzzy convexities with the real unit
interval [0,1] as the lattice background. Later, Maruyama [9] extended [0,1] to a com-
pletely distributive lattice L and proposed the notion of L-fuzzy convexities. Adopting the
terminology of fuzzy topology, these two fuzzy convexities are both called L-convex struc-
tures now. From a logical aspect, Shi and Xiu [16] introduced the concept of M-fuzzifying
convex structures, where M also denotes a completely distributive lattice. Recently, Shi
and Xiu [17] proposed the notion of (L, M )-fuzzy convex structures, which can include L-
convex structures and M-fuzzifying convex structures as special cases. Up to now, fuzzy
convex structures have deserved more and more attention and have been studied from
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different aspects, including closure operators [11,12,15,37], interval operators [13,18,27],
geometrical properties [22-24] and topological properties [26, 28].

Shi and Xiu [16] defined product spaces of M-fuzzifying convex spaces via subbases.
Adopting the axiomatic approach, Xiu and Pang [26] introduced axiomatic convexity bases
in the framework of M-fuzzifying convex spaces, which provided a foundation of defining
product spaces. Following this trend, our first aim of this paper is to redefine join spaces
and product spaces of M-fuzzifying convex spaces from the aspect of axiomatic convexity
subbases.

Zhou and Shi [38] first defined separation axioms in L-convex spaces and investigated
their hereditary and productivity. Later, Zhou and Shi [39] introduced the sum space of
L-convex spaces and studied additivity of S; (i = 1,2,3,4) separation aixoms. Liang and
Li [7] first defined S; (i = 0,1,2) separated degrees of an M-fuzzifying convex space, which
describes the degree to which an M-fuzzifying convex space is S; (i = 0,1,2) separated.
Further, Liang and Li [8] defined S; (i = 3,4) separated degrees of an M-fuzzifying convex
space and studied their productivity. Dong and Shi [2] proposed the concept of disjoint
sums of M-fuzzifying convex spaces and discussed the additivity of S; (i = 1,2,3,4) sep-
arated degrees. Considering the productivity of S; (i = 0,1,2) separated degrees, Pang
[10] introduced M-fuzzifying convergence structures and defined S; (i = 0,1,2) separated
degrees of an M-fuzzifying convex space via its induced M-fuzzifying convergence struc-
ture. Notice that the S; (i = 0,1,2) separated degrees in the sense of Pang has some
advantages compared with that in the the sense of Liang and Li, especially on the pro-
ductivity of separated degrees. In a degree viewpoint, Xiu and Pang [25] also defined
M-fuzzifying convexity-preserving (M-CP in short) and M-fuzzifying convex-to-convex
(M-CC in short) degrees of a mapping between M-fuzzifying convex spaces, which can be
used to characterize the degrees to which a mapping between M-fuzzifying convex spaces
is M-CP and M-CC, respectively.

In the classical case, there are close relationships between separation properties and CP
and CC mappings. Up to now, these concepts have all been defined with some degrees.
By this motivation, our second aim of this paper is to investigate their relationships in a
degree approach.

2. Preliminaries

We consider in this paper a completely distributive lattice M, i.e., a complete lattice

M satisfies
VA Qij = A \/aif(i)
i€l jeJ; fellzer Jiiel

or
AV aj= /\aif(i)
iel jeJ; fellier Ji el

for all X; = {a;;|jeJi} € 2™ (i € I). The bottom (resp. top) element of M is denoted
by L (resp. T). For a,b e M, we say that a is wedge below b in M (in symbols, a < b) if
for every subset D ¢ M, \V D > b implies d > a for some d € M. A complete lattice M is
completely distributive if and only if b = \/{a € M | a < b} for each b e M [21]. We can then
define a residual implication on M by

a—>b=\/{ce M |anc<b}.

In particular, we denote a - 1L by —a for each a € M.
We will often use, without explicitly mentioning, the following properties of residual
implication on M.

Lemma 2.1 ([5]). Let M be a completely distributive lattice. Then the following state-
ments hold:
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1)
(2) a<bif and only if a—>b=T.

(3) (a—>b) = (c—>b)2c—a.

(4) (avbd) > (cvd)>(a—c)A(b—d).

(5) (anb) > (cnd)>2(a—c)n(b—d).

(6) (maVv=b) > (~cv=d)>(c—>a)r(d—D).

(7) Vjeraj = Vjerbj 2 Njes(aj = bj).

(8) Ajesaj = Njes bj 2 Njes(aj = bj).

(9) a = Ajesaj = Njes(a = aj), hence a - b < a — c whenever b<c.
(10) Vjeja; = b= Ajes(a; = b), hence a - c¢> b — ¢ whenever a <b.

For a nonempty set X, 2% denotes the powerset of X and M*¥ denotes the set of
all M-subsets on X. For each A € 2%, let y4 denote the characteristic function of A.
For {A;}jes € 2%, we say {A;}jes is a directed subset of 2% provided that for each
B,C € {Aj}jes, there exists D € {A;}cs such that B < D and C ¢ D, which is denoted by

dir 5 cdir _ . .
{Aj}jes € 2%, Dually, let {A;}je; S 2% denote that {A;};es is a codirected subset of
2%, which means that for each B,C € {A;}cs, there exists D € {A;};e; such that D ¢ B
and D cC.
Let f: X — Y be a mapping. Define f~ : 2% — 2¥ by f~(A) = {f(z) | z € A} for
each A€ 2% and f=:2Y — 2% by f(B) = {z| f(z) € B} for each B e2".

Definition 2.2 ([3]). A fuzzy inclusion order on M% is a mapping S : MX x M* — M
which is defined by

vU, VeM®, SU,V)= A (U@)~V(x)).
reX

Definition 2.3 ([16]). A mapping & : 2% — M is called an M-fuzzifying convex structure
on X if it satisfies the following conditions:

(MYC1) ¢(2) =¢(X) =T;

(MYC2) € (Nker Ak) 2 Akerc € (A);

dir

(MYC3) € (Ujes Aj) > Njes € (A;) for each {A;}jes < 2%,
For an M-fuzzifying convex structure ¢ on X, the pair (X,%) is called an M-fuzzifying
convex space.

In [10], Pang introduced the concept of M-fuzzifying convergence structures via M-
fuzzifying convex filters in the framework of M-fuzzifying convex spaces.

Definition 2.4 ([10]). A mapping F : 2X — M is called an M-fuzzifying convex filter
on X if it satisfies:

(MF1) F(@) =L, F(X) =T;

cdir

(MF2) F(Njes 4;) = Njes F(A;j) for each {A;}jes € 2.
The family of all M-fuzzifying convex filters on X is denoted by Fj;(X).
Example 2.5 ([10]). For each x € X, define [z]: 2% — M by

VAe2¥, [z](A) = xa(x).

Then [x] € Fas(X), which is called point M-fuzzifying convex filter of z.

Since each M-fuzzifying convex filter is an M-subset on 2%, there exits a natural fuzzy
inclusion order on Fj/(X), which is denoted by Sz(-,-) : Fu(X) x Fayr(X) — M. Ex-
plicitly,

VF,GeFu(X), SF(F,G)= N\ (F(A) - G(A)).
Ae2X
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Definition 2.6 ([10]). An M-fuzzifying convergence structure on X is a mapping lim :
Fu(X) — M¥ which satisfies:

(MC1) lim([2]) () = T

(MC2) Sx(F,G) < S(lim(F),lim(G)).
For an M-fuzzifying convergence structure lim on X, the pair (X,lim) is called an M-
fuzzifying convergence space.

Pang [10] showed every M-fuzzifying convex space can induce an M-fuzzifying conver-
gence space.

Proposition 2.7 ([10]). Let (X, %) be an M-fuzzifying convex space and define lim? :
Fu(X) — M as follows:

VF e Far(X), Yo € X, lim% (F)(z) = /> (¢(x - 4) - F(4)).

Then im? is an M -fuzzifying convergence structure on X.

3. Join space and product space of M-fuzzifying convex spaces

In [16], Shi and Xiu introduced the concepts of join spaces and product spaces of M-
fuzzifying convex spaces. Here we will redefine these two concepts by using axiomatic
subbases in M-fuzzifying convex spaces and make some further research on their proper-
ties.

Definition 3.1 ([26]). A mapping ¢ : 2%X — M is called an M-fuzzifying convexity
subbase of some M-fuzzifying convex space provided that ¢ satisfies

(MYSB1) VA, 4=z Niea 9(Ai) = T,

(MYSB2) Vusin ag=x Njed Ve, Aji=a; Niel 0(Aji) =T.

In [26], Xiu and Pang gave the formula of generating an M-fuzzifying convex structure
% by means of an M-fuzzifying convexity subbase ¢ as follows:

A=V A VA e(4).

U?és Aj:AjEJ ﬂkeKj Ajk:Aj keK;

Lemma 3.2. Suppose that {€;}icr is a family of M-fuzzifying convex structures on X.
Then the mapping Ve € : 28X — M defined by
VA 2%, (\/6)(A) =V %(4)
1€l iel
is an M -fuzzifying converity subbase.

Proof. 1t is easy to check that %; satisfies (MYSB1) and (MYSB2) for each i € I. Then
it follows immediately that ;s €; satisfies (MYSB1) and (MYSB2), as desired. O

By Lemma 3.2, we can obtain an M-fuzzifying convex structure which is generated by
the M-fuzzifying convexity subbase V;.; %;. From this aspect, we propose the definition
of join spaces.

Definition 3.3. Suppose that {%;}i is a family of M-fuzzifying convex structures on
X. The M-fuzzifying convex structure generated by the M-fuzzifying convexity subbase
Vier €; is called the join structure of {%;}ic;, which is denoted by |lj; %;. The pair
(X, Uier ;) is called the join space of {(X,%;) }ier-

By means of join spaces, we will give the definition of product space of M-fuzzifying
convex spaces. To this end, we first present the following lemma.
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Lemma 3.4. Suppose that {(X;,6;)}ier is a family of M -fuzzifying convex spaces, X =
[Ticr Xi, and {p; : X — X, }ies is the family of projection mappings. Then the mapping
P (6) 2X — M defined by
VA2 pl(E)(A)= V  Ei(A)
pi (Ai)=A
1s an M -fuzzifying convex structure on X for each i€ l.

Proof. Tt suffices to show that p;!(%;) satisfies (MYC1)-(MYC3).
(MYC1) It is straightforward.
(MYC2) Take any « € M such that

a< Ao (@) A=A\ V  G(Ap).

keK keK pr (Api)=Ag

Then for each k € K, there exists By, such that p; (By;) = Ar and a < €;(By;). Let
B; = Nger Bri- Then it follows that

pi (Bi) = () pi (Bri) = ) Ak
keK keK
and
as N\ G(Br) <C(N Br)=6(B) < NV €(Ci)=p; (€)([ Ap).
keK keK Py (Ci)=Nier A keK
By the arbitrariness of a, we obtain

A 2 (€ (Ar) <p () (N Ar).

keK keK
dir X
(MYC3) For each {Aj}je; € 2%, take any a € M such that
a< Ap(E)(A) =N\ V  C(45).
jEJ jE]p;(Aji):Aj
Then for each j € J, there exists Bj; such that p; (Bj;) = A; and a < €(Bj;). Let
B; =Ujej Bj;. Then it follows that
pi (Bi) = Upi (Bji) = U 4;.
jeJ jedJ
Since p; is surjective, it follows that Bj; = p;"(p; (Bji)) = p; (A;). This implies that
{Bj; | j € J} is directed. Then we have
a< N\ %i(Bji) <6G(U Bji) = 6(B;) < V %i(Ci) =i (6) (U 4))-
jeJ jeJ Py (Ci)=Ujes A, jeJ
By the arbitrariness of «, we obtain
A piH (6) (A7) <p (6) (U 4)).
jed jeJ

O

By Lemma 3.4, for a family of M-fuzzifying convex spaces {(X;,%;) }ier, we can obtain
a family of M-fuzzifying convex structures {p;1(%;)}ic; on the product set [T;c; X;. Then
we can propose the definition of product spaces of {(X;,%;) }ie; by means of the join space

of {(Ises Xis 07 (%)) Vier-

Definition 3.5. Suppose that {(X;, %;)}ier is a family of M-fuzzifying convex spaces,
X = [Tier Xi, and {p; : X — X, }ics is the family of projection mappings. Then the join
space of {(X,p{l(%))}id is called the product space of {(Xj;,%;) }ier-
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Usually, we denote the product space of {(X;, ;) } ier by {(ITier Xis [1ier €i)}. For a
finite family of M-fuzzifying convex spaces {(X;,%;) |i=1,2,--,n}, we use €1 x €a--- x 6,
to denote their product.

In the classical case, each projection mapping is a CP and CC mapping. Next we present
its fuzzy counterpart in the framework of M-fuzzifying convex spaces.

Proposition 3.6. Suppose that {(X;,6;)}ier is a family of M -fuzzifying convexr spaces
and {p; : [Tjer Xj — Xi}ier is the family of projection mappings. Then for each i € I,
Pi t ([Tjer X5, [jer €5) — (Xi,6;) is an M-CP mapping.

Proof. For convenience, let X = [];c; X; and € = [1;c; 6;. By Definition 3.5, we have for
each A € 2%,

A= VvV ANV AV V4GB

Udin Aj=AJe) Nier; Ajiu=Aj keKjiel pi(Bi)=Ajp

Then it suffices to show that € (p;, (Ai,)) 2 €i, (Ai,) for each ip € I and A;; € 2%, By the
definition of €, we have

% (piy(Aiy)) = V AV AV V 4B
UgEs Aj=pi, (Aig) 78T Nier; Aju=A; keKj il p7 (Bi)=Ajx
> ANV V  EB)
Nker; Aji=pi (Aig) keKj i€l i (Bi)=Ajk
> ¢i(B:)
el pi (Bi)=p; (Ai)
2 %O(Aio)-
By the arbitrariness of ig, we obtain p; : (ITje; Xj,[1je; €j) — (Xi,€;) is an M-CP
mapping for each i € I. O

Proposition 3.7. Suppose that {(X;, ;) }icr is a family of M -fuzzifying convex spaces
and {p; : [1jer X; — Xi}ier is the family of projection mappings. Then for each i € I,
pit (ITjer Xy, [jer 65) — (X4, ;) is an M-CC mapping.

Proof. For convenience, let X = [I;c; X; and € = [[;e; 6;. By Definition 3.5, we have for
cach A e 2%,

A= vV AN NV AV V%GB,

Udin Aj=AJed Nier; Aji=Aj keK iel pit(By)=Ajp,

Then it suffices to show that for each ig € I, €(A) < €, (p;; (A))-
Take each o € M such that aw < €’(A). Then there exists a directed set {A;};e; € 2% such
that U%", Aj = A and for each j € J, there exists {Ajk}keK c 2% such that Nierc; Ajk = Aj

jedJ
and for each k € K, there exists ij; € I and B; , € 9%ijk such that pil(Bljk) = Aj;, and

ij

a <%, (Bij,). Thus, we get
dir dir dir
UNpiBi)=U/MNAr=UA4,=4
jeJ keK; jeJ keK; jedJ

and p;’ (A) = U?Z}pzo(ﬁkeKj p; (Bi;,)). For each j € J, it follows that

N - B;. (i()Zi'k ) 7:Oe{i'kaEKv‘}'
, X BZ = iko IR0/ . -j 4
pm(ker}](jpz ( Jk)) { Xigs 10 ¢ {ljklk € Kj}‘
Then

)

3 - - . — %O(Bl]ko :Cg ( ijo)’ o € {ijk|k€Kj};
G [) o = | P L

T i0¢{ijk|k€Kj}.
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This implies that
Cio(Pig (A)) 2 N\ Gio (P ( () 27 (Bi,))) 2
jGJ kGKj

By the arbitrariness of a, we obtain ¢'(A) < €, (p;; (A)), as desired. O

4. Degrees of separation axioms in M-fuzzifying convex spaces

In [7], Liang and Li proposed Sy, S1 and So separated degrees of M-fuzzifying convex
spaces and discussed their properties. In this section, we will give some further investi-
gations on their properties and discuss their connections with M-CP degrees and M-CC
degrees of a mapping between M-fuzzifying convex spaces.

Firstly, let us recall the Sy, S1 and S separated degrees of M-fuzzifying convex spaces
in the sense of Liang and Li.

Definition 4.1 ([7]). For an M-fuzzifying convex space (X, %), define the degree to which
(X,¥) is Sp separated as follows:
So(X, €)= ANV €(A)v V %(B)).
T#Y x¢Asdy y¢ Box
Definition 4.2 ([7]). For an M-fuzzifying convex space (X, %), define the degree to which
(X,¥) is S1 separated as follows:
Si(X, €)=\ \V €(A).

r#y y¢ Asx
The degree to which (X, %) is S; separated can also be characterized as follows:

Proposition 4.3 ([7]). Let (X,%) be an M -fuzzifying convex space. Then
S1(X,€) = N\ €({z}).

reX
Definition 4.4 ([7]). For an M-fuzzifying convex space (X, %), define the degree to which
(X,¥) is Sy separated as follows:

S (X, €)= N V C(A)AC(X-A).
T+y xe Ayt A

For the productivity of M-fuzzifying convex spaces, Liang and Li presented the following
proposition.

Proposition 4.5 ([7]). Suppose that {(X;,6;)}ier is a family of M-fuzzifying convex
spaces. Then

(1) Aier So(Xi,€;) < So(ITier X, [Tier €i),
(2) Nier S1(Xi,65) < S1(Iier Xi, [ies 6i)
(3) Ader S2(Xi,6;) < Sa(Ilier X, [lies €i)-

From a logic aspect, the above proposition gives the degree characterization of the
conclusion that if a family of convex spaces is S; (i = 0,1,2), then their product space is
S; (1=0,1,2). Actually, in the classical case, a family of convex spaces is S if and only if
their product space is S;. So in a degree sense, the inverse of the inequality in Proposition
4.5 (2) also holds. To this end, we present the following proposition.

Proposition 4.6. Let {(X;,%;)}icr be a family of M-fuzzifying convex spaces and let
(TLies Xi, [Tie1 €;) be the product space. Then

Si(J1X:[16) = N\ Si1(Xs,6).

iel iel iel
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Proof. For convenience, let X = [[;c; X; and € = [l;; ¢;. In Proposition 4.5, it was
proved that Ajc; S1(X;,%;) < S1(X,%). Now it remains to verify that

Sl(X,Cg) S/\Sl(X@,(fl)
iel
Take any o € M such that
a<S1(X, €)= N\ ¢({z}).

reX

Then it follows that o < €' ({x}) for each x € X. For each ig € I and z;, € X;,, take v € X
such that p;, (x) = z4,. Since p;, : (X,€¢) — (X, €i,) is a CC mapping, it follows that

Gio({ig }) = g (i ({2})) 2 €({2}) 2 a.

By the arbitrariness of iy and x;,, we have

043/\ /\ cgio({xio}):/\sl(X’“Cgi)‘

ioGI xiOEXiO iel
By the arbitrariness of «, we obtain
SI(X’%) < /\Sl(Xl;(gZ)a
iel

as desired. m

In the classical convex spaces, there are close relationships between separation axioms
and CP and CC mappings. Now these concepts have been generalized with some degrees.
So we will consider their relationships in a degree sense. To this end, we first recall the
definitions of M-CP degrees and M-CC degrees between M-fuzzifying convex spaces.

Definition 4.7 ([25]). Let (X,%x) and (X,%y) be M-fuzzifying convex spaces, and let
f:X — Y be a mapping. Then D.,(f) defined by

Dep() = N (% (B) = %x(f(B)))

Be2Y

is called the M-CP degree of f.

Definition 4.8 ([25]). Let (X, %x) and (X, %y ) be M-fuzzifying convex spaces, and let
f:X — Y be a mapping. Then D..(f) defined by

Deef) = N (€x(A) > % (£7(A)))

Ae2X

is called the M-CC degree of f.

For a bijective and CP mapping f : (X,Cx) — (Y,Cy) between classical convex spaces,
if (Y,Cy) is S; (i = 0,1) separated, then so is (X,Cx). Now, we will give the degree
characterization of this conclusion.

Proposition 4.9. Let (X,%x) and (X,%6y) be M-fuzzifying convex spaces, and let f :
X — Y be a bijective mapping. Then

(1) Dep(f) < So(Y, 6y ) = So(X, €x).

(2) Dcp(f) < Sl(Yach) - Sl(Xach)

(3) Dep(f) < S2(Y, y) = 52(X, €x).

Proof. (1) and (2) can be verified in a similar way. We only verify (1).
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(1) By the definitions of Sy and Dy, we have

v

v

v

\Y%

v

So(Y, 6y ) - So(X,6x)
AV &B)v V &B)> A( V €Ay V %x(4))

Y1#Y2  y1¢B13y2 y2¢B23y1 T1#x2  x1¢A1322 xa¢A23x1

AV @BV V %(B)

Y1#Yy2 - y1¢B13y2 y2¢B23y1

- A (VO (v Ex(4)
Flx)=f(z2)  f(z1)¢f(A1)af(x2) f(z2)¢f(A2)>f(z1)

AV @B)v V G(B)

Y1#y2 - y1¢B13y2 y2¢B23y1

- AV Sx(A)v Vo %x(4)))

Y1#Y2  y1¢f(A1)3y2 y2tf(A2)3y1

AV @BV V G(B)

Y1#y2 -~ y1¢B13y2 y2¢B23y1

(V Ex(TB)Y V Ex(f(B)))

y1¢B13y2 y2¢Ba3y1

AV &B)-> V ex((B)

Y1#y2 - y1¢B13y2 y1¢B13y2

AV B (B~ 6x(fT(B))))

y2¢B23y1 y2¢B23y1

A A @SB B A (G (Br) > Ex(f(B2))))

Y1#y2 - y1¢B13y2 y2¢B23y1

A (% (B) ~6x(f7(B)))

Be2X

Dep(f)-

(3) By the definitions of S and Dy, we have

v

\Y%

v

I\

v

v

I\

So(Y,6y) = So(X,6x)
ANV (&B)rey(Y-B)-> NV (€x(A)réx(X-A))

Y1#Y2 y1€B,y2¢B T1#T2 x1€A,x9¢A

ANV (&(B)r%(Y-B))
Y1#Y2 y1€B,y2¢B
- A V (€x(A) A Ex(X - A))
F(@)=f(z2) f(@1)ef~ (A),f(z2)¢f~ (A)

ANV (&#B)rs(Y-B)~> A V (6x(A) A Ex(X - A))
Y1#Y2 y1€B,y2¢B Y1#y2 yr1ef~ (A),y2£f~ (A)

AV (&B) s (Y -B)) - Vo (Ex(A) A x(X - 4))))
Y1#Y2  y1€B,y2¢B yref~(A) Y2617 (A)

AV (G@BAGT-B)~ V(€I (B)Ax(X~[(B)))
Y1#Y2  y1€B,y2¢B y1€B,y2¢B

A A (B AG(Y - B)) > (€x(F7(B) A 6x(X - 7(B))))

Y1#Yy2 y1€B,y2¢B
AN N (&(B)>Ex(F7(B))r (G (Y -B)~6x(f~(Y - B)))

Y1#+Yy2 y1€B,y2¢B

A (6v(B) > €x(f~(B)) A (v (Y - B) = €x(f(Y - B)))

Be2Y
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A (v (C) > ¢x(f7(0)))

Ce2X

Dep(f)-

O

Corollary 4.10. Let (X,%x) and (X,6y) be M-fuzzifying convex spaces, and let f :
X — Y be a bijective mapping. Then

(1) Dep(f) A So(Y,6y) < So(X, €x).

(2) Dcp(f) A Sl(Y, ny) < Sl(X,C(oﬂX).

(3) Dcp(f) A SQ(Y, ng) < SQ(X,CgX).

Corollary 4.10 exactly demonstrates the degree characterization of the conclusion that
for a bijective and CP mapping f : (X,Cx) — (Y.Cy), if (Y,Cy) is S; (i = 0,1,2)
separated, then so is (X,Cx).

For a bijective and CC mapping f : (X,Cx) — (Y,Cy) between convex spaces, if
(X,Cx) is S; (i = 0,1,2) separated, then so is (Y,Cy). Now, we will give the degree
characterization of this conclusion.

Proposition 4.11. Let (X,€x) and (X,Cy) be M-fuzzifying convex spaces, and let f :
X — Y be a bijective mapping. Then

(1) Dee(f) < So(X, €x) = So(Y, 6y ).

(2) Dcc(f) < Sl(X, ch) — Sl(Y, ng)

(3) Dee(f) < S2(X,Cx) = S2(Y, 6y ).

Proof. (1) and (2) can be verified in a similar way. We only verify (1).
(1) By the definitions of Sy and D.., we have

So(X,€x) = So(Y,y)
AV ex@)v V ex()> AV @By V &)

T1#T2  21¢A1329 ro¢Ag3x Y1#y2 - y1¢B13y2 y2¢B23y1
- AV &)V V %x(4)
T1#x2  x1¢A13T9 zotAodx1
AV aBIY V G(B)
T1#x2  x1¢f<(B1)3T2 z2¢f<(B2)3r1
> A ((CV ex(a)y Vo Ex(4)
T1#T2 © z1¢A1329 x2¢A231
-V GUTA)Y VG (42)))
T1¢A13To To¢A23x
> A((V &)~ VG (A1)
T1#T2 © z1¢A1329 r1¢A1312
ACV Bx(A) >V G (7 (4)))
To¢Agdx x2¢A23x7
> A LA (G =G D) a A (Bx4:) = 6 (7 (4)
> AA (€x(A) > G (f(A)))
e2X
= Dcc(f)

(3) By the definitions of Sg and D.., we have
SQ(X7 %X) - SQ(Yv CKY)
= ANV &xD)raex(X-4)-> A V & (B)rsy(Y-DB)

T1#T2 r1€A,x2¢A Y1#Y2 y1€B,y2¢B
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> AV Ex(A)naex(X-A)-> A \V/ €y (B) AGy (Y - B)
T1#T2 w1€A,Ta¢ A f(z1)#f(22) f(21)eB, f(x2)¢B

> AV o exWaex(X-A4) > AV GUTA)AG (Y -7 (4))
T1#T2 x1€A,x9¢A T1#T2 x1€A,x0¢A

> ANV ex@nrex(X-A)> VS (f7(A) Ay (Y -f7(4))
T1#T2 x1€A,x0¢A r1€A,x0¢A

2 /¢\ f(\ M(ng(A) NEx (X = A) > ey (fT(A) Ay (Y - f7(A)))

2 /¢\ /{\ §EA(%((A)%ny(f*(z‘l)))A(Cfx(X—A)%%(Y—fﬁ(z‘l))))

2 /¢\ /{\ §éA(‘fx(z‘l) -Gy (f7(A)) A (Ex (X - A) > 6y (f7(X - A4))))

2 A/;X(%X(A) - Cy (f7(4)))

= DCC(f)-

O

Corollary 4.12. Let (X,%x) and (X,6y) be M-fuzzifying convex spaces, and let f :
X — Y be a bijective mapping. Then

(1) Dee(f) ASo(X,€x) < So(Y,6y).

(2) Dee(f) AS1(X,€x) <S1(Y,6Y).

(3) Dcc(f) A SQ(X, Cx) < S (Y, 6y).

Corollary 4.12 exactly demonstrates the degree characterization of the conclusion that
for a bijective and CC mapping f : (X,Cx) — (Y,Cy), if (X,Cx) is S; (i = 0,1,2)
separated, then so is (Y,Cy).

5. Separated degrees of M-fuzzifying convex spaces by means of M-
fuzzifying convergence structures

In [10], Pang introduced convergence structures in the framework of M-fuzzifying convex
spaces, which are called M-fuzzifying convergence structures. As an application of M-
fuzzifying convergence structures, Pang defined separated degrees of M-fuzzifying convex
spaces by means of M-fuzzifying convergence structures. Notice that the separated degrees
of M-fuzzifying convex spaces via M-fuzzifying convergence structures in [10] have some
advantages compared with that in [7], especially on the productive properties.

In this section, we will go on investigating the separated degrees of M-fuzzifying con-
vex spaces by means of M-fuzzifying convergence structures. In order to distinguish the
separated degrees of M-fuzzifying convex spaces via M-fuzzifying convergence structures
from that in M-fuzzifying convex spaces, we denote the separated degrees of M-fuzzifying
convex spaces via M-fuzzifying convergence structures by S; (i =0,1,2).

Definition 5.1 ([10]). Let (X,lim) be an M-fuzzifying convergence space and define
S6(X, lim) by

S(X,lim) = A (=lim([2])(y) v -lim([y])(z)).

TFY

Then S§(X,lim) is called the degree to which (X, lim) is Sp-separated.

Definition 5.2 ([10]). Let (X,lim) be an M-fuzzifying convergence space and define
S¢(X, lim) by

S1(X,1im) = A (=lim([2])(y) A ~lim([y])(2)).

TH+Y

Then S{(X,lim) is called the degree to which (X, lim) is Si-separated.
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Definition 5.3 ([10]). Let (X,lim) be an M-fuzzifying convergence space and define
SS(X,lim) by

SS(X,lim) = /¢\ f f/\(X) (-lm(F)(z) v -Lim(F)(y)).

Then S5(X,lim) is called the degree to which (X,lim) is Sa-separated.

The separated degree S{(X,lim) (i = 0,1,2) of an M-fuzzifying convergence space
(X,lim) describes the degree to which (X,lim) is S; (i = 0,1,2) separated. Then the
separated degrees of an M-fuzzifying convex space (X, %) can be defined by means of its
induced M-fuzzifying convergence space (X, lim%).

Definition 5.4 ([10]). Suppose that (X, %) is an M-fuzzifying convex space. Then
SH(X,€) = S¢(X,lim?) (i=0,1)
is called the degree to which (X, %) is weakly S;-separated.
Definition 5.5 ([10]). Suppose that (X,%) is an M-fuzzifying convex space. Then
S3(X,%) = S5(X,lim%)
is called the degree to which (X, %) is S;-separated.

Note that for an M-fuzzifying convex space, there are two ways to define its S;-separated
degrees (i =0,1,2). In the following, we will show the the relations between two kinds of
separated degrees.

Proposition 5.6. Suppose that (X, %) is an M -fuzzifying convex space. Then
Proof. (1) By the definitions of S5 (X, %) and So(X, %), we have
Se(X,€) = S§(X,1lim”)
= A (Him® ([2]) (y) v ~lim® ([y]) (=)

TFY

[\

ACV €(A)v V ¢(B))

T#Y x¢Asy y¢ Bax
= So(X,%).
(2) It can be proved in a similar way. O
By the above proposition, we know that if an M-fuzzifying convex space is S; (i =0,1)

separated in the sense of Definition 4.1, then it is S; (i = 0,1) separated in the sense of
Definition 5.4. That’s why we call weakly S; (i =0, 1) separated in Definition 5.4.
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When M = {0,1}, Ss-separated degrees and S5-separated degrees will reduce to the
classical Sy and S5 separation axioms in convex spaces. It is easy to see that classical Sy
and S5 axioms are independent. This means that the Se-separated degrees in Definition
4.4 and S5 separated degrees in Definition 5.5 are incomparable.

In the sequel, we will further investigate the properties of separated degrees of an M-
fuzzifying convex space in the sense of Definitions 5.4 and 5.5.

From the aspect of convergence structures, an M-CP mapping between M -fuzzifying
convergence spaces is defined, which can be used to characterize the M-CP mapping
between M-fuzzifying convex spaces. In order to equip the M-CP mapping between M-
fuzzifying convergence spaces with some degrees, we first recall the definition of an M-CP
mapping between M-fuzzifying convergence spaces.

Definition 5.7 ([10]). A mapping f : (X,limy) — (Y,limy) between M-fuzzifying

convergence spaces is called M-fuzzifying convexity-preserving (M-CP, in short) provided
that

limx (F) () <limy (f~(F))(f(2))
for each F € Fp(X) and z € X.

Using the degree approach, we can define the degree to which a mapping between M-
fuzzifying convergence spaces is M-CP.

Definition 5.8. Let (X,limx) and (Y, limy ) be M-fuzzifying convergence spaces, and let
f:X — Y be a mapping. Then Dg,(f) defined by

DL =N A (timx(F)(@) > limy (F7(F))(f(x)))
reX FeFp(X)
is called the M-CP degree of f.
Actually, Definition 5.8 provides a degree approach to M-CP mappings from the aspect

of M-fuzzifying convergence structures. This can also be used to give a new definition of
M-CP degrees of a mapping between M-fuzzifying convex spaces.

Definition 5.9. Let (X,%x) and (Y,%y) be M-fuzzifying convex spaces, and let f :
X — Y be a mapping. Then D7,(f) defined by

DN =D =N A (Im™(F)@) -1 (f~(F))(f(2))
zeX FeFp(X)
is called the weak M-CP degree of f.

Proposition 5.10. Let (X,%x) and (Y,6y) be M-fuzzifying convex spaces, and let f :
X —Y be a mapping. Then

Dep(f) < D5y (f)-
Proof. By the definition of D,(f) and D;,(f), we have
Dep(f)
= A A Um™(F) (@) > Em™ (7 (F))(f(2)))
zeX FeFp(X)
- A A (A@BE-->F ) A (6(Y-B)~ [~ (F)B)))
zeX FeFp(X) xeA f(z)eB

= A A A (A@X-2)>F(4) > (¢ (Y -B) > 7 (F)(B)))
zeX FeFp(X) f(z)eB ~zeA

= A AN A (A@B(X-2)>F(A) > (6 (Y - B) > F(f(B))))

zeX FeFp (X) mef<(B) * zeA
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A ((Ex(X = 17(B) > F(f~(B))) > (¢x (Y - B) > F(f(B))))

zeX FeFy (X) zef<(B)

A (G (Y -B)»x(X - (B)))

xeX ,7-—6.7'—]\4 (X) CCEf‘_(B)

A (6(Y-B)=%x(J (Y -B))

zeX FeFp(X) zef<(B)

> A (G ()~ ex(r7(C))

> A A
> A A
= A A
Ce2X
= DCP(f)7
as desired.

In Definitions 4.7 and 5.9, we provided two different ways to define the M-CP degree of
a mapping between two M-fuzzifying convex spaces. By Proposition 5.10, we know that
if a mapping f : (X,%x) — (Y,%y) is M-CP in the sense of Definition 4.7, then it is
M-CP in the sense of Definition 5.9. That’s why we call D;,(f) in Definition 5.9 weak

M-CP degree.

In the following proposition, we present the relationships between separation axioms
and M-CP mappings with respect to M-fuzzifying convergence spaces in a degree sense.

Proposition 5.11. Let (X,%x) and (X, 6y ) be M-fuzzifying convergence spaces, and let

f: X —Y be an injective mapping. Then
(1) Dg,(f) < S65(Y,limy ) - S5(X, limx).
(2) Dg,(f) < S1(Y,limy) - S7(X, limx).
(3) Dg,(f) < 85(Y,limy ) — S5(X, limy).
Proof. (1) and (2) can be verified in a similar way. We only verify (1).
(1) By the definitions of Sf and D¢,, we have

v

v

v

v

cp?
So (Y, limy ) - SG(X, limy)

A (Hlimy ([y1])(y2) v ~limy ([52])(51))

- A (Hlimx ([21])(22) v =limx ([22]) (1))

T1#T2

A (Hlimy ([f (@)D (f(z2)) v Slimy ([f (22)]) (f(21)))
f(x)#f(z2)

- A (Slimx ([z1])(22) v ~limx ([22]) (1))

T1#+T2

/¢\ (Slimy ([f(z1)])(f (z2)) v =limy ([ f(22)])(f(21)))
- A (Hlimx ([21])(22) v -limx ([z2]) (1))

T1F+T2

A ((Slimy (L (0D (f () v =limy ([ (22)]) (£ (21)))

T1FT2

~ (limx ([a1]) (w2) v ~limx ([22]) (1)) )
A ((imx ([e1]) (=) > limy ([f(@)])(f(22))

T1FT2

Atimu ([22]) (1) = limy ([f(22)]) (£ (21))))
A A (i (F)(@) > limy (7 (F))(f(2)))

xGX:fEf]4LY)

De,(f)-
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(3) By the definitions of S§ and Dg,, we have

SE(Y, limy ) — SS5(X, limy)

= A A (Hlimy(F)(2) v -limy (F)(y1))
y1#y2 FeFpr (V)

S A A (Flimx(@)(22) v -limx (G)(21))

T1#22 GeFpr (X)

A (Hlimy (F)(f(z2)) v -limy (F)(f(21)))

f(x1)#f(z2) FeFnu(Y)

- A A (ﬂth(G)(.ZEQ)Vﬂth(G)(LEl))

x1#52 GeFpr(X)

= A N (Hlimy(F)(f(z2)) v -limy (F)(f(21)))

T1#22 FeFp(Y)
- A A\ (—JimX(G)(xg)v—dimX(G)(xl))

T1#FT2 g€.7:1u(X)

AN (Hlimy (f7(9))(f(22)) v -limy (f7(G))(f(21)))

T1#T2 gE}—]\/[(X)

- A A (Hlimx(G)(x2) v -limx (G)(21))

T1#T2 nghI(X)

A A ((Flimy (f7(9))(f(w2)) v =limy (F7(9)) (f(21)))

z1#02 GeFpr(X)

> (<limx (G)(22) v ﬁnmx(g)(xl)))
A ((imx(G)(w2) > limy (f7 () (f(x2)))

21#22 GeFpr (X)

Aty (9) (1) = limy (£ (9)) (f(21))) )
A A (imx (@) (@) > (imy (F7(9)(f(x))))

zeX GeFpr(X)

= Dg(h)-

v

v

v

v

v

O

Corollary 5.12. Let (X,€x) and (X,%6y) be M-fuzzifying convergence spaces, and let
f: X — Y be an injective mapping. Then

(1) Dg,(f) A SG(Y, limy ) < S§(X, limy).

(2) DE,(f) A SE(Y, limy) < SE(X, lim ).

(3) DS,(f) A S5V limy) < S5(X, limx ).

Proposition 5.13. Let (X,%x) and (X,%y) be M-fuzzifying convex spaces, and let f :
X — Y be an injective mapping. Then

(1) Dep(f) < S5(Y,6y) = S (X, €x).

(2) Dep(f) < ST(Y,6y) = 57 (X, Cx).

(3) Dep(f) < S5(Y,6y) — S3(X, €x).

Proof. By Propositions 5.10 and 5.11, for each ¢ =0,1,2, we have
Dcp(f) Dgp(f) = Dgp(f)

SE(Y,lim®Y ) - S¢(X, lim“X)

S; (Y, 6y) — S (X, €x),

as desired. O

I IN A
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Corollary 5.14. Let (X,%x) and (X,6y) be M-fuzzifying convex spaces, and let f :
X — Y be an injective mapping. Then

(1) Dep(f) A S5 (Y, 6y ) < S5(X, Cx).

(2) Dep(f) A ST(Y, 6y ) < ST(X, Cx).

(3) Dep(f) A S5 (Y, 6y ) < 55(X, Cx).

In Sections 4 and 5, we discussed the relationships between separated degrees and M-
CP degrees of mappings between M-fuzzifying convex spaces. From Propositions 4.9 and
5.13, it is observed that using M-fuzzifying convergence structures to define separated
degrees has more advantages.

6. Conclusions

In this paper, we mainly made further research on S; (i = 0, 1,2) separated degrees of
an M-fuzzifying convex space from two aspects. Section 4 focused on separated degrees
of an M-fuzzifying convex space in the sense of Liang and Li [7]. Section 5 focused on
separated degrees of an M-fuzzifying convex space in the sense of Pang [10]. Based on
the relationships between separated degrees and M-CP degrees, we can see that separated
degrees of an M-fuzzifying convex space via convergence structures have more advantages.
Following this paper, we will consider the following problems as the future work:

e Defining S3 and Sy separated degrees of an M-fuzzifying convex space by means
of its induced M-fuzzifying convergence structure and study their productivity.

o Defining M-CC degrees between M-fuzzifying convex spaces by means of M-
fuzzifying convergence structures and study their relationships with M-CC degrees
in Definition 4.8.

e Investigating the relationships between S; (i = 3,4) separated degrees of an M-
fuzzifying convex space and M-CP degrees between M-fuzzifying convex spaces.
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