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The growing use of social media has increased online harassment, cyberhate, and the 
use of offensive language. This poses significant challenges for effectively detecting 
and addressing such issues. Natural Language Processing (NLP) has seen 
considerable advancements; however, automatically identifying offensive language 
remains a complex task due to the ambiguous and informal nature of user-generated 
content and the social context in which it occurs. In this thesis, our goal is to develop 
methods for automatic detection of offensive language in social media. Multiple 
classification algorithms, including Multinomial Naive Bayes, Gaussian Naive 
Bayes, SVM, Logistic Regression, and LSTM, are implemented and evaluated. Key 
measures including accuracy, F1 score, and AUC score are used to evaluate how well 
these algorithms work. Results show that the Random Forest Classifier obtains an 
AUC score of 0.65 and an accuracy of 0.82 without word2vec. On the other hand, 
LSTM demonstrates a competitive AUC score of 0.78 when compared to the 
Random Forest Classifier. These findings provide insights into the effectiveness of 
different algorithms for offensive language detection. The research contributes to the 
field by providing valuable tools and insights to enhance Turkish language 
processing and prioritize online safety, particularly in combating cyberbullying and 
fostering a tolerant online environment. The findings also pave the way for future 
research endeavors in natural language processing and have practical implications 
for protecting individuals and promoting a secure online space.  
 

 
1. Introduction 
 
The power of language has played a crucial role 
in human evolution, enabling communication, 
fostering development, and driving progress. 
One significant advancement in language 
processing is the Enigma technology, which 
emerged during World War II to decode enemy 
messages. Initially, there were concerns among 
computer scientists regarding the outcomes of 
natural language processing (NLP). Some 
researchers believed in the progress through 
statistics and probability, while others 
emphasized the importance of predefined rules 
for computers [1] 

Addressing hate speech poses challenges in 
languages other than English due to the lack of 
readily available data models. While English has 
been extensively researched and has abundant 
data, Turkish, for example, faces a scarcity of 
data. Creating data for Turkish is crucial to 
identify and minimize the psychological impacts 
of improper language, especially on young 
individuals [2]. 
 
The anonymity of cyberspace has allowed people 
to express themselves freely, but it has also led to 
the spread of hateful and discriminatory 
messages. Hate speech not only violates freedom 
 

of expression but also reinforces prejudices, 
fosters discrimination, and incites violence. 
Many platforms have community standards and 

reporting mechanisms, but additional measures 
may be needed to ensure the safety and well-
being of users [3]. 
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Hate speech can exacerbate mental health issues 
and pose risks to individuals who may be 
susceptible to negative actions. Identifying and 
removing hate speech is therefore vital for 
people's well-being [4]. 
 
With the increasing use of social media, 
cyberbullying has become a prominent issue.  
 
However, research on cyberbullying in 
languages other than English, such as Turkish, is 
limited. This restriction hampers comprehensive 
studies and solutions for Turkish-speaking 
individuals. 
 
While the right to free expression permits the use 
of abusive language on social media, this 
situation is untenable. Developing automated 
solutions is necessary to filter the growing 
amount of content and mitigate the negative 
consequences, especially for young users. 
 
Language differences, such as the use of suffixes 
in Turkish and prefixes in English, have 
implications for word creation and meaning [5]. 
 
In summary, language plays a significant role in 
human progress, but challenges remain in 
addressing hate speech and cyberbullying. 
Further research, data availability, and automated 
solutions are needed to promote a safer and more 
inclusive online environment. 
 
The research contributes to following items; 
 
1. Collecting offensive words from the internet 

and processing input data for stemming, 
suffixes, censoring, and various options. 

2. Collection of numerous data from famous 
internet websites by using the words that are 
generated. 

3. Making encoding to make appropriate for 
deep learning models. 

4. To classify items, GaussianNB, 
MultinomialNB, Logistic Regression, 
XGBClassifier, LSTM, SVC, etc. are used. 

5. Results are shown by accuracy, f-1 score with 
confusion matrix on the offensive text of 
Turkish language. 

6. This research helps Turkish language 
processing and help with making application 
who have kids. Because cyberbullying in the 

Turkish language is not good enough to 
detect it. 

 
2. Neural Network Architectures 

Implemented in Natural Language 
Processing 

 
Natural language processing may be defined as 
the modeling of rule-based human language and 
its transmission to a computer. It is a machine 
learning technique that can understand and 
comprehend human language. Artificial neural 
networks include NLP as a subclass. It provides 
us with a sophisticated language processing 
approach that blends machine learning with deep 
learning. Linguists put a lot of work into training 
models since natural language processing 
involves more than simply code and incorporates 
a lot of information about humans. It is one of the 
functions in the background of programs that 
may recognize real-world voice instructions and 
transform them to text. 
 
As we looked at the encodings available in 
machine learning, we discovered that word2vec 
and one hot encoding were the best fit for our 
data set. According to Ma and Zhang (2015), 
utilizing Word2Vec on huge data is preferable 
due to performance and the utilization of NLP 
regions [6]. 
 
2.1. Encoding 
 
In NLP, it is necessary to convert textual data into 
a numerical format for machine learning models 
to process it. This conversion process is called 
encoding and can be performed at either the word 
or character level. The encoding method used is 
important for effective data processing and 
analysis. 
 
2.2. Word2Vec 
 
Word2Vec works by extracting words from a 
phrase one at a time and assigning numbers to the 
most frequently used ones. It is an encoding 
strategy that establishes a context inside itself by 
examining the words to the right and left of the 
term where it is utilized semantically (Mikolov, 
T., Chen, K., Corrado, G. S., Dean, J., 2013). 
Figure 1 shows the semantic links between word 
pairs like king and queen or man and woman, 
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demonstrating Word2Vec's capacity to capture 
analogical relationships. 
 

 
Figure 1. Word2vec example 

 
In Word2Vec, the vector size determines the 
amount of features used to represent a word. As 
the number of features increases, so does the 
vector's size. A larger vector size allows for more 
complex word representations, but it requires 
more computer power and data. In contrast, a 
lower vector size produces more basic word 
representations with fewer information, but it 
requires less processing power and data. 
 
Word2Vec is a technique used in natural 
language processing that represents words with 
numerical vectors. These vectors contain 
attributes that indicate the meaning of a word. 
Figure 2 shows how Word2Vec may capture 
geographical associations such as nations and 
capitals. These examples demonstrate how 
Word2Vec learns word associations and 
similarities, making it ideal for a wide range of 
NLP applications [7]. 
 

 
 

Figure 2. Example of word2vec 
 
2.2.1. Index based encoding 
 
Index-based encoding is an encoding method that 
helps to make categorical data more meaningful 
to a model. Unlike word2vec, it adds data to the 
vector space within itself, instead of defining the 
data within a one-dimensional object. It does this 
by encoding all values with values as 0 and 1. 
Index-based encoding is a method used in NLP 
to encode a word or text by connecting each word 
to a word index 6 in the dictionary. This approach 
is more memory-efficient and performs faster 

processing, depending on the size of the 
vocabulary. 
 
In mathematical terms, index-based encoding 
considers the size of the dictionary as n and 
assigns a numerical index to each word, with the 
index number being a whole number between 0 
and n-1. For instance, if a dictionary has 10,000 
words, each word will be assigned a sequential 
index number ranging from 0 to 9,999. 
 
Compared to other encoding methods like one-
hot encoding or binary encoding, index-based 
encoding provides a smaller representation for 
word vectors. The data is pre-processed before 
beginning the real analysis in order to make 
algorithms easier to use and increase efficiency 
[8]. Figure 3 provides a practical example of 
index-based encoding, where each word in a 
dictionary is assigned a unique numerical index, 
demonstrating its memory-efficient 
representation. 
 

 
Figure 3. Example of index based encoding 

 
Mathematic of Classifiers 
 
The classifier can be represented mathematically 
as a formula in 𝒟𝒟 space:  
Sn = {(𝐱𝐱1, y1), (𝐱𝐱2, y2), … , (𝐱𝐱n, yn)} in 𝒳𝒳 ×  𝒴𝒴 
space relevant to unsupervised learning 
approach. Because this distribution is unknown. 
𝐱𝐱 are word2vec or index based encoded vectors. 
They are subspace of 𝒳𝒳 ⊆ [0,1]d and 𝒴𝒴 =
{y1, y2, y3, . . . } label space we focus on binary 
classification (τ = 2) to obtain classification error. 
 
R𝒟𝒟(h) = Pr(𝐱𝐱,𝐲𝐲)∼𝒟𝒟[h(𝐱𝐱) ≠ y]

= E(𝐱𝐱,y)∼𝒟𝒟�𝕀𝕀[h(𝐱𝐱) ≠ y]� 

= E𝐱𝐱∼𝒟𝒟𝒳𝒳 ��  
τ

j=1

ηj(𝐱𝐱)𝕀𝕀[h(𝐱𝐱) ≠ j]� 
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R𝒟𝒟
∗ = E𝐱𝐱 �min

j∈[τ]
 �1 − ηj(𝐱𝐱)��  and h𝒟𝒟∗ (𝐱𝐱)

= arg max
j∈[τ]

�ηj(𝐱𝐱)� 

 
R𝒟𝒟
∗  is the minimum set of the classification. 

Where probability condition is  
 
ηj(x)  =  Pr[y =  j|x] for j ∈  [τ ] of y =  j 
over offensive or non-offensive 𝐱𝐱 with 
distribution of 𝒟𝒟, and ∑  τ=2

j=1 ηj(𝐱𝐱) = 1  E is the 
expectation error in this formula and E𝐱𝐱 this get 
the average of data inside the bracket. R𝒟𝒟(h) 
over whole training of this size. The function 𝕀𝕀[⋅] 
is referred to as the indicator function, and it 
outputs 1 when the statement it evaluates will be 
true and 0 when it’s false. 
 
h(𝐱𝐱) is the hypothesis whether word offensive or 
non-offensive. 
 
𝒟𝒟 is the training dataset which includes both 
offensive – non-offensive corpus data and 
unknown in practice [9]. 
 
2.3. Decision trees 
 
Decision trees are a common technique in natural 
language processing (NLP) for tasks including 
sentiment analysis, text categorization, and 
named entity identification [10]. A decision tree 
is a type of model made up of leaf nodes, 
branches, and internal nodes. The internal nodes 
represent the feature tests, the branches of the 
results of the tests, and the leaf nodes the 
projected values or class labels. Figure 4 
illustrates an example of a decision tree structure, 
showing how internal nodes split data based on 
feature tests, with branches leading to leaf nodes 
that represent class labels or outcomes. 
 

 
Figure 4. Example decision trees structure 

 
Decision trees can be created using different 
methods to extract characteristics from the data. 
The algorithm then learns the most effective 

divisions on these features, aiming to maximize 
information gain or reduce entropy at each node. 
Nevertheless, decision trees have the tendency to 
overfit when dealing with intricate or noisy data. 
To tackle this problem, pruning techniques like 
reduced error pruning and cost-complexity 
pruning can be utilized. These methods aim to 
simplify the tree structure by eliminating 
superfluous nodes or branches that do not 
significantly contribute to the overall 
performance. Ensemble methods like random 
forests and gradient boosting can improve 
decision tree accuracy and robustness by 
combining multiple trees. 
 
2.3.1. Random forest classifier 
 
Using random forest in the context of big data 
provides convenience and consistency in 
estimating large datasets. It reduces the risk of 
overfitting and is less likely to suffer from this 
issue due to the combination of decision trees. 
However, it also comes with challenges, such as 
a complex structure formed by multiple decision 
trees and increased storage requirements. 
 
Another machine learning model, the Extra Trees 
Classifier, offers faster performance and 
consumes fewer computational resources by 
randomly selecting features [11]. However, it 
performs worse than the Random Forest 
Classifier. Both models are ensemble methods 
that combine decision trees and utilize random 
feature selection, improving prediction accuracy. 
The Extra Trees Classifier is more efficient and 
requires fewer resources, while the Random 
Forest Classifier is more effective but takes 
longer to train. 
 
Figure 5 shows an example of the Random Forest 
algorithm's structure and prediction process 
when applied to huge datasets, which helps to 
better understand its performance. 
 

 
Figure 5. Example random forest classifier 
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The random forest classifier, fm(x), aggregates 
the outputs of m individual randomized trees, 
fSn,Θ1(x),  fSn,Θ2(x),  fSn,Θ3(x), … . fSn,Θm(x) by 
taking a majority vote. Random Forest Classifier 
is that; 

 

fm(𝐱𝐱) = arg max
j∈[τ]

��  
m

i=1

𝕀𝕀�fSn,Θi(𝐱𝐱) = j��  

 
The function fm(𝐱𝐱) selects the maximum value j 
among all possible values in the set [τ], based on 
the indicator function that evaluates the condition 
fSn,Θi(𝐱𝐱) = j, where m and i range from 1 to m 
value and the ties are broken arbitrarily. The 
vectors Θ1, Θ2,..., Θm are randomly distributed 
and independent of each other, and they define 
the process of selecting the split leaves, 
dimensions, and positions when constructing 
randomized trees. In the following sections, the 
specific vectors, Θ1,Θ2, . . .Θm will be defined for 
different random forests.  
 
In simpler terms, this formula describes how the 
Random Forest classifier works by using 
multiple decision trees to classify data points and 
aggregating the predictions based on the most 
common result. 
 
2.4. Support Vector Machine (SVM) 
 
Support Vector Machine (SVM) is a supervised 
learning technique used for classification and 
regression [12]. SVM may be used to categorize 
text as relevant or irrelevant in the context of 
NLP text detection by considering particular 
properties. 
 
The fundamental principle behind SVM is to find 
a decision boundary that maximizes the margin 
between two classes. The margin is the distance 
between the decision border and the support 
vectors, or nearest data points, for each class. 
 
To determine this decision boundary, SVM 
utilizes an optimization problem-solving 
approach that aims to maximize the margin while 
adhering to specific constraints. SVM seeks to 
minimize the following objective function: 
 
(1/2)�|w|�2 + C�ξi

i

 

In this context, the weight vector is denoted as w, 
and ξi represents the slack variable associated 
with each data point. The regularization 
parameter C regulates the trade-off between 
maximizing the margin and reducing the 
classification error. The objective function seeks 
to find the optimal value of w and ξi that 
minimizes the classification error subject to the 
constraints: 
 
yi(wTxi + b) ≥ 1 − ξi 
 
ξi ≥ 0 
 
Here, yi is label of the class for the i-th data point, 
and the bias term is b. Optimal value of w and b 
are found, the decision boundary is given by: 
wTx + b = 0 The classification decision is then 
made based on the sign of wTx + b or k(x, x′) =
exp (−∥x − x′∥2/2σ2) may be used to map data 
into higher dimensions for non-linear 
classification tasks. 
 
Figure 6 demonstrates an example of SVM 
decision boundaries, showcasing the optimal 
margin, support vectors, and separation of two 
classes in a two-dimensional space. 
 

 
Figure 6. SVM example 

 
2.4.1. Radial Basis Function (RBF) 
 
The SVM-RBF algorithm is a machine learning 
technique that classifies data by mapping it to a 
feature space and measuring the distance 
between points in that space to represent the data 
in a higher dimensional space. In a Word2vec 
model with SVM-RBF, the first step is to learn 
word embeddings and then represent them in the 
vector space of the feature space. Subsequently, 
the SVM-RBF algorithm uses these 
representation of vector in the feature space to 
classify the data [13]. RBF function is like below; 
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k(x, y) = exp �−
∥ x − y ∥2

2σ2
� 

 
The performance of the SVM-RBF classifier 
under varying regularization parameters (C) is 
demonstrated in Figure 7. 
 

 
Figure 7. SVM Classifier with different C 

parameters 
 
2.5. Long Short-Term Memory (LSTM) 
 
LSTM networks are utilized in natural language 
processing (NLP) applications such as sentiment 
analysis, language modeling, and machine 
translation. By considering the prior context, 
language models may calculate the likelihood of 
a word sequence in the context of language 
modeling. Long short-term memory (LSTM) and 
word2vec have become a common pipeline for 
jobs in natural language processing [14]. The 
pipeline has several stages: 
 
2.5.1. Data preprocessing 
 
Preprocessing, lower casing, and punctuating the 
raw input data into training, validation, and 
testing sets. 
 
2.5.2. Word embedding 
 
The text is turned into numbers using word 
embeddings such as word2vec. This makes it 
easy to use with an LSTM. 
 
2.5.3. LSTM network architecture  
 
The next step is to design an LSTM network 
architecture, as illustrated in Figure 8, which 
depicts the integration of one or more LSTM 
layers, a dropout layer for regularization, and a 
final dense layer for output classification. This 
figure provides a schematic representation of 
how LSTM layers consume word embeddings as 

input, utilizing memory cells to capture context 
and long-term dependencies between words in 
the text. Additionally, the dropout layer, shown 
in the diagram, mitigates overfitting by 
selectively deactivating neurons during training. 
Finally, the dense layer translates the processed 
information into class probabilities, facilitating 
output classification. 

 

 
Figure 8. LSTM model working schema 

 
2.5.4 Model training 
 
The LSTM network is trained in cleaned, z-
scored data. It has two types of cross-entropy loss 
functions, one for binary classification and one 
for multi-class classification. 
 
2.5.5. Model evaluation 
 
After training, the LSTM network is tested on the 
validation and test sets to see if it works on new 
data. Its performance is measured by metrics 
including accuracy, precision, recall, and F1-
score. 
 
2.5.6. Model deployment 
 
LSTM can infer user-generated text inputs or 
real-time data streams after training. This 
pipeline uses word2vec and LSTM networks for 
tasks involving natural language, such as named 
entity identification, text categorization, and 
sentiment analysis. These components are 
instrumental in processing and analyzing textual 
data, facilitating the execution of these language-
oriented tasks. 
 
2.5.7. Optimization 
 
Due to the complexity of these models and the 
requirement for processing huge volumes of 
textual input, LSTM models in NLP text 
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classification applications require optimization. 
By effectively updating the model's parameters 
and minimizing the loss function, optimization 
techniques enable the model to learn from the 
data and enhance its performance and accuracy. 
Additionally, by modifying the model's weights 
and biases during training to enhance the 
prediction performance of minority classes, 
optimization approaches can assist solve the 
problem of unbalanced datasets. To achieve high 
accuracy and performance in text classification 
tasks using LSTM models in NLP, optimizations 
are therefore essential [15].  
 
LSTM has optimizations like below; 
 
2.5.7.1. Gradient descent  
 
It is used to minimize loss. Making good 
predictions is important, so we need to change 
model parameters. The most common way to do 
this is "mass gradient descent." This method uses 
the data set and updates the parameters by 
computing all the data at each step. This method 
is faster than other approaches but can produce 
poorer results if the data is not large enough. 
 
2.5.7.2. Cross-entropy loss  
 
Error measurement is done using the cross-
entropy loss. For given review, its predicted 
sentiment is y and its actual sentiment is y. 
L(y, y�) = −(y log(y�) + (1 − y) log(1 − y�)) The 
goal of gradient descent is to minimize the 
average cross-entropy loss over the entire 
training set and the average loss over the training 
set as J(θ). Then the gradient descent rule for θ 
is: 

θ = θ − α
∂J(θ)
∂θ

 
 
where α is the learning rate, which controls the 
step size of each update. The derivative of J(θ) 
with respect to θ can be computed using the chain 
rule of calculus: 
 
∂J(θ)
∂θ

=
1
N
�

∂L(yi, yı�)
∂yı�

N

i=1

∂yı�
∂θ

 

 

where N is the total number of training instances, 
and yi and yı�  are the actual and predicted 
sentiments for the i-th training example.  
 
2.5.7.3. Stochastic Gradient Descent (SGD) 
 
Stochastic Gradient Descent (SGD) is a widely 
using optimization algorithm for updating the 
parameters 𝛉𝛉 of a Deep Neural Network (DNN). 
In contrast to regular gradient descent, which 
computes on the entire dataset, SGD randomly 
selects a small batch of the dataset and performs 
computations on it. This makes SGD more 
efficient and capable of producing similar 
performance as regular gradient descent when 
the learning rate 𝛈𝛈 is low. In LSTM networks, 
SGD updates the weight vectors iteratively by 
calculating the gradient from a randomly selected 
sample. 
 
The goal of SGD is to minimize the loss function 
L(θ, D) given the dataset D, where θ is the 
parameters set. At each step, SGD updates θ with 
one step towards the negative gradient as 
follows: 
 
θt+1 = θt − η∇θL(θt, xi, yi), which is the update 
formula used by SGD to update the parameters θ 
at each step. 
 
where ∇θL(θt, xi, yi) corresponds to the gradient 
of the loss function L with respect to the current 
parameters θt and the randomly selected sample 
(xi, yi). 
 
2.5.7.4. Adaptive Moment Estimation 
(ADAM) 

 
This can train an LSTM network with parameters 
𝛉𝛉 using the cross-entropy loss function. 𝛉𝛉 = 𝛉𝛉 −
𝛂𝛂 𝐦𝐦�
√𝐯𝐯�+𝛜𝛜

 where α,m�  and v� are learning rate, first 
and second gradients, and small constant 𝛜𝛜 . 
 
m� t = β1m� t − 1 + (1 − β1)gt  
v�t = β2v�t − 1 + (1 − β2)gt2  
 
where t is the current time step, gt is the loss's 
gradient with respect to parameters at time step 
t , and β1and β2 are the first and second 
moment exponential decay rates. 
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ADAM combines momentum and adaptive 
learning rate methods. The momentum term 
speeds up and stops oscillations, while the 
adaptive learning rate term adjusts the step size. 
We do this until the loss is minimal. 
 
The best optimization strategy for LSTM training 
in NLP depends on the task and dataset. Try 
different strategies to find the one that works 
best. 
 
2.6. Gausian naive bayes 
 
Gaussian Naive Bayes is a popular classification 
technique that employs Bayes theorem to classify 
data. Bayes' theorem provides a framework for 
calculating the an event's likelihood depending 
on the available information about the conditions 
that influenced the occurrence of the event [16].  
 
This theorem is applied in classification 
problems to identify the class to which a 
particular data point belongs. The "Naive" in 
Gaussian Naive Bayes refers to the assumption 
that each feature is not dependent on the other 
features. The "Gaussian" assumption is based on 
the idea that features follow a normal 
distribution, making the algorithm effective 
when data follows this pattern. The algorithm 
works by calculating the probability of each 
feature independently and then combining these 
probabilities to determine the data point's class. 
Gaussian Naive Bayes is a straightforward and 
powerful method for classifying data. 
 

P(y|x1, x2, … , xn) =
P(y)∏ P(xi|y)n

i=1
∑ P(y′)∏ P(xi|y′)n

i=1y′
 

 
In this equation: 
 
y represents the class. x1, x2, … , xn represent the 
features. P(y|x1, x2, … , xn) represents the 
probability of the class given the features. P(y) 
indicates the class's previous probability. P(xi|y) 
represents the conditional probability of feature 
xi in a given class y where 
 

f(x|μ,σ2) =
1

√2πσ2
e−

(x−μ)2
2σ2  

 
x is the random variable. μ represents the mean, 
σ2 represents the variance. In other words, the 

Gaussian probability density function is a way to 
calculate the probability of  x value occurring in 
a normal distribution with a given mean and 
variance. It is used in various statistical analyses, 
including Gaussian Naive Bayes classification. 
 
2.7. Multinominal naive bayes 
 
Multinomial Naive Bayes algorithm is designed 
to be used in problems such as text classification 
[17]. This algorithm is used to determine which 
category a document belongs to. For example, 
classifying an email as spam or non-spam. This 
algorithm calculates the frequency of each word 
in the document and uses these frequencies to 
make probability calculations. By ignoring the 
dependencies between words and treating each 
word separately, the algorithm calculates the 
probability of each word and multiplies them to 
determine the class of the document. 
 

P�cj�d� =
∏ P�ti�cj�

xiP�cj�n
i=1

∑ ∏ P(ti|ck)xiP(ck)n
i=1

K
k=1

 

 
cj represents the document class. d represents the 
document. ti represents word i. P�cj�d� 
represents the probability of document d being of 
class cj. 
 
P�ti�cj� represents the probability of word ti 
occurring in a document of class cj. xi represents 
the frequency of word ti in the document. 
 
n represents the total number of words. K 
represents the total number of classes which our 
case is 2. 
 
This formula is used to determine the class 
probabilities by calculating the frequency of each 
word in the document and using these 
frequencies to make probability calculations, 
while ignoring dependencies between words and 
treating each word separately. 
 
2.8. Logistic regression 
 
According to KOLUKISA 2021, Logistic 
regression is a classification algorithm employed 
in machine learning. Its main objective is to 
estimate the probability of a binary outcome, 
such as a "yes" or "no" response, by considering 
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input variables. Logistic regression calculates the 
probability of an event by establishing the 
connection between a dependent variable and 
one or multiple independent variables. The 
logistic regression formula is utilized to model 
this relationship and make predictions. 
 
p(y = 1|x) = 1/ �1 + exp�−(b0 + b1 ∗ x1 +

b2 ∗ x2 + ⋯+ bn ∗ xn)��  
 
Here: 
 
y represents the target variable or class. x 
represents the independent variables. 
b0, b1, b2 … bn represent the model parameters. 
The exp(bn ∗ xn) function performs the 
mathematical operation ex. In Logistic 
Regression, the correlation between the 
dependent and independent variables is 
computed to predict the probability of an event 
occurrence. This relationship is then utilized to 
make probabilistic predictions. This algorithm is 
commonly used in deep learning and was one of 
the classifiers analyzed in a study on Turkish 
character usage in text classification. 
 
3. Results 
 
Due to the increase in social media usage, the 
problem of cyberbullying has become more 
prominent, and there has been limited research 
on the issue in the Turkish language. While 
offensive language on social media is often 
defended as freedom of speech, this is not a 
tenable position. Moreover, manually filtering 
the growing amount of content on social media is 
becoming increasingly difficult, and developing 
automated solutions is becoming necessary. 
Additionally, it has been observed that Turkish 
uses suffixes rather than prefixes to create word 
meanings, which may suggest the importance of 
suffixes in Turkish compared to English. 
 
We aimed to develop a text classification model 
to detect offensive language in Turkish text data, 
including posts from various forum sites, such as 
Twitter and Eksi Sozluk. We started by 
collecting a total of 11,253 posts and manually 
labeling them as offensive or non-offensive using 
a predefined list of offensive words. We then 
used index-based encoding and word2vec 

embedding to represent the text data numerically 
and fed the resulting features into several 
machine learning models, including LSTM, 
SVM, Random Forest Classifier, Extra Tree 
Classifier, Gaussian NB, Multinomial NB, and 
Logistic Regression. After evaluating the 
performance of these models. There are several 
ways to understand the performance of a model. 
These are confusion matrix, classification report, 
Receiver Operating Characteristic - ROC, 
accuracy. 
 
3.1. Confusion matrix 
 
A confusion matrix serves as an assessment tool 
for evaluating the effectiveness of a classification 
model. It accomplishes this by comparing the 
predicted classifications of the model with the 
actual classifications, enabling the determination 
of the number of correct and incorrect 
classifications. The confusion matrix is 
comprised of four fundamental terms, namely 
true positives, false positives, true negatives, and 
false negatives [18]. 
 
Table 1 illustrates an example of a confusion 
matrix, which is commonly used to evaluate the 
performance of a classification model. In this 
table, the rows represent the actual 
classifications, while the columns correspond to 
the model's predicted classifications. The terms 
True Positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN) are 
organized within the matrix to demonstrate how 
the outcomes are categorized based on the 
model's predictions and the actual results. This 
structure provides valuable insights into the 
model's accuracy and areas where it might 
require improvement. 

 
Table 1. Confusion matrix example 

 Predicted 
Positive 

Predicted 
Negative 

True Positive TP FN 
True Negative FP TN 

 
Within this tabular representation, as outlined by 
Karimi (2021), the elements TP, FP, TN, and FN 
illustrate the correspondence between the 
predicted and actual classifications generated by 
the model. Specifically, TP denotes the count of 
true positive predictions, FP denotes the count of 
false positive predictions, TN denotes the count 
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of true negative predictions, and FN denotes the 
count of false negative predictions. 
 
Sensitivity is the ratio of true positive (TP) 
examples to total positive (TP + FN) examples. 
Specificity is the ratio of true negative (TN) 
examples to total negative (TN + FP) examples. 
When the threshold changes, sensitivity and 
specificity rates change, and the ROC curve 
displays different values for these rates. 
 
To gain insights into the performance of a 
classification model, the confusion matrix, as 
described by Karimi (2021), is employed to 
compute performance metrics including 
accuracy, precision, recall, and F1 score. These 
metrics serve the purpose of providing a 
comprehensive understanding of the 
classification model's performance. 
 
3.2. Classification report 
 
The classification report is a summary report that 
outlines the performance of a classification 
model. This report displays performance metrics 
such as accuracy, precision, recall, and F1 score 
for each class. These performance metrics are 
used to determine how well the model performed 
when classifying data [19]. 
 
In the classification report, accuracy represents 
the ratio of correctly classified examples by the 
model. Precision represents the ratio of correctly 
predicted positive examples for a given class. 
Recall represents the ratio of correctly predicted 
positive examples over all positive examples for 
a given class. F1 score represents the balance 
between precision and recall. 
 
Macro average is the equal-weighted average of 
the performance metrics for each class. Weighted 
average is the weighted average of the 
performance metrics based on the proportion of 
class examples. 
 
This classification report summarizes the 
performance of the model for each class and 
helps analyze the model's performance. 
 
 
 
 

3.3. Receiver Operating Characteristic (ROC) 
 
ROC is a curve and metric used to measure the 
performance of a classification model. The ROC 
curve visualizes the sensitivity and specificity 
rates provided by a model at different thresholds 
[14]. 
 
An ROC curve represents the performance of an 
ideal classification model, which is determined 
by how close the curve is to the top-left corner. 
A curve close to this area represents a model that 
provides high sensitivity and high specificity. 
Additionally, the area under the ROC curve 
(AUC) is a metric used to measure the 
performance of the model. As the AUC value 
approaches 1, the model's performance is better. 
As the AUC value approaches 0.5, the model is 
randomly classifying examples. 
 
3.4. Accuracy 
 
Accuracy is a metric that shows the ratio of 
correctly classified examples by a classification 
model. The accuracy of a model is calculated by 
dividing the number of correctly classified 
examples by the total number of examples [20]. 
 
Accuracy rate is an important metric used to 
measure the performance of a model, but it is not 
sufficient on its own. Especially in imbalanced 
datasets, it can mislead the model's performance. 
For example, if there is a large imbalance 
between classes in a dataset and one class has 
much more examples, the model can give a high 
accuracy result without making correct 
classifications. 
Therefore, other performance metrics should also 
be used in addition to accuracy. These metrics 
include confusion matrix, precision, recall, and 
F1 score, which indicate imbalances between 
classes and help to evaluate the performance of 
the model more accurately. 
 
3.5. Model results 
 
We implemented multiple algorithms to achieve 
the best results. Among the algorithms we tried 
are Gaussian Naive Bayes, Multinomial Naive 
Bayes, Logistic Regression, SVM, and LSTM. 
While obtaining these results, we tried to achieve 
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the best result by using different parameters for 
each algorithm. 
 
When we look at the results, with word2Vec 
Gaussian Naïve bayes and SVM achive better 
performance. And for the random forest 
classifier, without word2vec gave us better 
result. Just after the results, a short summary will 
be shown in the table in the form of information. 
 
3.5.1. Random forest classifier 
 
When comparing the performance of different 
models, we evaluated their success based on the 
Area Under the Curve (AUC) score, a robust 
measure for assessing classification models. 
Among these, the random forest classifier stood 
out, delivering superior results. Specifically, we 
observed that employing a random forest 
classifier led to more accurate predictions and 
higher reliability compared to alternative models 
such as logistic regression, Gaussian Naive 
Bayes, SVM, and LSTM. 
 
With an accuracy of 0.82, we surpassed the 
logistic regression, Gaussian Naive Bayes, SVM, 
and LSTM models, achieving the best accuracy. 
Figure 9 demonstrates the confusion matrix for 
the random forest classifier without the use of 
Word2Vec, providing insight into the 
distribution of true positives, false positives, true 
negatives, and false negatives. Additionally, 
Figure 10 illustrates the ROC curve for the 
random forest classifier without Word2Vec, 
showcasing its performance in terms of the true 
positive rate (sensitivity) and false positive rate. 

 
Figure 9. Confusion matrix for random forest 

classifier without word2vec 
 
In the confusion matrix, there are TP = 507, FP = 
198, FN = 386, and TN = 1354. Based on these 
values, the classifier correctly predicted the true 
positives (TP) and true negatives (TN). However, 

it also made some false positives (FP) and false 
negatives (FN), indicating that the classifier's 
performance is not ideal. 

 
Figure 10. ROC Curve for Random Forest Classifier 

without Word2vec 
 
Different metrics can be calculated based on this 
matrix to evaluate the performance of the 
classifier. For instance, metrics such as precision 
and recall can show how well the classifier 
detected true positives and false negatives. Other 
metrics such as F1-score balance precision and 
recall evaluating the overall performance of the 
classifier. The performance evaluation of a 
binary classifier involves utilizing the AUC 
(Area Under the Curve) score. This metric 
assesses the classifier's capability to differentiate 
between positive and negative classes. A score of 
65 signifies that the classifier's performance 
surpasses that of random guessing. 
 
When the worst result was considered, it was 
observed that it had an AUC score of 0.59. 
Regarding the accuracy value, a result of 0.58 
was obtained. While it was initially assumed that 
utilizing Word2Vec would yield better results, it 
was observed that progressing through vectors 
led to improved outcomes in this case. Figure 11 
presents the confusion matrix for the Random 
Forest Classifier with Word2Vec, showcasing 
the classification performance across true 
positives, false positives, true negatives, and 
false negatives. Meanwhile, Figure 12 illustrates 
the ROC curve for the Random Forest Classifier 
with Word2Vec, highlighting the trade-off 
between the true positive rate and false positive 
rate. 
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Figure 11. Confusion matrix for random forest 

classifier with Word2vec 
 

 
Figure 12. ROC Curve for random forest classifier 

with Word2vec 
 
When we tested the random forest classifier 
model using word2vec, it was observed that there 
was low performance, although it did not differ 
much from its unused state, as seen in the figure. 
We can see in Figure 12 that the AUC score has 
decreased from 0.65 to 0.61. 
 
3.5.2. Gaussian naïve bayes 

 
If we examine a different algorithm, the Gaussian 
Naive Bayes, we observed that it achieved an 
accuracy value of 0.79. When we analyzed the 
AUC score, it resembled the performance of the 
Random Forest Classifier, yielding a value of 
0.53. Notably, this result was obtained without 
utilizing Word2Vec in the Gaussian Naive Bayes 
model. Figure 13 illustrates the confusion matrix 
for Gaussian Naive Bayes without Word2Vec, 
detailing the distribution of true positives, false 
positives, true negatives, and false negatives. 
Additionally, Figure 14 depicts the ROC curve 
for Gaussian Naive Bayes without Word2Vec, 
visualizing the relationship between the true 
positive rate and false positive rate. 
 

 
Figure 13. Confusion matrix for gaussian naive 

bayes without word2vec 
 
Even when considering the highest performance 
achieved by the Gaussian Naive Bayes model, it 
fails to deliver the desired outcome or 
satisfactory results. However, in terms of 
accuracy, it achieved a respectable value of 0.79. 

 
Figure 14. ROC Curve for gaussian naive bayes 

without word2vec 
 
This result was obtained using Word2Vec as part 
of the feature representation. Figure 15 illustrates 
the confusion matrix for Gaussian Naive Bayes 
with Word2Vec, providing insights into the 
model's performance across true positives, false 
positives, true negatives, and false negatives. 
Moreover, Figure 16 shows the ROC curve for 
Gaussian Naive Bayes with Word2Vec, 
highlighting the balance between sensitivity and 
specificity. 
 

 
Figure 15. Confusion matrix for gaussian naive 

bayes with word2vec 
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Figure 16. ROC for gaussian naive bayes with 

word2vec 
 

If we use Word2Vec, it is observed that the AUC 
score improves significantly. However, the 
accuracy value drops to 0.55, indicating that the 
model struggles with correct classifications. 
Upon examining the confusion matrix in Figure 
15, it becomes evident that the model produces a 
high number of false positives, which affects its 
overall performance and reliability. 
 
3.5.3. Logistic regression 
 
If we look at another model, namely logistic 
regression, it is observed that the accuracy value 
reaches 0.79 when Word2Vec is not used. 
However, this accuracy drops slightly to 0.77 
when Word2Vec is applied. The AUC score and 
the corresponding confusion matrix for logistic 
regression without Word2Vec are depicted in 
Figure 17 and Figure 18, respectively. 

 

 
Figure 17. Confusion matrix for logistic regression 

without Word2vec 
 

 
Figure 18. ROC for logistic regression without 

word2vec 

 
Figure 19. Confusion matrix for logistic regression 

with word2vec 
 
Although the accuracy value has not changed 
significantly, it is observed that the number of 
lines predicted by the model has decreased. 
Similarly, when examining the ROC curve, a 
noticeable drop in the score is observed. 
Specifically, the value decreased from 0.62 to 
0.52. 

 
Figure 20. ROC for logistic regression with 

word2vec 
 
While the use of Word2Vec can be important in 
certain scenarios, the tests conducted with 
logistic regression reveal that its impact is not 
particularly significant. In fact, in the worst-case 
scenario, the use of Word2Vec leads to a decline 
in accuracy. These observations are illustrated in 
Figure 19 and Figure 20, which show the 
confusion matrix and ROC curve for logistic 
regression with Word2Vec, respectively. 
 
4.5.4. Support Vector Machine (SVM) 
 
When examining the Support Vector Machine 
(SVM) algorithm, it is observed that there is an 
increase in the AUC score when Word2Vec is 
not used. Specifically, the AUC score, which was 
0.62 without Word2Vec, decreased to 0.50 after 
incorporating Word2Vec. These results suggest 
that using Word2Vec negatively impacted the 
model's performance in this case. The confusion 
matrix and ROC curve for SVM without 
Word2Vec are shown in Figure 21 and Figure 22, 
respectively. 
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Figure 21. Confusion matrix for SVM without 

word2vec 
 
Despite the seemingly high AUC score of the 
model, a closer examination of the confusion 
matrix reveals that the incorrect predictions are 
not truly incorrect. 
 

 
Figure 22. ROC for SVM without word2vec 

 
However, the accuracy value is observed to be 
0.77 when Word2Vec is not used. This result is 
depicted in Figure 23 and Figure 24. 
 

 
Figure 23. Confusion matrix for SVM with 

word2vec 
 

 
Figure 24. ROC for SVM with word2vec 

 
When Word2Vec is utilized, the AUC score 
decreases, although the accuracy value remains 
the same as before. Upon examining the 
confusion matrix, it becomes evident that while 
there are a few misclassified instances, the 
overall number of misclassifications is minimal. 
 
3.5.5. Long Short-Term Memory (LSTM)  
 
When evaluating the performance of LSTM, a 
leading algorithm in artificial intelligence, its 
AUC score stands out, showcasing its ability to 
capture long-term dependencies and complex 
patterns in sequential data. However, despite this 
strength, LSTM's accuracy does not surpass that 
of the Random Forest model, indicating that 
while LSTM excels in probabilistic 
differentiation, it may be less consistent in 
making precise classifications. 

 
As shown in Figure 25, the confusion matrix for 
the Support Vector Machine (SVM) without 
using Word2Vec embeddings provides a good 
classification result when compared to other 
models. 

 

 
Figure 25. Confusion matrix for SVM without 

word2vec 
 
Similarly, Figure 26 presents the ROC curve for 
SVM without Word2Vec, illustrating the model's 
performance. 
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Figure 26. ROC for SVM without word2vec 

 
On the LSTM model, when using only vectors 
without Word2Vec, the results are impressive, 
with an accuracy value of 0.78 and an AUC score 
of 0.79. This result is quite close to the 
performance of Random Forest. However, a 
closer look at the confusion matrix (as shown in 
Figure 25) reveals that while the results are 
similar, Random Forest achieves a slightly higher 
accuracy. On the other hand, when comparing 
AUC scores, Figure 26 clearly demonstrates that 
LSTM outperforms Random Forest, making it a 
better choice for distinguishing between classes. 
 
4. Conclusion 
 
In conclusion, this dissertation has conducted an 
extensive investigation into the identification and 
analysis of offensive and discriminatory 
language within the specific context of the 
Turkish language. Throughout this scholarly 
inquiry, the dissertation has emphasized the 
fundamental role of language in facilitating 
effective communication and its profound impact 
on human development. It has also underscored 
the urgent need to address the detrimental 
consequences of hate speech on individuals and 
society as a whole. 
 
The study commenced by acknowledging the 
historical significance of natural language 
processing (NLP) during World War II, which 
laid the groundwork for subsequent 
advancements in this transformative technology. 
Furthermore, it has shed light on the limited 
availability of data for studying hate speech in 
the Turkish language compared to the extensive 
research conducted in English. This scarcity of 
data has highlighted the critical importance of 
generating relevant and contextually appropriate 
data within the Turkish linguistic domain, 

particularly in order to understand and mitigate 
the psychological impacts of inappropriate 
language use, especially among vulnerable 
populations such as children. 
 
Moreover, the dissertation has argued that hate 
speech goes beyond mere violations of freedom 
of expression, as it has the potential to reinforce 
biases, perpetuate discrimination, and incite acts 
of violence. Despite the implementation of 
community standards and reporting mechanisms 
on digital platforms, hate speech continues to 
prevail, necessitating additional measures to 
ensure the safety and well-being of internet users. 
To address these challenges, the dissertation has 
proposed several valuable contributions, 
including the systematic collection of offensive 
language data from online sources, the utilization 
of preprocessing techniques such as stemming, 
suffix analysis, and censorship to optimize the 
input data, and the development and evaluation 
of deep learning models using comprehensive 
datasets from popular internet platforms. Various 
classification algorithms have been employed, 
and the results have been assessed using key 
performance metrics, such as accuracy, F-1 
score, and confusion matrix, with a specific focus 
on offensive text in the Turkish language. 
 
Through this research, significant insights and 
tools have been developed to enhance Turkish 
language processing and facilitate the creation of 
applications that prioritize child safety. 
Moreover, this investigation contributes to 
broader efforts aimed at combating prejudice, 
discrimination, and intolerance by enabling the 
detection and analysis of cyberbullying within 
the Turkish linguistic realm. Ultimately, this 
dissertation underscores the importance of 
addressing hate speech, particularly in the 
Turkish language, and establishes a solid 
foundation for future research endeavors and 
practical applications in the field of natural 
language processing. The ultimate goal remains 
the protection of individuals, the promotion of 
tolerance, and the establishment of a secure 
online environment for all users. 
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