

Offensive Language Detection in Turkish Language by Using NLP

Bekir Furkan Kesgin* , Rüştü Murat Demirer

Bahcesehir University, Faculty of Engineering, Department of Computer Engineering, Istanbul, Türkiye,
furkan_bfk@hotmail.com, rustumurat.demirer@ou.bau.edu.tr
*Corresponding Author

ARTICLE INFO ABSTRACT

Keywords:
Cyberhate
Social media
Natural language processing
Classification algorithms
Cyberbullying

Article History:
Received: 25.08.2023
Revised: 12.01.2025
Accepted: 12.01.2025
Online Available: 12.02.2025

The growing use of social media has increased online harassment, cyberhate, and the
use of offensive language. This poses significant challenges for effectively detecting
and addressing such issues. Natural Language Processing (NLP) has seen
considerable advancements; however, automatically identifying offensive language
remains a complex task due to the ambiguous and informal nature of user-generated
content and the social context in which it occurs. In this thesis, our goal is to develop
methods for automatic detection of offensive language in social media. Multiple
classification algorithms, including Multinomial Naive Bayes, Gaussian Naive
Bayes, SVM, Logistic Regression, and LSTM, are implemented and evaluated. Key
measures including accuracy, F1 score, and AUC score are used to evaluate how well
these algorithms work. Results show that the Random Forest Classifier obtains an
AUC score of 0.65 and an accuracy of 0.82 without word2vec. On the other hand,
LSTM demonstrates a competitive AUC score of 0.78 when compared to the
Random Forest Classifier. These findings provide insights into the effectiveness of
different algorithms for offensive language detection. The research contributes to the
field by providing valuable tools and insights to enhance Turkish language
processing and prioritize online safety, particularly in combating cyberbullying and
fostering a tolerant online environment. The findings also pave the way for future
research endeavors in natural language processing and have practical implications
for protecting individuals and promoting a secure online space.

1. Introduction

The power of language has played a crucial role
in human evolution, enabling communication,
fostering development, and driving progress.
One significant advancement in language
processing is the Enigma technology, which
emerged during World War II to decode enemy
messages. Initially, there were concerns among
computer scientists regarding the outcomes of
natural language processing (NLP). Some
researchers believed in the progress through
statistics and probability, while others
emphasized the importance of predefined rules
for computers [1]

Addressing hate speech poses challenges in
languages other than English due to the lack of
readily available data models. While English has
been extensively researched and has abundant
data, Turkish, for example, faces a scarcity of
data. Creating data for Turkish is crucial to
identify and minimize the psychological impacts
of improper language, especially on young
individuals [2].

The anonymity of cyberspace has allowed people
to express themselves freely, but it has also led to
the spread of hateful and discriminatory
messages. Hate speech not only violates freedom

of expression but also reinforces prejudices,
fosters discrimination, and incites violence.
Many platforms have community standards and

reporting mechanisms, but additional measures
may be needed to ensure the safety and well-
being of users [3].

Research Article

Sakarya Üniversitesi Fen Bilimleri Dergisi
Sakarya University Journal of Science

ISSN : 2147-835X
Publisher : Sakarya University

Vol. 29, No. 1, 1-17, 2025
DOI: https://doi.org/10.16984/saufenbilder.1349956

Cite as: B. F. Kesgin, R. M. Demirer (2025). Offensive Language Detection in Turkish Language by Using NLP, Sakarya University Journal of Science, 29(1), 1-17.
https://doi.org/10.16984/saufenbilder.1349956

 This is an open access paper distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

mailto:furkan_bfk@hotmail.com
https://orcid.org/0009-0002-7875-637X
https://orcid.org/0000-0002-5508-741X

Bekir Furkan Kesgin, Rüştü Murat Demirer

2

Hate speech can exacerbate mental health issues
and pose risks to individuals who may be
susceptible to negative actions. Identifying and
removing hate speech is therefore vital for
people's well-being [4].

With the increasing use of social media,
cyberbullying has become a prominent issue.

However, research on cyberbullying in
languages other than English, such as Turkish, is
limited. This restriction hampers comprehensive
studies and solutions for Turkish-speaking
individuals.

While the right to free expression permits the use
of abusive language on social media, this
situation is untenable. Developing automated
solutions is necessary to filter the growing
amount of content and mitigate the negative
consequences, especially for young users.

Language differences, such as the use of suffixes
in Turkish and prefixes in English, have
implications for word creation and meaning [5].

In summary, language plays a significant role in
human progress, but challenges remain in
addressing hate speech and cyberbullying.
Further research, data availability, and automated
solutions are needed to promote a safer and more
inclusive online environment.

The research contributes to following items;

1. Collecting offensive words from the internet

and processing input data for stemming,
suffixes, censoring, and various options.

2. Collection of numerous data from famous
internet websites by using the words that are
generated.

3. Making encoding to make appropriate for
deep learning models.

4. To classify items, GaussianNB,
MultinomialNB, Logistic Regression,
XGBClassifier, LSTM, SVC, etc. are used.

5. Results are shown by accuracy, f-1 score with
confusion matrix on the offensive text of
Turkish language.

6. This research helps Turkish language
processing and help with making application
who have kids. Because cyberbullying in the

Turkish language is not good enough to
detect it.

2. Neural Network Architectures

Implemented in Natural Language
Processing

Natural language processing may be defined as
the modeling of rule-based human language and
its transmission to a computer. It is a machine
learning technique that can understand and
comprehend human language. Artificial neural
networks include NLP as a subclass. It provides
us with a sophisticated language processing
approach that blends machine learning with deep
learning. Linguists put a lot of work into training
models since natural language processing
involves more than simply code and incorporates
a lot of information about humans. It is one of the
functions in the background of programs that
may recognize real-world voice instructions and
transform them to text.

As we looked at the encodings available in
machine learning, we discovered that word2vec
and one hot encoding were the best fit for our
data set. According to Ma and Zhang (2015),
utilizing Word2Vec on huge data is preferable
due to performance and the utilization of NLP
regions [6].

2.1. Encoding

In NLP, it is necessary to convert textual data into
a numerical format for machine learning models
to process it. This conversion process is called
encoding and can be performed at either the word
or character level. The encoding method used is
important for effective data processing and
analysis.

2.2. Word2Vec

Word2Vec works by extracting words from a
phrase one at a time and assigning numbers to the
most frequently used ones. It is an encoding
strategy that establishes a context inside itself by
examining the words to the right and left of the
term where it is utilized semantically (Mikolov,
T., Chen, K., Corrado, G. S., Dean, J., 2013).
Figure 1 shows the semantic links between word
pairs like king and queen or man and woman,

Sakarya University Journal of Science, 29(1) 2025, 1-17

3

demonstrating Word2Vec's capacity to capture
analogical relationships.

Figure 1. Word2vec example

In Word2Vec, the vector size determines the
amount of features used to represent a word. As
the number of features increases, so does the
vector's size. A larger vector size allows for more
complex word representations, but it requires
more computer power and data. In contrast, a
lower vector size produces more basic word
representations with fewer information, but it
requires less processing power and data.

Word2Vec is a technique used in natural
language processing that represents words with
numerical vectors. These vectors contain
attributes that indicate the meaning of a word.
Figure 2 shows how Word2Vec may capture
geographical associations such as nations and
capitals. These examples demonstrate how
Word2Vec learns word associations and
similarities, making it ideal for a wide range of
NLP applications [7].

Figure 2. Example of word2vec

2.2.1. Index based encoding

Index-based encoding is an encoding method that
helps to make categorical data more meaningful
to a model. Unlike word2vec, it adds data to the
vector space within itself, instead of defining the
data within a one-dimensional object. It does this
by encoding all values with values as 0 and 1.
Index-based encoding is a method used in NLP
to encode a word or text by connecting each word
to a word index 6 in the dictionary. This approach
is more memory-efficient and performs faster

processing, depending on the size of the
vocabulary.

In mathematical terms, index-based encoding
considers the size of the dictionary as n and
assigns a numerical index to each word, with the
index number being a whole number between 0
and n-1. For instance, if a dictionary has 10,000
words, each word will be assigned a sequential
index number ranging from 0 to 9,999.

Compared to other encoding methods like one-
hot encoding or binary encoding, index-based
encoding provides a smaller representation for
word vectors. The data is pre-processed before
beginning the real analysis in order to make
algorithms easier to use and increase efficiency
[8]. Figure 3 provides a practical example of
index-based encoding, where each word in a
dictionary is assigned a unique numerical index,
demonstrating its memory-efficient
representation.

Figure 3. Example of index based encoding

Mathematic of Classifiers

The classifier can be represented mathematically
as a formula in 𝒟𝒟 space:
Sn = {(𝐱𝐱1, y1), (𝐱𝐱2, y2), … , (𝐱𝐱n, yn)} in 𝒳𝒳 × 𝒴𝒴
space relevant to unsupervised learning
approach. Because this distribution is unknown.
𝐱𝐱 are word2vec or index based encoded vectors.
They are subspace of 𝒳𝒳 ⊆ [0,1]d and 𝒴𝒴 =
{y1, y2, y3, . . . } label space we focus on binary
classification (τ = 2) to obtain classification error.

R𝒟𝒟(h) = Pr(𝐱𝐱,𝐲𝐲)∼𝒟𝒟[h(𝐱𝐱) ≠ y]

= E(𝐱𝐱,y)∼𝒟𝒟�𝕀𝕀[h(𝐱𝐱) ≠ y]�

= E𝐱𝐱∼𝒟𝒟𝒳𝒳 ��  
τ

j=1

ηj(𝐱𝐱)𝕀𝕀[h(𝐱𝐱) ≠ j]�

Bekir Furkan Kesgin, Rüştü Murat Demirer

4

R𝒟𝒟
∗ = E𝐱𝐱 �min

j∈[τ]
 �1 − ηj(𝐱𝐱)�� and h𝒟𝒟∗ (𝐱𝐱)

= arg max
j∈[τ]

�ηj(𝐱𝐱)�

R𝒟𝒟
∗ is the minimum set of the classification.

Where probability condition is

ηj(x) = Pr[y = j|x] for j ∈ [τ] of y = j
over offensive or non-offensive 𝐱𝐱 with
distribution of 𝒟𝒟, and ∑  τ=2

j=1 ηj(𝐱𝐱) = 1 E is the
expectation error in this formula and E𝐱𝐱 this get
the average of data inside the bracket. R𝒟𝒟(h)
over whole training of this size. The function 𝕀𝕀[⋅]
is referred to as the indicator function, and it
outputs 1 when the statement it evaluates will be
true and 0 when it’s false.

h(𝐱𝐱) is the hypothesis whether word offensive or
non-offensive.

𝒟𝒟 is the training dataset which includes both
offensive – non-offensive corpus data and
unknown in practice [9].

2.3. Decision trees

Decision trees are a common technique in natural
language processing (NLP) for tasks including
sentiment analysis, text categorization, and
named entity identification [10]. A decision tree
is a type of model made up of leaf nodes,
branches, and internal nodes. The internal nodes
represent the feature tests, the branches of the
results of the tests, and the leaf nodes the
projected values or class labels. Figure 4
illustrates an example of a decision tree structure,
showing how internal nodes split data based on
feature tests, with branches leading to leaf nodes
that represent class labels or outcomes.

Figure 4. Example decision trees structure

Decision trees can be created using different
methods to extract characteristics from the data.
The algorithm then learns the most effective

divisions on these features, aiming to maximize
information gain or reduce entropy at each node.
Nevertheless, decision trees have the tendency to
overfit when dealing with intricate or noisy data.
To tackle this problem, pruning techniques like
reduced error pruning and cost-complexity
pruning can be utilized. These methods aim to
simplify the tree structure by eliminating
superfluous nodes or branches that do not
significantly contribute to the overall
performance. Ensemble methods like random
forests and gradient boosting can improve
decision tree accuracy and robustness by
combining multiple trees.

2.3.1. Random forest classifier

Using random forest in the context of big data
provides convenience and consistency in
estimating large datasets. It reduces the risk of
overfitting and is less likely to suffer from this
issue due to the combination of decision trees.
However, it also comes with challenges, such as
a complex structure formed by multiple decision
trees and increased storage requirements.

Another machine learning model, the Extra Trees
Classifier, offers faster performance and
consumes fewer computational resources by
randomly selecting features [11]. However, it
performs worse than the Random Forest
Classifier. Both models are ensemble methods
that combine decision trees and utilize random
feature selection, improving prediction accuracy.
The Extra Trees Classifier is more efficient and
requires fewer resources, while the Random
Forest Classifier is more effective but takes
longer to train.

Figure 5 shows an example of the Random Forest
algorithm's structure and prediction process
when applied to huge datasets, which helps to
better understand its performance.

Figure 5. Example random forest classifier

Sakarya University Journal of Science, 29(1) 2025, 1-17

5

The random forest classifier, fm(x), aggregates
the outputs of m individual randomized trees,
fSn,Θ1(x),  fSn,Θ2(x),  fSn,Θ3(x), … . fSn,Θm(x) by
taking a majority vote. Random Forest Classifier
is that;

fm(𝐱𝐱) = arg max
j∈[τ]

��  
m

i=1

𝕀𝕀�fSn,Θi(𝐱𝐱) = j��

The function fm(𝐱𝐱) selects the maximum value j
among all possible values in the set [τ], based on
the indicator function that evaluates the condition
fSn,Θi(𝐱𝐱) = j, where m and i range from 1 to m
value and the ties are broken arbitrarily. The
vectors Θ1, Θ2,..., Θm are randomly distributed
and independent of each other, and they define
the process of selecting the split leaves,
dimensions, and positions when constructing
randomized trees. In the following sections, the
specific vectors, Θ1,Θ2, . . .Θm will be defined for
different random forests.

In simpler terms, this formula describes how the
Random Forest classifier works by using
multiple decision trees to classify data points and
aggregating the predictions based on the most
common result.

2.4. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised
learning technique used for classification and
regression [12]. SVM may be used to categorize
text as relevant or irrelevant in the context of
NLP text detection by considering particular
properties.

The fundamental principle behind SVM is to find
a decision boundary that maximizes the margin
between two classes. The margin is the distance
between the decision border and the support
vectors, or nearest data points, for each class.

To determine this decision boundary, SVM
utilizes an optimization problem-solving
approach that aims to maximize the margin while
adhering to specific constraints. SVM seeks to
minimize the following objective function:

(1/2)�|w|�2 + C�ξi

i

In this context, the weight vector is denoted as w,
and ξi represents the slack variable associated
with each data point. The regularization
parameter C regulates the trade-off between
maximizing the margin and reducing the
classification error. The objective function seeks
to find the optimal value of w and ξi that
minimizes the classification error subject to the
constraints:

yi(wTxi + b) ≥ 1 − ξi

ξi ≥ 0

Here, yi is label of the class for the i-th data point,
and the bias term is b. Optimal value of w and b
are found, the decision boundary is given by:
wTx + b = 0 The classification decision is then
made based on the sign of wTx + b or k(x, x′) =
exp (−∥x − x′∥2/2σ2) may be used to map data
into higher dimensions for non-linear
classification tasks.

Figure 6 demonstrates an example of SVM
decision boundaries, showcasing the optimal
margin, support vectors, and separation of two
classes in a two-dimensional space.

Figure 6. SVM example

2.4.1. Radial Basis Function (RBF)

The SVM-RBF algorithm is a machine learning
technique that classifies data by mapping it to a
feature space and measuring the distance
between points in that space to represent the data
in a higher dimensional space. In a Word2vec
model with SVM-RBF, the first step is to learn
word embeddings and then represent them in the
vector space of the feature space. Subsequently,
the SVM-RBF algorithm uses these
representation of vector in the feature space to
classify the data [13]. RBF function is like below;

Bekir Furkan Kesgin, Rüştü Murat Demirer

6

k(x, y) = exp �−
∥ x − y ∥2

2σ2
�

The performance of the SVM-RBF classifier
under varying regularization parameters (C) is
demonstrated in Figure 7.

Figure 7. SVM Classifier with different C

parameters

2.5. Long Short-Term Memory (LSTM)

LSTM networks are utilized in natural language
processing (NLP) applications such as sentiment
analysis, language modeling, and machine
translation. By considering the prior context,
language models may calculate the likelihood of
a word sequence in the context of language
modeling. Long short-term memory (LSTM) and
word2vec have become a common pipeline for
jobs in natural language processing [14]. The
pipeline has several stages:

2.5.1. Data preprocessing

Preprocessing, lower casing, and punctuating the
raw input data into training, validation, and
testing sets.

2.5.2. Word embedding

The text is turned into numbers using word
embeddings such as word2vec. This makes it
easy to use with an LSTM.

2.5.3. LSTM network architecture

The next step is to design an LSTM network
architecture, as illustrated in Figure 8, which
depicts the integration of one or more LSTM
layers, a dropout layer for regularization, and a
final dense layer for output classification. This
figure provides a schematic representation of
how LSTM layers consume word embeddings as

input, utilizing memory cells to capture context
and long-term dependencies between words in
the text. Additionally, the dropout layer, shown
in the diagram, mitigates overfitting by
selectively deactivating neurons during training.
Finally, the dense layer translates the processed
information into class probabilities, facilitating
output classification.

Figure 8. LSTM model working schema

2.5.4 Model training

The LSTM network is trained in cleaned, z-
scored data. It has two types of cross-entropy loss
functions, one for binary classification and one
for multi-class classification.

2.5.5. Model evaluation

After training, the LSTM network is tested on the
validation and test sets to see if it works on new
data. Its performance is measured by metrics
including accuracy, precision, recall, and F1-
score.

2.5.6. Model deployment

LSTM can infer user-generated text inputs or
real-time data streams after training. This
pipeline uses word2vec and LSTM networks for
tasks involving natural language, such as named
entity identification, text categorization, and
sentiment analysis. These components are
instrumental in processing and analyzing textual
data, facilitating the execution of these language-
oriented tasks.

2.5.7. Optimization

Due to the complexity of these models and the
requirement for processing huge volumes of
textual input, LSTM models in NLP text

Sakarya University Journal of Science, 29(1) 2025, 1-17

7

classification applications require optimization.
By effectively updating the model's parameters
and minimizing the loss function, optimization
techniques enable the model to learn from the
data and enhance its performance and accuracy.
Additionally, by modifying the model's weights
and biases during training to enhance the
prediction performance of minority classes,
optimization approaches can assist solve the
problem of unbalanced datasets. To achieve high
accuracy and performance in text classification
tasks using LSTM models in NLP, optimizations
are therefore essential [15].

LSTM has optimizations like below;

2.5.7.1. Gradient descent

It is used to minimize loss. Making good
predictions is important, so we need to change
model parameters. The most common way to do
this is "mass gradient descent." This method uses
the data set and updates the parameters by
computing all the data at each step. This method
is faster than other approaches but can produce
poorer results if the data is not large enough.

2.5.7.2. Cross-entropy loss

Error measurement is done using the cross-
entropy loss. For given review, its predicted
sentiment is y and its actual sentiment is y.
L(y, y�) = −(y log(y�) + (1 − y) log(1 − y�)) The
goal of gradient descent is to minimize the
average cross-entropy loss over the entire
training set and the average loss over the training
set as J(θ). Then the gradient descent rule for θ
is:

θ = θ − α
∂J(θ)
∂θ

where α is the learning rate, which controls the
step size of each update. The derivative of J(θ)
with respect to θ can be computed using the chain
rule of calculus:

∂J(θ)
∂θ

=
1
N
�

∂L(yi, yı�)
∂yı�

N

i=1

∂yı�
∂θ

where N is the total number of training instances,
and yi and yı� are the actual and predicted
sentiments for the i-th training example.

2.5.7.3. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a widely
using optimization algorithm for updating the
parameters 𝛉𝛉 of a Deep Neural Network (DNN).
In contrast to regular gradient descent, which
computes on the entire dataset, SGD randomly
selects a small batch of the dataset and performs
computations on it. This makes SGD more
efficient and capable of producing similar
performance as regular gradient descent when
the learning rate 𝛈𝛈 is low. In LSTM networks,
SGD updates the weight vectors iteratively by
calculating the gradient from a randomly selected
sample.

The goal of SGD is to minimize the loss function
L(θ, D) given the dataset D, where θ is the
parameters set. At each step, SGD updates θ with
one step towards the negative gradient as
follows:

θt+1 = θt − η∇θL(θt, xi, yi), which is the update
formula used by SGD to update the parameters θ
at each step.

where ∇θL(θt, xi, yi) corresponds to the gradient
of the loss function L with respect to the current
parameters θt and the randomly selected sample
(xi, yi).

2.5.7.4. Adaptive Moment Estimation
(ADAM)

This can train an LSTM network with parameters
𝛉𝛉 using the cross-entropy loss function. 𝛉𝛉 = 𝛉𝛉 −
𝛂𝛂 𝐦𝐦�
√𝐯𝐯�+𝛜𝛜

 where α,m� and v� are learning rate, first
and second gradients, and small constant 𝛜𝛜 .

m� t = β1m� t − 1 + (1 − β1)gt
v�t = β2v�t − 1 + (1 − β2)gt2

where t is the current time step, gt is the loss's
gradient with respect to parameters at time step
t , and β1and β2 are the first and second
moment exponential decay rates.

Bekir Furkan Kesgin, Rüştü Murat Demirer

8

ADAM combines momentum and adaptive
learning rate methods. The momentum term
speeds up and stops oscillations, while the
adaptive learning rate term adjusts the step size.
We do this until the loss is minimal.

The best optimization strategy for LSTM training
in NLP depends on the task and dataset. Try
different strategies to find the one that works
best.

2.6. Gausian naive bayes

Gaussian Naive Bayes is a popular classification
technique that employs Bayes theorem to classify
data. Bayes' theorem provides a framework for
calculating the an event's likelihood depending
on the available information about the conditions
that influenced the occurrence of the event [16].

This theorem is applied in classification
problems to identify the class to which a
particular data point belongs. The "Naive" in
Gaussian Naive Bayes refers to the assumption
that each feature is not dependent on the other
features. The "Gaussian" assumption is based on
the idea that features follow a normal
distribution, making the algorithm effective
when data follows this pattern. The algorithm
works by calculating the probability of each
feature independently and then combining these
probabilities to determine the data point's class.
Gaussian Naive Bayes is a straightforward and
powerful method for classifying data.

P(y|x1, x2, … , xn) =
P(y)∏ P(xi|y)n

i=1
∑ P(y′)∏ P(xi|y′)n

i=1y′

In this equation:

y represents the class. x1, x2, … , xn represent the
features. P(y|x1, x2, … , xn) represents the
probability of the class given the features. P(y)
indicates the class's previous probability. P(xi|y)
represents the conditional probability of feature
xi in a given class y where

f(x|μ,σ2) =
1

√2πσ2
e−

(x−μ)2
2σ2

x is the random variable. μ represents the mean,
σ2 represents the variance. In other words, the

Gaussian probability density function is a way to
calculate the probability of x value occurring in
a normal distribution with a given mean and
variance. It is used in various statistical analyses,
including Gaussian Naive Bayes classification.

2.7. Multinominal naive bayes

Multinomial Naive Bayes algorithm is designed
to be used in problems such as text classification
[17]. This algorithm is used to determine which
category a document belongs to. For example,
classifying an email as spam or non-spam. This
algorithm calculates the frequency of each word
in the document and uses these frequencies to
make probability calculations. By ignoring the
dependencies between words and treating each
word separately, the algorithm calculates the
probability of each word and multiplies them to
determine the class of the document.

P�cj�d� =
∏ P�ti�cj�

xiP�cj�n
i=1

∑ ∏ P(ti|ck)xiP(ck)n
i=1

K
k=1

cj represents the document class. d represents the
document. ti represents word i. P�cj�d�
represents the probability of document d being of
class cj.

P�ti�cj� represents the probability of word ti
occurring in a document of class cj. xi represents
the frequency of word ti in the document.

n represents the total number of words. K
represents the total number of classes which our
case is 2.

This formula is used to determine the class
probabilities by calculating the frequency of each
word in the document and using these
frequencies to make probability calculations,
while ignoring dependencies between words and
treating each word separately.

2.8. Logistic regression

According to KOLUKISA 2021, Logistic
regression is a classification algorithm employed
in machine learning. Its main objective is to
estimate the probability of a binary outcome,
such as a "yes" or "no" response, by considering

Sakarya University Journal of Science, 29(1) 2025, 1-17

9

input variables. Logistic regression calculates the
probability of an event by establishing the
connection between a dependent variable and
one or multiple independent variables. The
logistic regression formula is utilized to model
this relationship and make predictions.

p(y = 1|x) = 1/ �1 + exp�−(b0 + b1 ∗ x1 +

b2 ∗ x2 + ⋯+ bn ∗ xn)��

Here:

y represents the target variable or class. x
represents the independent variables.
b0, b1, b2 … bn represent the model parameters.
The exp(bn ∗ xn) function performs the
mathematical operation ex. In Logistic
Regression, the correlation between the
dependent and independent variables is
computed to predict the probability of an event
occurrence. This relationship is then utilized to
make probabilistic predictions. This algorithm is
commonly used in deep learning and was one of
the classifiers analyzed in a study on Turkish
character usage in text classification.

3. Results

Due to the increase in social media usage, the
problem of cyberbullying has become more
prominent, and there has been limited research
on the issue in the Turkish language. While
offensive language on social media is often
defended as freedom of speech, this is not a
tenable position. Moreover, manually filtering
the growing amount of content on social media is
becoming increasingly difficult, and developing
automated solutions is becoming necessary.
Additionally, it has been observed that Turkish
uses suffixes rather than prefixes to create word
meanings, which may suggest the importance of
suffixes in Turkish compared to English.

We aimed to develop a text classification model
to detect offensive language in Turkish text data,
including posts from various forum sites, such as
Twitter and Eksi Sozluk. We started by
collecting a total of 11,253 posts and manually
labeling them as offensive or non-offensive using
a predefined list of offensive words. We then
used index-based encoding and word2vec

embedding to represent the text data numerically
and fed the resulting features into several
machine learning models, including LSTM,
SVM, Random Forest Classifier, Extra Tree
Classifier, Gaussian NB, Multinomial NB, and
Logistic Regression. After evaluating the
performance of these models. There are several
ways to understand the performance of a model.
These are confusion matrix, classification report,
Receiver Operating Characteristic - ROC,
accuracy.

3.1. Confusion matrix

A confusion matrix serves as an assessment tool
for evaluating the effectiveness of a classification
model. It accomplishes this by comparing the
predicted classifications of the model with the
actual classifications, enabling the determination
of the number of correct and incorrect
classifications. The confusion matrix is
comprised of four fundamental terms, namely
true positives, false positives, true negatives, and
false negatives [18].

Table 1 illustrates an example of a confusion
matrix, which is commonly used to evaluate the
performance of a classification model. In this
table, the rows represent the actual
classifications, while the columns correspond to
the model's predicted classifications. The terms
True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) are
organized within the matrix to demonstrate how
the outcomes are categorized based on the
model's predictions and the actual results. This
structure provides valuable insights into the
model's accuracy and areas where it might
require improvement.

Table 1. Confusion matrix example

 Predicted
Positive

Predicted
Negative

True Positive TP FN
True Negative FP TN

Within this tabular representation, as outlined by
Karimi (2021), the elements TP, FP, TN, and FN
illustrate the correspondence between the
predicted and actual classifications generated by
the model. Specifically, TP denotes the count of
true positive predictions, FP denotes the count of
false positive predictions, TN denotes the count

Bekir Furkan Kesgin, Rüştü Murat Demirer

10

of true negative predictions, and FN denotes the
count of false negative predictions.

Sensitivity is the ratio of true positive (TP)
examples to total positive (TP + FN) examples.
Specificity is the ratio of true negative (TN)
examples to total negative (TN + FP) examples.
When the threshold changes, sensitivity and
specificity rates change, and the ROC curve
displays different values for these rates.

To gain insights into the performance of a
classification model, the confusion matrix, as
described by Karimi (2021), is employed to
compute performance metrics including
accuracy, precision, recall, and F1 score. These
metrics serve the purpose of providing a
comprehensive understanding of the
classification model's performance.

3.2. Classification report

The classification report is a summary report that
outlines the performance of a classification
model. This report displays performance metrics
such as accuracy, precision, recall, and F1 score
for each class. These performance metrics are
used to determine how well the model performed
when classifying data [19].

In the classification report, accuracy represents
the ratio of correctly classified examples by the
model. Precision represents the ratio of correctly
predicted positive examples for a given class.
Recall represents the ratio of correctly predicted
positive examples over all positive examples for
a given class. F1 score represents the balance
between precision and recall.

Macro average is the equal-weighted average of
the performance metrics for each class. Weighted
average is the weighted average of the
performance metrics based on the proportion of
class examples.

This classification report summarizes the
performance of the model for each class and
helps analyze the model's performance.

3.3. Receiver Operating Characteristic (ROC)

ROC is a curve and metric used to measure the
performance of a classification model. The ROC
curve visualizes the sensitivity and specificity
rates provided by a model at different thresholds
[14].

An ROC curve represents the performance of an
ideal classification model, which is determined
by how close the curve is to the top-left corner.
A curve close to this area represents a model that
provides high sensitivity and high specificity.
Additionally, the area under the ROC curve
(AUC) is a metric used to measure the
performance of the model. As the AUC value
approaches 1, the model's performance is better.
As the AUC value approaches 0.5, the model is
randomly classifying examples.

3.4. Accuracy

Accuracy is a metric that shows the ratio of
correctly classified examples by a classification
model. The accuracy of a model is calculated by
dividing the number of correctly classified
examples by the total number of examples [20].

Accuracy rate is an important metric used to
measure the performance of a model, but it is not
sufficient on its own. Especially in imbalanced
datasets, it can mislead the model's performance.
For example, if there is a large imbalance
between classes in a dataset and one class has
much more examples, the model can give a high
accuracy result without making correct
classifications.
Therefore, other performance metrics should also
be used in addition to accuracy. These metrics
include confusion matrix, precision, recall, and
F1 score, which indicate imbalances between
classes and help to evaluate the performance of
the model more accurately.

3.5. Model results

We implemented multiple algorithms to achieve
the best results. Among the algorithms we tried
are Gaussian Naive Bayes, Multinomial Naive
Bayes, Logistic Regression, SVM, and LSTM.
While obtaining these results, we tried to achieve

Sakarya University Journal of Science, 29(1) 2025, 1-17

11

the best result by using different parameters for
each algorithm.

When we look at the results, with word2Vec
Gaussian Naïve bayes and SVM achive better
performance. And for the random forest
classifier, without word2vec gave us better
result. Just after the results, a short summary will
be shown in the table in the form of information.

3.5.1. Random forest classifier

When comparing the performance of different
models, we evaluated their success based on the
Area Under the Curve (AUC) score, a robust
measure for assessing classification models.
Among these, the random forest classifier stood
out, delivering superior results. Specifically, we
observed that employing a random forest
classifier led to more accurate predictions and
higher reliability compared to alternative models
such as logistic regression, Gaussian Naive
Bayes, SVM, and LSTM.

With an accuracy of 0.82, we surpassed the
logistic regression, Gaussian Naive Bayes, SVM,
and LSTM models, achieving the best accuracy.
Figure 9 demonstrates the confusion matrix for
the random forest classifier without the use of
Word2Vec, providing insight into the
distribution of true positives, false positives, true
negatives, and false negatives. Additionally,
Figure 10 illustrates the ROC curve for the
random forest classifier without Word2Vec,
showcasing its performance in terms of the true
positive rate (sensitivity) and false positive rate.

Figure 9. Confusion matrix for random forest

classifier without word2vec

In the confusion matrix, there are TP = 507, FP =
198, FN = 386, and TN = 1354. Based on these
values, the classifier correctly predicted the true
positives (TP) and true negatives (TN). However,

it also made some false positives (FP) and false
negatives (FN), indicating that the classifier's
performance is not ideal.

Figure 10. ROC Curve for Random Forest Classifier

without Word2vec

Different metrics can be calculated based on this
matrix to evaluate the performance of the
classifier. For instance, metrics such as precision
and recall can show how well the classifier
detected true positives and false negatives. Other
metrics such as F1-score balance precision and
recall evaluating the overall performance of the
classifier. The performance evaluation of a
binary classifier involves utilizing the AUC
(Area Under the Curve) score. This metric
assesses the classifier's capability to differentiate
between positive and negative classes. A score of
65 signifies that the classifier's performance
surpasses that of random guessing.

When the worst result was considered, it was
observed that it had an AUC score of 0.59.
Regarding the accuracy value, a result of 0.58
was obtained. While it was initially assumed that
utilizing Word2Vec would yield better results, it
was observed that progressing through vectors
led to improved outcomes in this case. Figure 11
presents the confusion matrix for the Random
Forest Classifier with Word2Vec, showcasing
the classification performance across true
positives, false positives, true negatives, and
false negatives. Meanwhile, Figure 12 illustrates
the ROC curve for the Random Forest Classifier
with Word2Vec, highlighting the trade-off
between the true positive rate and false positive
rate.

Bekir Furkan Kesgin, Rüştü Murat Demirer

12

Figure 11. Confusion matrix for random forest

classifier with Word2vec

Figure 12. ROC Curve for random forest classifier

with Word2vec

When we tested the random forest classifier
model using word2vec, it was observed that there
was low performance, although it did not differ
much from its unused state, as seen in the figure.
We can see in Figure 12 that the AUC score has
decreased from 0.65 to 0.61.

3.5.2. Gaussian naïve bayes

If we examine a different algorithm, the Gaussian
Naive Bayes, we observed that it achieved an
accuracy value of 0.79. When we analyzed the
AUC score, it resembled the performance of the
Random Forest Classifier, yielding a value of
0.53. Notably, this result was obtained without
utilizing Word2Vec in the Gaussian Naive Bayes
model. Figure 13 illustrates the confusion matrix
for Gaussian Naive Bayes without Word2Vec,
detailing the distribution of true positives, false
positives, true negatives, and false negatives.
Additionally, Figure 14 depicts the ROC curve
for Gaussian Naive Bayes without Word2Vec,
visualizing the relationship between the true
positive rate and false positive rate.

Figure 13. Confusion matrix for gaussian naive

bayes without word2vec

Even when considering the highest performance
achieved by the Gaussian Naive Bayes model, it
fails to deliver the desired outcome or
satisfactory results. However, in terms of
accuracy, it achieved a respectable value of 0.79.

Figure 14. ROC Curve for gaussian naive bayes

without word2vec

This result was obtained using Word2Vec as part
of the feature representation. Figure 15 illustrates
the confusion matrix for Gaussian Naive Bayes
with Word2Vec, providing insights into the
model's performance across true positives, false
positives, true negatives, and false negatives.
Moreover, Figure 16 shows the ROC curve for
Gaussian Naive Bayes with Word2Vec,
highlighting the balance between sensitivity and
specificity.

Figure 15. Confusion matrix for gaussian naive

bayes with word2vec

Sakarya University Journal of Science, 29(1) 2025, 1-17

13

Figure 16. ROC for gaussian naive bayes with

word2vec

If we use Word2Vec, it is observed that the AUC
score improves significantly. However, the
accuracy value drops to 0.55, indicating that the
model struggles with correct classifications.
Upon examining the confusion matrix in Figure
15, it becomes evident that the model produces a
high number of false positives, which affects its
overall performance and reliability.

3.5.3. Logistic regression

If we look at another model, namely logistic
regression, it is observed that the accuracy value
reaches 0.79 when Word2Vec is not used.
However, this accuracy drops slightly to 0.77
when Word2Vec is applied. The AUC score and
the corresponding confusion matrix for logistic
regression without Word2Vec are depicted in
Figure 17 and Figure 18, respectively.

Figure 17. Confusion matrix for logistic regression

without Word2vec

Figure 18. ROC for logistic regression without

word2vec

Figure 19. Confusion matrix for logistic regression

with word2vec

Although the accuracy value has not changed
significantly, it is observed that the number of
lines predicted by the model has decreased.
Similarly, when examining the ROC curve, a
noticeable drop in the score is observed.
Specifically, the value decreased from 0.62 to
0.52.

Figure 20. ROC for logistic regression with

word2vec

While the use of Word2Vec can be important in
certain scenarios, the tests conducted with
logistic regression reveal that its impact is not
particularly significant. In fact, in the worst-case
scenario, the use of Word2Vec leads to a decline
in accuracy. These observations are illustrated in
Figure 19 and Figure 20, which show the
confusion matrix and ROC curve for logistic
regression with Word2Vec, respectively.

4.5.4. Support Vector Machine (SVM)

When examining the Support Vector Machine
(SVM) algorithm, it is observed that there is an
increase in the AUC score when Word2Vec is
not used. Specifically, the AUC score, which was
0.62 without Word2Vec, decreased to 0.50 after
incorporating Word2Vec. These results suggest
that using Word2Vec negatively impacted the
model's performance in this case. The confusion
matrix and ROC curve for SVM without
Word2Vec are shown in Figure 21 and Figure 22,
respectively.

Bekir Furkan Kesgin, Rüştü Murat Demirer

14

Figure 21. Confusion matrix for SVM without

word2vec

Despite the seemingly high AUC score of the
model, a closer examination of the confusion
matrix reveals that the incorrect predictions are
not truly incorrect.

Figure 22. ROC for SVM without word2vec

However, the accuracy value is observed to be
0.77 when Word2Vec is not used. This result is
depicted in Figure 23 and Figure 24.

Figure 23. Confusion matrix for SVM with

word2vec

Figure 24. ROC for SVM with word2vec

When Word2Vec is utilized, the AUC score
decreases, although the accuracy value remains
the same as before. Upon examining the
confusion matrix, it becomes evident that while
there are a few misclassified instances, the
overall number of misclassifications is minimal.

3.5.5. Long Short-Term Memory (LSTM)

When evaluating the performance of LSTM, a
leading algorithm in artificial intelligence, its
AUC score stands out, showcasing its ability to
capture long-term dependencies and complex
patterns in sequential data. However, despite this
strength, LSTM's accuracy does not surpass that
of the Random Forest model, indicating that
while LSTM excels in probabilistic
differentiation, it may be less consistent in
making precise classifications.

As shown in Figure 25, the confusion matrix for
the Support Vector Machine (SVM) without
using Word2Vec embeddings provides a good
classification result when compared to other
models.

Figure 25. Confusion matrix for SVM without

word2vec

Similarly, Figure 26 presents the ROC curve for
SVM without Word2Vec, illustrating the model's
performance.

Sakarya University Journal of Science, 29(1) 2025, 1-17

15

Figure 26. ROC for SVM without word2vec

On the LSTM model, when using only vectors
without Word2Vec, the results are impressive,
with an accuracy value of 0.78 and an AUC score
of 0.79. This result is quite close to the
performance of Random Forest. However, a
closer look at the confusion matrix (as shown in
Figure 25) reveals that while the results are
similar, Random Forest achieves a slightly higher
accuracy. On the other hand, when comparing
AUC scores, Figure 26 clearly demonstrates that
LSTM outperforms Random Forest, making it a
better choice for distinguishing between classes.

4. Conclusion

In conclusion, this dissertation has conducted an
extensive investigation into the identification and
analysis of offensive and discriminatory
language within the specific context of the
Turkish language. Throughout this scholarly
inquiry, the dissertation has emphasized the
fundamental role of language in facilitating
effective communication and its profound impact
on human development. It has also underscored
the urgent need to address the detrimental
consequences of hate speech on individuals and
society as a whole.

The study commenced by acknowledging the
historical significance of natural language
processing (NLP) during World War II, which
laid the groundwork for subsequent
advancements in this transformative technology.
Furthermore, it has shed light on the limited
availability of data for studying hate speech in
the Turkish language compared to the extensive
research conducted in English. This scarcity of
data has highlighted the critical importance of
generating relevant and contextually appropriate
data within the Turkish linguistic domain,

particularly in order to understand and mitigate
the psychological impacts of inappropriate
language use, especially among vulnerable
populations such as children.

Moreover, the dissertation has argued that hate
speech goes beyond mere violations of freedom
of expression, as it has the potential to reinforce
biases, perpetuate discrimination, and incite acts
of violence. Despite the implementation of
community standards and reporting mechanisms
on digital platforms, hate speech continues to
prevail, necessitating additional measures to
ensure the safety and well-being of internet users.
To address these challenges, the dissertation has
proposed several valuable contributions,
including the systematic collection of offensive
language data from online sources, the utilization
of preprocessing techniques such as stemming,
suffix analysis, and censorship to optimize the
input data, and the development and evaluation
of deep learning models using comprehensive
datasets from popular internet platforms. Various
classification algorithms have been employed,
and the results have been assessed using key
performance metrics, such as accuracy, F-1
score, and confusion matrix, with a specific focus
on offensive text in the Turkish language.

Through this research, significant insights and
tools have been developed to enhance Turkish
language processing and facilitate the creation of
applications that prioritize child safety.
Moreover, this investigation contributes to
broader efforts aimed at combating prejudice,
discrimination, and intolerance by enabling the
detection and analysis of cyberbullying within
the Turkish linguistic realm. Ultimately, this
dissertation underscores the importance of
addressing hate speech, particularly in the
Turkish language, and establishes a solid
foundation for future research endeavors and
practical applications in the field of natural
language processing. The ultimate goal remains
the protection of individuals, the promotion of
tolerance, and the establishment of a secure
online environment for all users.

Bekir Furkan Kesgin, Rüştü Murat Demirer

16

Article Information Form

Acknowledgments
Authors would like to thank Dr. Rüştü Murat
Demirer for his contributions.

Funding
Authors has no received any financial support for
the research, authorship or publication of this
study.

Authors' Contribution
Authors contributed equally to the study.

The Declaration of Conflict of Interest/
Common Interest
No conflict of interest or common interest has
been declared by authors.

The Declaration of Ethics Committee Approval
This study does not require ethics committee
permission or any special permission.

The Declaration of Research and Publication
Ethics
Authors of the paper declare that they comply
with the scientific, ethical and quotation rules of
SAUJS in all processes of the paper and that they
do not make any falsification on the data
collected. In addition, they declare that Sakarya
University Journal of Science and its editorial
board have no responsibility for any ethical
violations that may be encountered, and that this
study has not been evaluated in any academic
publication environment other than Sakarya
University Journal of Science.

Copyright Statement
Authors own the copyright of their work
published in the journal and their work is
published under the CC BY-NC 4.0 license.

References

[1] E. Adalı, "Natural Language Processing,"

Turkish Journal of Electrical Engineering
& Computer Sciences, vol. 24, no. 2, pp. 1–
17, 2016.

[2] S. Rosenthal, P. Atanasova, G. Karadzhov,

M. Zampieri and P. Nakov, "SOLID: A
Large-Scale Semi-Supervised Dataset for

Offensive Language Identification," arXiv
preprint arXiv:2004.14454, 2020.

[3] Ç. Çöltekin, "A Corpus of Turkish

Offensive Language on Social Media,"
Proceedings of the 12th International
Conference on Language Resources and
Evaluation (LREC 2020), pp. 1–8, 2020.

[4] C. Casula, A. P. Aprosio, S. Menini and S.

Tonelli, "FBK-DH at SemEval-2020 Task
12: Using Multi-channel BERT for
Multilingual Offensive Language
Detection," Proceedings of the 14th
International Workshop on Semantic
Evaluation (SemEval 2020), pp. 1–10,
2020.

[5] Ö. Anil and R. Yeniterzi, "SU-NLP at

SemEval-2020 Task 12: Offensive
Language Identification in Turkish
Tweets," Proceedings of the 14th
International Workshop on Semantic
Evaluation (SemEval 2020), pp. 1–8, 2020.

[6] L. Ma, Y. Liu, X. Zhang, Y. Ye, Yin and

B. F. G. Johnson, "Deep Learning in
Remote Sensing Applications: A Meta-
analysis and Review," ISPRS Journal of
Photogrammetry and Remote Sensing, vol.
152, pp. 166–177, 2019.

[7] T. Mikolov, K. Chen, G. S. Corrado and J.

Dean, "Efficient Estimation of Word
Representations in Vector Space," arXiv
preprint arXiv:1301.3781, 2013.

[8] K. Potdar, T. S. Pardawala and C. D. Pai,

"A Comparative Study of Categorical
Variable Encoding Techniques for Neural
Network Classifiers," International Journal
of Computer Applications, vol. 175, no. 4,
pp. 7–9, 2017.

[9] W. Gao and Z. Zhou, "Towards

Convergence Rate Analysis of Random
Forests for Classification," Artificial
Intelligence, vol. 313, p. 103788, 2020.

[10] O. C. Njoku, "Decision Trees and Their

Application for Classification and
Regression Problems," M.S. thesis,

Sakarya University Journal of Science, 29(1) 2025, 1-17

17

Missouri State University, 2020. [Online].
Available:
https://bearworks.missouristate.edu/theses
/3406.

[11] E. K. Ampomah, Z. Qin and G. Nyame,

"Evaluation of Tree-Based Ensemble
Machine Learning Models in Predicting
Stock Price Direction of Movement,"
Information, vol. 11, no. 6, p. 332, 2020.

[12] X. Lin, "Sentiment Analysis of E-

commerce Customer Reviews Based on
Natural Language Processing,"
Proceedings of the 2020 International
Conference on Artificial Intelligence and
Computer Engineering (ICAICE), pp. 1–5,
2020.

[13] V. Apostolidis-Afentoulis, "SVM

Classification with Linear and RBF
Kernels," ResearchGate, 2015.

[14] J. I. Razin, A. Karim, M. F. Mridha, S. M.

R. Rifat and T. Alam, "A Long Short-Term
Memory (LSTM) Model for Business
Sentiment Analysis Based on Recurrent
Neural Network," in Lecture Notes on Data
Engineering and Communications
Technologies, Springer, pp. 1–15, 2021.

[15] R. C. Staudemeyer and E. R. Morris,

"Understanding LSTM: A Tutorial into
Long Short-Term Memory Recurrent
Neural Networks," ResearchGate, 2019.

[16] C. Naulak, "A Comparative Study of Naive

Bayes Classifiers with Improved
Technique on Text Classification,"
TechRxiv, 2022.

[17] A. A. Kolukisa, "Turkish Character Usage

in Text Classification (JAIDA),"
ResearchGate, 2021.

[18] Z. Karimi, "Confusion Matrix,"

ResearchGate, 2021. [Online]. Available:
https://www.researchgate.net/publication/
355096788_Confusion_Matrix.

[19] S. Akram, "CLASSIFICATION

REPORT," ResearchGate, 2021. [Online].

Available:
https://www.researchgate.net/publication/
357974052_CLASSIFICATION_REPOR
T.

[20] Q. Kong, W. Wang, D. Zhang and W.

Zhang, "Two Kinds of Average
Approximation Accuracy," CAAI
Transactions on Intelligence Technology,
2023.

	1. Introduction
	2. Neural Network Architectures Implemented in Natural Language Processing
	3. Results
	4. Conclusion
	References

