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Abstract— Parkinson's Disease (PD) is a complex neurodegenerative condition with a global impact, demanding 

precise disease progression prediction to facilitate effective treatment strategies. To assess PD symptoms, the 

Unified Parkinson's Disease Rating Scale (UPDRS) is widely adopted, encompassing both motor and non-motor 

assessments. This research delves into voice inputs as a non-intrusive method to predict total UPDRS and motor 

UPDRS scores, offering new possibilities for Parkinson's assessment. Feature engineering and data augmentation 

techniques address challenges related to class imbalance and diverse demographics, including an original 

imbalanced dataset with more females than males. Additionally, three new datasets are created: oversampled 

balanced, only-female, and only-male datasets. An ensemble based stacking model, including random forest and 

extreme gradient boosting as base models and the gradient boosting regressor as the meta-regressor is used for 

predicting UPDRS scores. The study employs two distinct validation methods to evaluate model performance: a 

70/30 dataset split and 5-fold cross-validation. Notably, the results obtained from the 70/30 split method exhibit 

impressive performance, with R2 values ranging from 0.991 to 0.995 across different datasets. This method also 

showcases the model's effectiveness in minimizing prediction errors, as indicated by low MSE, RMSE, and MAE. 

However, when subjected to 5-fold cross-validation, the model's performance experiences a decline, with R2 value 

levels ranging from 0.781 to 0.873 across the same datasets. Similarly, the other performance metrics values show 

variations, suggesting that the model's performance may be sensitive to the choice of validation method. 

Nevertheless, these findings underscore the potential of voice-based methods for non-invasive PD assessment, 

offering the prospect of remote and continuous monitoring. This study could significantly enhance the quality of 

life for PD patients and can facilitate in effective treatment plans. 

Keywords : parkinson's assessment, UPDRS score estimation, ensemble-based stacking, extreme gradient 

boosting, random forests, gradient boosting regressor.  

 

1. Introduction 

Parkinson's Disease (PD) is a long-term neurodegenerative disorder that mainly affects the motor system (De 

Miranda & Greenamyre, 2017). It is a prevalent condition worldwide, particularly in individuals over 60, 

approximately 1%  of this age group is diagnosed with PD. The exact cause of PD is still unknown, and currently, 

no cure is available (Rizek et al., 2016). The parkinson's disease arises due to the deterioration of essential neurons 

residing in the basal ganglia, a crucial brain structure situated in the center of the brain. Common symptoms for 

indication of PD include shakiness, slowness of movement, muscle rigidity, and balance issues, with symptom 

severity often increasing as the time passes, and the disease progresses (McGregor & Nelson, 2019). 

To estimate the severity of Parkinsonian symptoms, the Unified Parkinson's Disease Rating Scale (UPDRS) 

was developed (Disease, 2003). The UPDRS comprises five segments that test PD's motor and cognitive 

symptoms. During the motor portion of the test, patients perform various muscle movements while a qualified 

movement disorder clinician rates the impairment of movement for each task (Stamate et al., 2018). The total 

UPDRS score is obtained by summing each task's values (Trudelle, 2006).  

Researchers have recently explored voice recordings as a non-invasive and practical approach for diagnosing 

and monitoring PD (Van Den Bergh et al., 2021). Voice tests can provide valuable insights into vocal impairments, 
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which are common symptoms of PD and early indicators of the disease (Pastor-Sanz et al., 2011). With 

technological advancements, at-home recording devices like those developed by Intel for PD telemonitoring enable 

convenient and remote health monitoring for PD patients (Tsanas et al., 2021). The integration of telemonitoring 

capabilities offers the potential for continuous real-time monitoring of PD symptoms for early detection of changes 

and personalized treatment strategies (Polverino et al., 2022). 

This study endeavours to explore the potential of voice-based methods in predicting motor and total UPDRS 

scores, showcasing a promising avenue for non-invasive PD assessment. By leveraging voice inputs and 

telemonitoring, the research contributes to improved disease management and patient care, providing accessible 

and reliable PD assessment for timely intervention and personalized treatment strategies. 

Section 2 provides a review of relevant literature, while Section 3 covers the dataset and preprocessing 

techniques. Section 4 describes the research pipeline and data modelling. The obtained results and important 

contributing factors presented in Section 5. The results are discussed and compared with previous related studies 

in Section 6, and finally, Section 7 concludes the study and suggests avenues for future work. 

 

2. Literature Review 

Researchers in the field of Parkinson's disease have been actively working on the development of algorithms 

for PD prediction. A thorough literature review has been conducted to explore the existing research and studies 

about PD and its assessment techniques. 

In a study on the effects of levodopa treatment on PD patients, evaluating essential lung capacity, maintaining 

prolonged vowel articulation, and calculating phonation ratio.. Following drug administration, the results 

demonstrated significant improvements in these parameters (De Letter et al., 2007). Additionally, another study 

found a reduction in fundamental frequency variability during text reading after the administration of levodopa 

(Skodda et al., 2011). However, a limited focus remains on predicting PD severity for effective treatment 

monitoring. Further research is required to address this aspect. 

A novel prediction model was developed to estimate UPDRS-III scores using speech data from 42 PD patients. 

The model achieved high accuracy, with RMSE of 1.62 and 1.72 for males and females (Tsanas et al., 2010). 

Furthermore, researchers explored the potential of the UPDRS scale in creating a classification system to 

distinguish between healthy individuals and those with PD using speech signal analysis (Sakar et al., 2017). 

One study investigated applying deep neural network and convolutional neural network with transfer learning 

to predict UPDRS scores. It explored feature engineering, utilizing established vocal features, and feature learning 

through modulation spectra transformations (Arias-Londoño & Gómez-García, 2020). Additionally, there is 

research into speech signal processing for assessing Parkinson's disease patients within a few hours after 

medication intake. Acoustic parameters are extracted to predict the Parkinson's disease rating scale score, enabling 

automatic monitoring of disease progression (Hemmerling & Wojcik-Pedziwiatr, 2022). 

Various algorithms have been investigated for predicting PD progression. One study utilized the GMM-UBM 

algorithm to monitor disease progression, achieving a the Pearson's correlation of a value up to 0.60 concerning 

MDS-UPDRS-III labels (Arias-Vergara et al., 2016). Moreover, PD progression prediction has been explored 

using diverse approaches such as the Expectation Maximization (EM), principal component analysis (PCA), 

support vector regression (SVR), and the adaptive neuro-fuzzy inference system (ANFIS)., which led to a low 

mean absolute error of 0.4721 with the EM-PCA-SVR algorithm (Nilashi et al., 2016). 

Cloud computing was utilized to enhance accessibility and decision-making support for physicians and IoT 

nodes. The ML algorithms demonstrated acceptable performance levels, with Motor UPDRS identified as a 

significant predictor of Total UPDRS (Hamzehei et al., 2023). Additionally, another investigation focused on using 

ML algorithms to analyze voice changes in PD patients at different disease stages. L-dopa therapy improved but 

did not fully restore voice in PD patients, and a new machine learning-derived score (LR value) allowed significant 

clinical-instrumental correlations (Suppa et al., 2022). 

In related research, ML techniques, both unsupervised and supervised, have been utilized for Parkinson's 

disease diagnosis through UPDRS prediction (Nilashi et al., 2022). Clustering and prediction learning methods are 

compared, with SVR ensembles showing superiority in predicting motor and total UPDRS scores over other 

approaches. Another study focused on classifying PD using human voice signals, achieving high accuracies with 

various ML classifiers, with Random Forest performing the best (Ahmed et al., 2021). Further exploring PD patient 

characteristics may enhance its applicability in the medical field. 

In addition to singular value decomposition (SVD), researchers have also investigated ensembles of adaptive 

neuro-fuzzy inference systems for UPDRS prediction, focusing on the motor part of UPDRS. One notable 

approach, the EM-SVD-ANFIS ensemble method, achieved remarkable results with minimal mean absolute errors 
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of 0.480 (Nilashi et al., 2019). These collective efforts contribute significantly to advancing non-invasive PD 

assessment techniques and effectively monitoring disease severity to improve healthcare outcomes.   

 

3. Dataset and Preprocessing  

This research leverages a telemonitoring dataset focused on the progression of Parkinson's disease, sourced 

from Kaggle (Parkinson’s Disease Progression, 2023). The dataset includes biomedical voice measurements 

obtained from 31 individuals during a six-month telemonitoring trial, with participants during their initial phases 

of Parkinson's ailment. Recordings were automatically captured in patients' homes, resulting in 5875 data instances 

with 22 numerical features representing speech attributes. Table 1 summarizes details about the dataset features. 

Tablo 1. Summary of Features Present in the Dataset 

Feature Description 

subject Identifier for each subject ranging from 1 to 31. 

age The subject's age. 

sex The subject's gender. 

test_time 
The duration from the initiation of subject recruitment to their participation in the 

clinical trial. 

motor_UPDRS Motor UPDRS, a rating scale measuring motor indicators of Parkinson's disease. 

total_UPDRS Total UPDRS, a numeric rating scale measuring overall signs of Parkinson's disease. 

Jitter % Percentage of local variation in fundamental frequency, a measure of vocal stability. 

Jitter(Abs) Absolute jitter, a measure of absolute variation in fundamental frequency. 

Jitter:RAP Relative average perturbation, a average value of perturbation in consecutive periods. 

Jitter:PPQ5 
Five-point period perturbation quotient, a measure of perturbation during five 

consecutive periods. 

Jitter:DDP Difference between consecutive differences of fundamental frequency. 

Shimmer Local variation in amplitude, a measure of vocal amplitude variability. 

Shimmer(dB) Shimmer in decibels, a measure of amplitude perturbation in decibels. 

Shimmer:APQ3 
Three-point amplitude perturbation quotient, a measure of amplitude perturbation 

during three consecutive points. 

Shimmer:APQ5 
Five-point amplitude perturbation quotient, a measure of amplitude perturbation 

during five consecutive points. 

Shimmer:APQ11 
Eleven-point amplitude perturbation quotient, a measure of amplitude perturbation 

during eleven consecutive points. 

Shimmer:DDA Difference between consecutive differences of amplitude. 

NHR 
Noise-to-harmonics ratio measures the ratio between noise and harmonics in the 

speech signal. 

HNR 
Harmonics-to-noise ratio, a measure of the ratio between harmonics and noise in the 

speech signal. 

RPDE Recurrence period density entropy, a measure of the complexity of the speech signal. 

DFA 
Detrended fluctuation analysis, a measure of the long-term correlation properties of 

the speech signal. 

PPE Pitch period entropy, a measure of the variability in the pitch of the speech signal. 
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Upon careful examination, the dataset reveals a diverse range of ages among the subjects, spanning from 30 to 

90 years. Most subjects cluster within the age group of 50 to 80 years, signifying the presence of an age 

demographic in the study. Furthermore, the test time, which denotes the duration since recruitment into the trial, 

varies between 10 to 180 units, indicating the longitudinal nature of the data collection process. To visually 

represent these distributions, histograms are presented in Figure 1, offering valuable insights into the distribution 

patterns of age and test time in the dataset. 

 

 

Figure 1. Age and Test Time Distribution of Subjects 

The UPDRS is widely used to assess the severity of Parkinson's disease (Zimmerman et al., 2018). It comprises 

four parts, covering different aspects of the disease. Part I addresses cognitive conditions and emotional 

irregularities, Part II focuses on daily routines, Part III evaluates motor capabilities, with the final section 

evaluating therapy challenges (Holden et al., 2018). Each issue is assigned points ranging from a scale of 0 

(absence of symptoms) to 4 (pronounced symptoms), with a maximum total score of 220. Higher UPDRS scores 

indicate more advanced disease stages (Hendricks & Khasawneh, 2021). Part III, known as UPDRS-III, includes 

the evaluation of speech, which is crucial for analyzing patients' speech-related symptoms (Costantini et al., 2023). 

In this study, UPDRS-III score can vary from 0 to 108. 

 

 

Figure 2. Kernel Density Plot for Motor UPDRS and Total UPDRS Scores 

The kernel density plot for both motor UPDRS and total UPDRS scores is displayed in Figure 2. The plot 

demonstrates a central distribution for both variables, indicating that most subjects in the dataset exhibit scores 

concentrated around a central value. The scatter plot in Figure 3 offers valuable insights into the distribution 

patterns of Motor and Total UPDRS scores, aiding in the comprehension of disease progression. It reveals a 

significant linear correlation between motor and total UPDRS scores. The points align along, indicating a strong 

association between the two variables. As motor UPDRS scores increase, there is a corresponding rise in total 

UPDRS scores, highlighting the direct relationship between motor symptoms and disease progression. This finding 
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reinforces the efficacy of voice inputs as a non-invasive and valuable tool for predicting both motor and total 

UPDRS scores. 

 

 

Figure 3. Scatter Plot for Motor UPDRS and Total UPDRS Scores 

3.1. Feature Engineering 

This study employs a feature engineering technique to create new informative attributes from the existing 

dataset. Four new features are generated: Jitter_Abs_Squared, Shimmer_ShimmerAPQ5_Ratio, 

Age_Test_Time_Ratio, and RPDE_Log. Jitter_Abs_Squared is a feature that represents the squared value of 

Jitter(Abs), which is a measure used in speech signal analysis. Jitter(Abs) quantifies the absolute variation in the 

fundamental frequency of the speech signal, specifically focusing on the cycle-to-cycle variations in the time 

between consecutive glottal closure instants. By squaring Jitter(Abs), we enhance its sensitivity to these absolute 

variations, providing a more robust indicator of the irregularities in the fundamental frequency of speech. This 

squared value can be particularly useful for detecting subtle changes and variations in voice patterns, making it a 

valuable feature in the context of voice-based assessments. It is displayed in Figure 4. 

 

 

Figure 4. Histogram of Jitter_Abs_Squared Feature 

The Shimmer_ShimmerAPQ5_Ratio feature is engineered by dividing the Shimmer measure by the 

ShimmerAPQ5 measure. Shimmer represents the variation in speech signal amplitude, reflecting voice quality, 

while ShimmerAPQ5 provides a more detailed assessment of amplitude perturbations in the speech signal, 

focusing on the five highest peaks in the amplitude waveform. The ratio of Shimmer to ShimmerAPQ5 quantifies 

the relationship between these two measures, indicating whether amplitude perturbations are concentrated or 

dispersed within the signal. A higher ratio suggests a more concentrated distribution of perturbations, potentially 

indicating specific voice irregularities, while a lower ratio implies a more uniform distribution, corresponding to 

a smoother voice quality. This ratio serves as a valuable acoustic feature for characterizing voice quality in the 

context of Parkinson's disease assessment. It is shown in Figure 5. 
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Figure 5. Histogram of Shimmer_ShimmerAPQ5_Ratio Feature 

The Age_Test_Time_Ratio engineered feature is an metric that captures the temporal aspect of Parkinson's 

disease progression in relation to age. This ratio is calculated by dividing the age of an individual by the time 

elapsed since the initial diagnostic test was conducted. It aims to assess whether the rate of PD progression is 

influenced by age. A higher ratio suggests that the disease progresses more slowly with increasing age, potentially 

indicating a milder form of PD or a slower rate of degeneration. Conversely, a lower ratio may imply that younger 

individuals experience a more rapid disease progression. Understanding this relationship can provide valuable 

insights into the interplay between age and PD severity. This feature is visualized in Figure 6.  

 

 

Figure 6. Histogram of Age_Test_Time_Ratio Feature 

Finally, a logarithm transformation is applied to RPDE to address non-linearity, resulting in the RPDE_Log 

feature, as shown in Figure 7.  It is derived from the Recurrence Period Density Entropy (RPDE), a nonlinear 

dynamical analysis applied to speech signals. RPDE quantifies the irregularity and complexity of speech patterns, 

which can be indicative of changes in vocal control associated with PD. To obtain "RPDE_Log," the logarithm of 

the RPDE values is calculated. Taking the logarithm of RPDE can help enhance the interpretability of the feature 

and make it more amenable to modeling. A higher "RPDE_Log" value suggests a greater degree of irregularity 

and complexity in the speech patterns, which may reflect voice abnormalities associated with Parkinson's Disease. 

Conversely, a lower "RPDE_Log" value indicates a more regular and predictable speech pattern. By thoughtfully 

crafting these new features and analyzing their distributions, we gain a deeper understanding of the dataset, leading 

to more accurate and reliable predictions of Parkinson's disease progression. 

 



72 

 

 

Figure 7. Histogram of RPDE_Log Feature 

3.2. Dataset Creation and Modification 

Feature engineering and oversampling techniques are used to create three new datasets to address challenges 

related to class imbalance and diverse demographics. These datasets aim to mitigate biases and enhance the 

predictive model's performance. 

3.2.1. Original Imbalanced Dataset 

The original imbalanced dataset comes with more females than males. Figure 8 visually presents the correlation 

between UPDRS scores and features in the original dataset. As depicted in the plot, most features exhibit a loose 

correlation with the UPDRS scores. 

 

 

Figure 8. UPDRS Scores Correlation with Features in Original Dataset 

3.2.2. Oversampled Balanced Dataset 

The first dataset is an oversampled balanced dataset created using the Synthetic Minority Over-sampling 

Technique (SMOTE). By creating artificial instances for the underrepresented category, a balanced distribution is 

achieved, which improves the model's ability to generalize and make accurate predictions for both classes. Before 

oversampling, the distribution was 4008 females and 1867 males. After applying SMOTE, the distribution became 

4008 females and 4008 males. Figure 9 illustrates the correlation between UPDRS scores and features in the 

balanced dataset. The plot reveals that most features exhibit a loose correlation with UPDRS scores. Notably, 

HNR, Sex, and DFA correlate negatively with UPDRS scores. 

 

 

Figure 9. UPDRS Scores Correlation with Features in Balanced Dataset 
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3.2.3. Only-Female Dataset 

A subset comprising only female subjects to examine the effects of gender-specific data is extracted. This 

dataset helps to understand potential variations in PD symptomatology between genders and assess the model's 

performance in predicting UPDRS scores for female subjects exclusively. The correlation between UPDRS scores 

and features in the Only-Female Dataset is illustrated in Figure 10. The features exhibit a loose correlation, with 

some showing negative correlation patterns. The observed loose correlations indicate that the relationship between 

UPDRS scores and the features in the Only-Female Dataset may not be strong. 

 

 

Figure 10. UPDRS Scores Correlation with Features in Only-Female Dataset 

3.2.4. Only-Male Dataset 

Similar to the previous subset, an only-male dataset to focus on male subjects is created. Analyzing this subset 

allows to explore differences in symptom severity and progression between male and female patients. Figure 11 

illustrates the correlation between UPDRS scores and features in the Only-Male dataset. Among all the datasets, 

the features in this dataset exhibit stronger correlations. Notably, the HNR feature is the only one with a negative 

correlation with UPDRS scores in the Only-Male dataset. 

 

 

Figure 11. UPDRS Scores Correlation with Features in Only-Male Dataset 

These new and original datasets provide a comprehensive framework for evaluating and comparing model 

performance in predicting UPDRS scores using voice inputs. Valuable insights can be gained into the potential 

applications of voice-based methods for non-invasive PD assessment by investigating the various datasets. 

 

4. Data Modelling 

In this study, the authors explore the potential of voice inputs as a non-invasive approach for estimating total 

UPDRS and motor UPDRS scores. Various techniques are used to address challenges related to class imbalance 

and diverse demographics. Figure 12 shows the research pipeline that has been used for data modelling. In addition 

to the original imbalanced dataset, three new datasets were created: oversampled balanced, only-female, and only-

male datasets. Further, the authors employed an ensemble-based stacking model, utilizing random forest and 

extreme gradient boosting as base models and the gradient boosting regressor as the meta-regressor. To rigorously 

evaluate the model's performance, two different methods were employed for training and testing: a traditional 70-

30 split for training and testing, and 5-fold cross-validation. 

In the first method, each dataset was divided into a 70-30 split for training and testing, providing insights into 

how the model performs on a standard training-testing setup. In the second method, 5-fold cross-validation was 

used to assess the model's robustness and generalization across different subsets of the data. This dual approach 

offered a comprehensive understanding of the model's performance. The results demonstrated promising 

performance and robustness in predicting UPDRS scores, showcasing the efficacy of voice inputs for PD 

assessment.  
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Figure 12. Research Pipeline for Data Modelling 

Furthermore, the feature importance analysis provided insights into crucial contributors influencing 

predictions. To evaluate and compare model performance, authors used a range of performance measures, 

including, R-squared (R2), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE). These performance metrics offered valuable insights into the model's accuracy and predictive 

capabilities for both training and cross-validation methods. 

4.1. Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE is a representation of data augmentation approach to address the class imbalance in the dataset. It 

produces synthetic samples for the minority class by interpolating between neighbouring instances, effectively 

balancing the class distribution (Chawla et al., 2002). For each minority-class data point, SMOTE identifies its k 

nearest neighbors. It then constructs new synthetic instances by randomly selecting one or more of these neighbors 

and generating data points along the line segments connecting them. This process expands the representation of 

the minority class, effectively balancing the class distribution (Hassan & Yousaf, 2022). By oversampling the 

minority class, SMOTE enhances the representation of underrepresented instances, improving model performance 

and mitigating the bias towards the majority class. This approach ultimately leads to more accurate and reliable 

predictions, particularly in contexts where the minority class holds significant importance (Elreedy et al., 2023). 

Implementing SMOTE allows a comprehensive evaluation of voice-based methods for predicting Parkinson's 

disease progression, contributing to more accurate and reliable results. 

4.2. K-fold Cross Validation 

K-fold cross-validation is a robust technique used to evaluate the performance of predictive models, ensuring 

they generalize well to unseen data (Bradshaw et al., 2023). In this approach, the dataset is divided into 'k' subsets 

of equal size. The model is then trained 'k' times, each time using 'k-1' of the subsets as the training data and the 

remaining subset for validation. This process iterates 'k' times, with each subset serving as the validation data 

exactly once. The final performance metric, whether it's accuracy, mean squared error, or any other relevant 

measure, is calculated as the average across these 'k' iterations (White & Power, 2023). This method provides a 

more reliable estimate of a model's performance as it assesses its consistency across different data subsets, helping 

to identify potential overfitting or underfitting issues (Kaliappan et al., 2023). 

4.3. Ensemble Stacking Model 

This study employs an innovative ensemble-based stacking model to predict Parkinson's disease progression. 

The model combines the strengths of different base models, including random forest and extreme gradient 
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boosting, to improve predictive accuracy. The gradient boosting regressor is used as the meta-regressor to combine 

the outputs of the base models and make the final prediction. 

 

 

Figure 13. Visualization of the Ensemble Stacking Model Architecture 

This stacking approach allows the model to learn from the diverse predictions of the base models and leverage 

their complementary strengths, resulting in enhanced performance and robustness. Figure 13 visualizes the 

architecture of the stacking model, showcasing the flow of information and how the predictions from the base 

models are combined to make the final prediction. 

4.4. Performance Metrics 

In this section, the authors evaluate the performance of the ensemble-based stacking model using various 

performance metrics. The following subsections outline each metric and briefly explain their significance. 

4.4.1. R-squared (R2) 

R-squared, known as coefficient of determination, measures the capability of the model to explain the variance 

in UPDRS scores. A higher R2 value indicates better learning of the model on the data. R2 is calculated as: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

                                                                                  (1) 

 

where SSres is the added sum of the squared residuals and SStot is the total squares sum. 

4.4.2. Mean Squared Error (MSE) 

MSE is a statistical measure metric used to average the squared difference between the predicted and actual 

UPDRS scores. A lower MSE value suggests improved accuracy and indicates how well the model's predictions 

align with the true values. It is calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦𝑖

^
)2                                                                         (2) 

 

where 𝑛 represents the total number of data points in the dataset. The 𝑦𝑖  is the actual value of the target variable 

for the 𝑖-th data point, and 𝑦𝑖

^
 is the predicted value generated by the model for the 𝑖-th data point. 

4.4.3. Root Mean Squared Error (RMSE) 

RMSE is a critical metric used to evaluate the model's prediction accuracy. It represents the square root of 

MSE and serves as a valuable tool for comprehending the magnitude of prediction errors. The formula for it is: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                                 (3) 

 

4.4.4. Mean Absolute Error (MAE) 

The MAE signifies the average absolute difference between the UPDRS predicted and actual scores. Similar 

to RMSE, a lower MAE value signifies better model performance. The MAE is calculated as follows: 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦

^

𝑖|

𝑛

𝑖=1

                                                                         (4) 

 

 

5. Results and Features Importance 

This section unveils the outcomes of two distinct methodologies: a conventional 70-30 split for training and 

testing, and an extensive 5-fold cross-validation. These results provide a comprehensive evaluation of the  

employed model's performance. Furthermore, authors explore feature importance, identifying the pivotal factors 

that shape the model's predictions. This concise analysis offers valuable insights into the model's accuracy and 

influential features.   

5.1. 70/30 Training and Testing Method 

The ensemble stacking model showcases the promising performance, highlighting the potential of voice inputs 

for non-invasive PD assessment. Performance metrics are employed to evaluate and compare model performance 

on various datasets. The ensemble-based stacking model achieved impressive performance, with R2 values ranging 

from 0.991 to 0.995 across different datasets. Additionally, the model showcased its effectiveness in minimizing 

prediction errors, as indicated by very low MSE and RMSE values. The low MAE values further demonstrate the 

model's precision. Moreover, the high R2 values signify the model's ability to explain variance in UPDRS scores. 

 

 

Figure 14. Plot of Mean Performance Metrics for All Datasets using 70/30 Training and Testing Method 

The outcomes of this study highlight the potential of the proposed approach in predicting UPDRS scores and 

its robustness. As depicted in Figure 14 and summarized in Table 2, the model demonstrates accuracy and 

reliability across diverse datasets. Moreover, employing 5-fold cross-validation across all datasets offers insights 

into the model's performance consistency. However, it's important to note that the results observed in the cross-

validation may not reach the same heights as those achieved through this 70/30 ratio dataset split training and 

testing method. A comprehensive analysis of these findings is presented in the following subsection, shedding 

light on the stability and generalization of the model. 

Tablo 2. Summary of Mean Performance Metrics using 70/30 Training and Testing Method 

Performance 

Metrics 

Datasets 

Original Imbalanced Oversampled Balanced Only Females Only Males 

R2 0.991 0.994 0.995 0.995 

MSE 0.743 0.522 0.412 0.388 

RMSE 0.857 0.722 0.639 0.622 

MAE 0.505 0.372 0.396 0.373 
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5.2. 5-fold Cross Validation Method 

The ensemble stacking model demonstrates its potential for non-invasive PD assessment across different 

datasets. However, when compared to the previous results obtained using the 70/30 dataset split training and testing 

method, some variations are observed. In the original imbalanced dataset, the model achieves an R2 value of 0.781, 

which is lower than the previous method's R2 value of 0.991. Similarly, the oversampled balanced dataset records 

an R2 value of 0.873, whereas the previous method achieved 0.993. Notably, the performance drops significantly 

in the "Only Females" dataset, with a R2 value of 0.436 compared to the previous 0.995. However, in the "Only 

Males" dataset, the R2 value remains relatively high at 0.865. These variations are also reflected in other 

performance metrics, including MSE, RMSE, and MAE, suggesting that the choice of dataset and validation 

method can influence model performance. 

 

 

Figure 15. Plot of Mean Performance Metrics for All Datasets using 5-fold Cross Validation Method 

Figure 15 and Table 3 serve as valuable references to summarize and visualize the key findings discussed in 

this subsection. They provide a concise and informative overview of the model's performance across different 

datasets and highlight the variations observed when compared to the previous results obtained using an alternate 

validation method. These visual aids aid in comprehending the nuances of the model's performance and the impact 

of dataset selection on predictive performance. 

Tablo 3. Summary of Mean Performance Metrics using 5-fold Cross Validation Method 

Performance 

Metrics 

Datasets 

Original Imbalanced Oversampled Balanced Only Females Only Males 

R2 0.781 0.873 0.436 0.866 

MSE 0.814 0.575 1.675 0.556 

RMSE 0.783 0.670 1.134 0.672 

MAE 0.642 0.609 0.968 0.588 

 

5.3. Features Importance 

The authors have undertaken an extensive and thorough analysis aimed at discerning the pivotal factors that 

exert significant influence over the prediction of both motor and total UPDRS scores. This comprehensive 

investigation, as visually depicted in Figures 16 and 17, has illuminated the primary determinants of UPDRS score 

predictions. Notably, age, the ingeniously engineered feature known as Age_Test_Time_Ratio, the temporal aspect 

of test time, alongside the acoustic attributes of Jitter and Shimmer, have emerged as the standout features, playing 

a central role in the intricate prediction model. These findings provide invaluable insights into the complex 

interplay of variables impacting UPDRS score predictions, thereby enhancing our understanding of this predictive 

process. 
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Figure 16. Feature Importance for Motor UPDRS Score Prediction 

DFA, HNR, RPDE, and PPE also emerged as essential features in the prediction process. These findings align 

with the previous correlation plots, which indicated that the selected features had a loose correlation with each 

other, and their individual contributions played pivotal roles in the predictive performance of the model. The 

prominence of age and test time further suggests that the temporal aspect of the disease may influence the 

progression of Parkinson's disease. 

 

 

Figure 17. Feature Importance for Total UPDRS Score Prediction 

 

6. Discussion 

The stark contrast between the results obtained from the two validation methods, namely the 70/30 dataset split 

and 5-fold cross-validation, is an intriguing aspect of this study. Under the 70/30 dataset split, the ensemble 

stacking model exhibited remarkable performance, achieving R2 value levels ranging from 0.991 to 0.995 across 

various datasets. These results were complemented by low values of MSE, RMSE, and MAE values, which 

underscore the model's accuracy and precision in predicting UPDRS scores. This suggests that the 70/30 dataset 

split method provided a conducive environment for the model to excel. 

On the other hand, the 5-fold cross-validation results portrayed a decline in model performance, with R2 value 

levels ranging from 0.781 to 0.873 across the same datasets. The corresponding MSE, RMSE, and MAE values 
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exhibited variations, indicating that the model's performance may be sensitive to the choice of validation method. 

While the 5-fold cross-validation results are not as superior as those obtained from the 70/30 split, they still 

demonstrate the model's substantial potential for PD assessment.  

Tablo 4. Comparison of Results with Similar Studies on Parkinson's Prediction using Voice Signals 

Study 

Training & 

Testing 

Method 

Dataset Description Prediction Model Performance 

(Nilashi et al., 

2016) 
10-fold cross 

validation. 

16 distinct voice 

signal features. 

Support vector regression 

with expectation 

maximization and principle 

component analysis. 

0.457 MAE, and 

0.984 R2. 

(Sakar et al., 

2017) 

70/30 testing 

and training 

ratio. 

16 distinct voice 

signal features. 
Support vector machine. 

96.43% accuracy 

with Matthews 

Correlation 

Coefficient (MCC) 

score of 0.77. 

(Nilashi et al., 

2019) 

Clusters 

based training 

and testing. 

16 distinct voice 

signal features. 

Adaptive neuro-fuzzy 

inference with expectation 

maximization and  singular 

value decomposition. 

0.681 RMSE, 0.485 

MAE, and 0.961 

R2. 

(Ahmed et al., 

2021) 

80/20 testing 

and training 

ratio. 

16 distinct voice 

signal features. 
Random forest regressor. 97.101% accuracy. 

(Nilashi et al., 

2022) 

Clusters 

based training 

and testing. 

16 distinct voice 

signal features. 

Support vector regression 

and hypergraph partitioning 

algorithm ensemble. 

2.697 RMSE, 1.853 

MAE, and 0.908 

R2. 

(Hemmerling 

& Wojcik-

Pedziwiatr, 

2022) 

5-fold cross 

validation. 

Custom phonatory 

analysis voice signal 

dataset comprising of 

13 distinct features. 

Random forest regressor. 
0.416 RMSE, 0.559 

MAE, and 0.961 

R2. 

(Rajeswari & 

Nair, 2022) 

80/20 testing 

and training 

ratio. 

16 distinct voice 

signal features. 

Convolutional neural 

network and long short-

term memory network. 

85% accuracy. 

(Hamzehei et 

al., 2023) 

75/25 testing 

and training 

ratio. 

Age, sex, and 19 

distinct voice signal 

features. 

Adam optimization 

algorithm. 
10.907 MSE, and 

0.904 R2. 

(Alshammri et 

al., 2023) 

70/30 testing 

and training 

ratio. 

Custom dataset with 

22 distinct voice 

signal features. 

Multilayer perceptron. 98.31% accuracy. 

Proposed 

70/30 testing 

and training 

ratio. Age, sex, and 19 

distinct voice signal 

features along with 4 

engineered features. 

Ensemble stacking model. 

Averaged 0.993 R2, 

0.516 MSE, 0.71 

RMSE,  and 0.411 

MAE values 

accross all datasets. 

5-fold cross 

validation. 

Averaged 0.739 R2, 

0.905 MSE, 0.815 

RMSE, and 0.702 

MAE values 

accross all datasets. 
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Table 4 provides a comparative analysis of the proposed approach's performance against similar studies on 

Parkinson's prediction using voice signals. Notably, the ensemble stacking model, when subjected to the 70/30 

dataset split, outperforms many existing studies in terms of performance metrics such as, high R2, low MSE, 

RMSE, and MAE values. This suggests the effectiveness of the proposed approach, especially in leveraging both 

voice signals and engineered features for accurate PD assessment. However, it's essential to acknowledge that the 

5-fold cross-validation results, while not as impressive as the 70/30 split, still position the model as a viable tool 

for PD prediction. These divergent results emphasize the importance of selecting an appropriate validation method 

when applying voice-based models for PD assessment. 

 

7. Conclusion and Future Work 

This study explored the potential of voice inputs as a non-invasive approach for predicting total UPDRS and 

motor UPDRS scores in Parkinson's disease patients. Leveraging an ensemble-based stacking model, comprising 

random forest and extreme gradient boosting as base models and gradient boosting regressor as the meta-regressor. 

Additionally, the study employed two distinct validation methods, the 70/30 dataset split and 5-fold cross-

validation, to assess model performance under varying conditions. The ensemble stacking model yielded 

impressive R2 values ranging from 0.991 to 0.995 across all datasets using 70/30 dataset split method. The 

performance of the ensemble-based stacking model was consistently maintained across various datasets, 

substantiating its reliability. While the 70/30 dataset split demonstrated superior results, the 5-fold cross-validation 

results, although not as robust ranging from 0.781 to 0.873 across the same datasets, indicates that model's 

performance is sensitive to different validation methods. These results highlight the model's potential for PD 

assessment. Various performance metrics, including MSE, RMSE, and MAE, further validate the robustness of 

the model's predictions. Importantly, the proposed approach offers the possibility of remote and continuous PD 

assessment through telemonitoring, allowing for real-time monitoring and early detection of symptom changes.  

Future work could focus on incorporating additional demographic and clinical data to enhance the model's 

predictive capabilities and explore the integration of advanced machine learning techniques with more robust 

validation methods for more precise and personalized Parkinson's disease assessment and management. The 

findings of this research hold significant promise for improving the quality of life for Parkinson's patients and 

advancing the field of voice-based medical assessment. 
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