

Comparative Analysis of Machine Learning Models for Android Malware Detection

Selma Bulut 1* , Adem Korkmaz2

1Kirklareli University, Technical Sciences Vocational School, Department of Computer Programming, Kırklareli,

Türkiye, selma.bulut@klu.edu.tr
2Bandirma University, Gonen Vocational School, Department of Web Design and Coding, Balıkesir, Türkiye,

ademkorkmaz@bandirma.edu.tr
*Corresponding Author

ARTICLE INFO ABSTRACT

Keywords:

Android malware detection

Machine learning algorithms

Naticusdroid dataset

Comparative analysis

Data integrity

Article History:
Received: 27.08.2023

Accepted: 15.03.2024

Online Available: 06.06.2024

The rapid growth of Android devices has led to increased security concerns,

especially from malicious software. This study extensively compares machine-

learning algorithms for effective Android malware detection. Traditional models,

such as random forest (RF) and support vector machines (SVM), alongside advanced

approaches, such as convolutional neural networks (CNN) and XGBoost, were

evaluated. Leveraging the NATICUSdroid dataset containing 29,332 records and 86

traces, the results highlight the superiority of RF with 97.1% and XGBoost with

97.2% accuracy. However, evolving malware and real-world unpredictability require

a cautious interpretation. Promising as they are, our findings stress the need for

continuous innovation in malware detection to ensure robust Android user security

and data integrity.

1. Introduction

Mobile phones, which entered our lives in the

1990s, were initially produced for texting and

talking; however, with the advent of evolving

technology and mobile internet, they have

allowed us to perform all sorts of tasks

efficiently. People use smartphones for various

activities, from shopping, reading newspapers,

and banking transactions to communicating via

social media. Therefore, smartphones have

become an indispensable part of our lives.

In smartphones, one of the operating systems

such as Android, IOS, Samsung, KaIOS,

BlackBerryOS, Tizen, and Windows mobile can

be found. By the end of 2022, with a 71.75%

market share, Android has been recognized as the

most widely used operating system. In 2023, it is

anticipated that there will be approximately 3.6

billion active Android smartphone users

dispersed across 190 nations. Android has

attained a 70.94% share of the global mobile

operating system market, while Apple's iOS has

secured a 28.33% share [1].

Google developed the Android operating system.

It is the fastest-growing, open-source, and fully

customizable mobile operating system software

in smartphone operating systems. Android

extends an open-source platform, offering

unrestricted access and managerial control to

Original Equipment Manufacturers (OEMs),

encompassing entities such as Samsung, Xiaomi,

Oppo, Vivo, Huawei, Motorola, and Google.

Subsequently, these manufacturers have

commercialized their devices at markedly

economical price points, particularly when

Research Article

Sakarya University Journal of Science

ISSN : 2147-835X

Publisher : Sakarya University
Vol. 28, No.3, 517-530, 2024

DOI: https://doi.org/10.16984/saufenbilder.1350839

Cite as: S. Bulut, A. Korkmaz (2024). Comparative Analysis of Machine Learning Models for Android Malware Detection, Sakarya University Journal of Science, 28(3),

517-530. https://doi.org/10.16984/saufenbilder.1350839

 This is an open access paper distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

https://orcid.org/0000-0002-6559-7704
https://orcid.org/0000-0002-7530-7715

Sakarya University Journal of Science, 28(3) 2024, 517-530

518

contrasted with the average sale price of Apple

iOS devices, quantified at 261 dollars in the fiscal

year 2021. This situation reveals the fundamental

reason for Android's success today. However, the

Android operating system is preferred in

smartphones, wearable devices, and smart TVs

[2, 3].

With the increase in the number of smartphone

applications downloaded and used through app

stores (Google Play, App Store), security issues

have emerged as a problem. Malware that we

encounter on computers is now taking over our

smartphones. Malicious software that permeates

smartphones can precipitate a spectrum of

harmful consequences, including unauthorized

access to users' personal information,

surveillance of user activities and geographical

locations, unauthorized intrusion into social

media accounts, penetration into banking

accounts, dissemination of unauthorized

messages, and diminution of memory and battery

longevity [4]. The rapid increase in Android

applications and being the most preferred

operating system has made it a target for

malicious software.

According to the Kaspersky Security Network,

4,948,522 mobile malicious software, adware,

and risky software attacks were prevented in the

first quarter of 2023. Advertising software is the

most common threat to mobile devices,

accounting for 34.8% of all detected threats [5].

In recent years, the Android operating system

(AOS) has released several updates to address

various security vulnerabilities [6].

The primary protection mechanism in the

Android operating system is Google Play Protect,

which identifies malicious software applications

in the Google Play Store. However, there are

many third-party app stores where malicious

software applications can be downloaded.

Another security element is a permission-based

resource access system that prevents applications

from unauthorized access to resources such as

cameras, microphones, and internal file storage

[7].

The AOS's Android Market Security Model

operates similarly to the Linux security model. In

this model, permissions granted to files are user-

based. A user cannot read, modify, and execute

another user's file unless that user gives

permission. When applications run, they must

request permission from the user once during

installation based on the resources they will use

and the areas they will access. Permissions are

defined within the AndroidManifest.xml file in

the APK (Android application package) [4].

Table 1. Android Sensitive Permissions [8].

Table 1 displays the list of these sensitive

permissions. These permissions are divided into

four protection levels: i) Normal, ii) Dangerous,

iii) Signature, and iv) Signature|Privileged [9]

Permissions classified as 'Dangerous' are the

most sensitive among these, as they manage

users' personal information, and when used with

malicious intent, they can jeopardize users'

security and privacy. Therefore, user consent is

sought for these permissions [7]. For instance,

SEND_SMS permission is essential for

communication and social media apps that allow

text messages to be sent.

Malicious software can use this permission to

communicate with their centers or send messages

to premium numbers. This can lead to

unexpected billing charges. While granting two

permissions separately might be harmless, giving

them simultaneously can significantly increase

privacy and security risks. For example, while

the INTERNET and READ SMS permissions are

benign when taken separately, they can be used

for an app that can read your text messages and

send them to a third party [10].

Selma Bulut, Adem Korkmaz

519

Malicious software such as Trojans, ransomware,

spyware, and worms exploit users unfamiliar

with Android's permission system, jeopardizing

their data. Hence, there is a need to educate users

about Android permissions. In the AOS security

model, the person installing the app must

consciously grant these permissions. Third-

generation app developers sometimes use these

permissions either knowingly or unwittingly.

The primary responsibility lies with the user, the

person installing the app. One must decide if the

requested permission is necessary for the

application and grant permissions accordingly.

The principal objective of this study is to

meticulously evaluate the efficacy of various

machine learning algorithms in the context of

Android permissions analysis, focusing on

detecting potential security threats posed by

malicious applications. Given the pervasive

nature of mobile devices in daily life and the

consequent escalation of security risks, the

research endeavors to scrutinize and compare the

predictive capabilities of a broad spectrum of

models—including Convolutional Neural

Networks (CNN), Artificial Neural Networks

(ANN), Random Forest (RF), k-Nearest

Neighbors (k-NN),

Support Vector Machines (SVM),

CatBoostClassifier, and XGBoost. This

comparative analysis aims to identify the most

effective algorithms in terms of accuracy, F1

score, and computational efficiency and

contribute to the development of robust, scalable

solutions for enhancing the security of Android

operating systems. Through a comprehensive

assessment of the NATICUSdroid dataset,

encompassing 29,332 records across 86

permissions, this study seeks to advance our

understanding of how machine learning

techniques can be leveraged to fortify defenses

against the ever-evolving landscape of mobile

malware threats, thereby providing invaluable

insights for both academic research and practical

applications in cybersecurity.

2. Related Work

Machine learning-based Android malicious

software detection studies are categorized into

static and dynamic analyses. The static analysis

includes notifications, permissions, API calls,

and intents. It can be obtained without running

the malicious software. On the other hand,

dynamic analysis focuses on monitoring an

application's activity, such as logcat errors,

shared memory corruption, system calls, and

processes [11]. Dynamic analysis can be

obtained by running the malicious software. The

most commonly used method is static analysis,

but it lacks accuracy. Dynamic analysis is more

effective but requires a virtual environment or an

Android device [12]. Hybrid analysis combines

static and dynamic features [13].

Various datasets for malicious software analysis

have become available in recent years. Using

these datasets, researchers have tried all

supervised, unsupervised, and deep learning

strategies to detect Android malicious software

[14]. The datasets under scrutiny may

encapsulate static attributes, such as Application

Programming Interface (API) invocations,

intentional actions, permission requests, and

dynamic characteristics, including logcat error

manifestations, shared memory allocations, and

system call interactions. Studies conducted for

this purpose have been examined.

Y. Zhou and X. Jiang [15] conducted a

significant study examining the characterization

and evolution of Android malicious software.

This research investigated how specific

permissions and behaviors could be used to

detect malicious applications by analyzing

malware behaviors. S. Y. Yerima and S. Khan

[16] employed static attributes, encompassing

permissions, intents, API invocations, and

instantiation dates, extracted from benign and

malicious software datasets furnished with date

labels to scrutinize the efficacy of assorted

machine-learning classifiers. They preferred

machine learning methodologies such as NB,

SVM, and RF.

A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F.

Gagnon, and F. Massicotte [17] proffered a

methodology entailing an image-based deep

neural network to systematically classify and

characterize software exemplars, derived from a

malware dataset that encompasses 12 paramount

malware categories and 191 noteworthy

malicious software entities.

Sakarya University Journal of Science, 28(3) 2024, 517-530

520

J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi [18]

propounded MAPAS, a malware detection

system that furnishes elevated accuracy while

enabling adaptable deployment of computational

resources. MAPAS scrutinizes the behavioral

attributes of malevolent applications by

analyzing API call graphs, employing

convolutional neural networks (CNN). The

authors juxtaposed MAPAS with an alternative

detection methodology, MaMaDroid, to evaluate

its relative performance and efficacy. F.

Giannakas, V. Kouliaridis, and G. Kambourakis

[19] employed shallow and deep machine

learning techniques to predict malicious software

on the Android platform. This involved

researching, optimizing, and evaluating the

performance of 28 different machine learning

algorithms, including a DNN model.

K. Liu, G. Zhang, X. Chen, Q. Liu, L. Peng, and

L. Yurui [10] summarized the process of sample

collection, data preprocessing, feature selection,

machine learning models, algorithms, and

evaluation of detection efficiency using machine

learning. They also assessed future expectations

for research based on machine learning detection

of malicious Android software. C. D. Nguyen, N.

H. Khoa, K. N. D. Doan, and N. T. Cam [20]

instantiated machine learning and deep learning

algorithms to categorize malware into respective

families and categories, leveraging multiple

datasets. The researchers conducted a

comprehensive evaluation and elected

appropriate methodologies, ensuring optimal

alignment with each dataset.

C. Ding, N. Luktarhan, B. Lu, and W. Zhang [21]

applied deep learning techniques, formulating a

classification schema predicated upon

permission and intent features discerned through

static and network traffic attributes identified

through dynamic analysis. S. Shi, S. Tian, B.

Wang, T. Zhou, and G. Chen [13] introduced

SFCGDroid, a malware detection method that

uses precise function call graphs to identify

malicious behaviors. SFCGDroid utilizes both

static and dynamic features to identify malicious

activities. The process achieved high accuracy

and F1 scores on a broad dataset of Android

software.

R. Islam, M. I. Sayed, S. Saha, M. J. Hossain, and

M. A. Masud [11] executed a classification of

Android malicious software, employing an

optimal feature selection methodology in tandem

with an ensemble machine learning approach,

aiming to enhance the precision and reliability of

the categorization process.

In the research conducted by M. N. U. R.

Chowdhury, A. Haque, H. Soliman, M. S.

Hossen, T. Fatima, I. Ahmed [22], an

examination of various machine learning

approaches—spanning supervised,

unsupervised, and deep learning paradigms—

utilized for Android malware detection was

undertaken. Moreover, a comparative analysis of

the performance of assorted Android malware

detection methodologies was proffered, and the

evaluative metrics employed to gauge their

efficacy were explored in the discourse.

Conclusively, the discourse also illuminated the

detriments and challenges inherent to

contemporary methodologies.

H. Rathore, S. Chari, N. Verma, S. K. Sahay, and

M. Sewak [23] elucidate a comprehensive

investigation predicated on data mining

techniques for static malware detection. The

authors proffer an exhaustive analysis of each

phase inherent to data mining-based malware

detection, including data aggregation,

preprocessing, feature extraction, application of

learning algorithms, and evaluative procedures,

while also dialoguing upon the evolution of

Android malware and extant detection

techniques.

3. Material and Method

3.1. NATICUSdroid (Android Permissions)

Dataset

The dataset is in binary format and describes the

permissions each application may be using. Each

row represents an app, and each column

represents a specific Android permission. A '1' in

a cell indicates that the corresponding application

uses this permission, while a '0' does not. The

data set contains 29332 records of 86 permissions

on Android phones, such as

android.permission.CAMERA, and

android.permission.READ_CONTACTS [24].

Selma Bulut, Adem Korkmaz

521

Figure 1 shows the Android Permission

Classification attribute data distribution.

Figure 1. Android Permissions Classification

attribute data distribution

3.2. Data analysis

Before initiating the study, an examination of the

data for preprocessing purposes revealed that

data balancing measures were deemed

unnecessary due to the relatively even

distribution of the Android Permission

Classification attribute, which comprised 14,700

records for class 1 and 14,632 for class 0. Given

the unconditional nature of the Android

permission attributes, represented as 1 and 0,

normalization procedures were not required.

Furthermore, the dataset was found to be

complete, with no instances of missing or

incomplete data. This thorough data assessment

ensured the dataset was adequately prepared for

the subsequent analysis without additional

preprocessing steps such as balancing or

normalization.

In the study, an extensive classification task was

conducted utilizing a myriad of algorithms,

including Convolutional Neural Networks

(CNN), Artificial Neural Network (ANN),

Random Forest (RF), k-nearest Neighbors (k-

NN), Support Vector Machines (SVM),

CatBoostClassifier, and XGBoost. Each

algorithm, ranging from the spatial hierarchy-

utilizing CNNs to the gradient-boosted precision

of XGBoost, was rigorously trained and

subsequently evaluated based on standard

classification metrics like accuracy, F1 score,

and AUC-ROC. A comprehensive comparative

analysis spotlighted the superior performers,

considering varied facets such as training

duration, model interpretability, and predictive

prowess. The culmination of the study offered

invaluable insights, underscoring the most

efficacious algorithms and proffering

recommendations for practical deployments or

prospective research avenues. The sequential

process followed in the research study is shown

in Figure 2.

Figure 2. Research methodology steps

F1 Score

Precision

Accuracy

Recall

Training Data

Testing Data

Import Data Set Data Splitting

Building Classifiers

CNN, ANN, RF, k-NN,

SVM, CatBoost,

XGBoost

Results

Sakarya University Journal of Science, 28(3) 2024, 517-530

522

3.2.1. Artificial neural networks

Artificial Neural Networks (ANNs) represent a

category of machine learning models

conceptualized and developed by drawing

inspiration from biological neural networks'

architectural structure and functional dynamics.

ANNs are composed of interlinked artificial

neurons, which are systematically arranged in

layers and responsible for processing and

transmitting information via connections that are

weighted and adjusted during the learning

process [25]. The artificial neuron mimics a

biological neuron's input, processing, and output

properties. Figure 3 shows the results produced

by the network: The net input obtained by

multiplying the information entered into the

network by its weights (W) is processed with the

transfer function and taken from the output layer

[26-28].

Figure 3. Artificial neuron network structure [29]

 Classification with artificial neural networks

(ANNs) involves training a neural network

model to classify data into different classes or

categories. ANNs have been ubiquitously

utilized for classification endeavors, attributed to

their capacity to decipher intricate patterns and

interrelations within data. The network

comprises an input layer, an intermediate hidden

layer hosting ten neurons, a subsequent hidden

layer furnished with five neurons, and an output

layer endowed with a neuron count equivalent to

the number of classes inherent in the

classification task. About the activation

functions, the hidden layers employ the Rectified

Linear Unit (ReLU), whereas the sigmoid

activation function is implemented in the output

layer.

In case there is no linear relationship between the

inputs and outputs of artificial neural networks,

Multilayer Perceptrons (Multilayer Perceptron)

are used to learn. Therefore, this method was

used in the study.

3.2.2. Convolutional neural networks (CNNs)

Convolutional Neural Networks (CNNs) are a

specialized category of deep neural networks

predominantly applied to computer vision tasks,

designed explicitly to process grid-like topology

data, such as images [30]. These networks use

convolutional layers with filters or kernels that

traverse the input data, producing a feature map

that emphasizes critical features, making them

particularly adept at identifying local patterns

ranging from simple edges to complex image

structures [31]. A significant component, the

pooling layer, typically follows the convolutional

layer, aiming to down-sample the spatial

dimensions of the data, enhancing the model's

robustness and reducing computational demands

[32]. As one progresses more profoundly into a

CNN, the architecture detects intricate structures,

with the concluding fully connected layers

classifying the discerned high-level features into

categories. Their hierarchical design, enabling

the adaptive learning of spatial hierarchies from

input images, has solidified CNNs as a premier

choice for numerous computer vision

applications.

3.2.3. Random forest (RF)

 The Random Forest (RF) algorithm efficiently

amalgamates multiple randomized decision

trees, producing results by averaging their

predictions. Particularly powerful when

variables outnumber observations, each tree

within the RF is trained on a random data subset.

Only a randomized subset of features is

considered at every decision node, mitigating

overfitting and enhancing generalization [33].

RF is a versatile supervised learning method

suitable for classification and regression,

building trees on random data samples, and

finalizing predictions through a majority vote

[34]. These decision trees recursively partition

data based on specific criteria until a set stopping

point, with tree splits determined by preset

criteria [35].

Selma Bulut, Adem Korkmaz

523

3.2.4. K-Nearest neighbor (k-NN)

The K-nearest neighbor (KNN) algorithm is a

supervised learning method predominantly used

for classification. By measuring the similarity of

data points to the nearest instances in the training

set, KNN classifies them based on the most

frequent class among its "K" neighbors. The

effectiveness of KNN relies on several

parameters, such as the choice of "K," distance

metrics like Euclidean or Manhattan, and the

normalization of data [36, 37] Introduced by Fix

and Hodges (1952), the algorithm's

computational demands increase with larger

datasets [38]. Normalizing training data is pivotal

to its accuracy [39].

3.2.5. Support vector machines (SVM)

The Support Vector Machine (SVM) is a

powerful supervised machine learning technique

introduced by Vapnik et al. in 1997, rooted in

statistical learning theory [40]. Designed for

classification and regression tasks, SVMs excel

in diverse applications such as learning,

clustering, and density estimation. The algorithm

is exceptionally versatile, addressing both binary

and multi-class classification problems. The crux

of SVM lies in identifying support vectors—the

data points nearest to the class boundaries—and

maximizing the distance between these vectors

and the separating hyperplane. While various

hyperplanes might separate the data, SVM

chooses the one with the maximum distance from

both classes, ensuring optimal and robust

classification [41].

3.2.6. CatBoostClassifier

The CatBoostClassifier is a gradient-boosting

algorithm designed to work effectively with

categorical features. Developed by Yandex, a

Russian search engine company, it utilizes a

collection of decision trees to make predictions.

A standout capability of the CatBoostClassifier is

its ability to handle categorical features without

needing one-hot or label encoding. It employs a

technique called "ordered boosting," which

considers the order of categories, enhancing the

algorithm's performance [42].

3.2.7. XGBoost

XGBoost, for eXtreme Gradient Boosting, is a

widely-used machine learning algorithm suitable

for regression and classification tasks. It operates

within a gradient-boosting framework,

combining multiple weak predictive models,

typically decision trees, to form a robust

predictive model. XGBoost differentiates itself

by building trees using numerous cores and

organizing data to minimize search times. Such

efficiency measures reduce model training times,

improving performance [43, 44].

3.3. Model performance and evaluation

The TP, TN, FP, and FN Confusion matrix

metrics provide values for correct or incorrect

classification of packets in the firewall. These

values were used to calculate precision, recall, f-

measure, and accuracy metrics as follows [45]:

Precision = (1)

Recall = (2)

F-measure = (3)

Accuracy = (4)

The Sigmoid and ReLU activation functions used

in the artificial neural network are calculated as

follows:

Sigmoid : 𝑓(𝑎) =
1

1+𝑒−𝑎
=

𝑒𝑎

1+𝑒𝑎
 (5)

ReLU : (0,a)=0,if a<0; (0,a)=a,if a≥0 (6)

Table 2 gives the confusion matrix table.

Table 2 Confusion matrix

Predict Class

Actual Class

 Yes No

Yes TP FN

No FP TN

Sakarya University Journal of Science, 28(3) 2024, 517-530

524

3.4. Limitations

This study, while comprehensive in its approach,

acknowledges several limitations. Our analysis

primarily relied on the NATICUSdroid dataset,

which, despite its breadth, might not encapsulate

the entire Android ecosystem's nuances. The

range of algorithms employed, from

conventional techniques like RF and SVM to

advanced ones like CNN and ANN, leaves out

potential hybrid models and other sophisticated

methodologies. Our focus on 86 permissions as

features might not capture the full spectrum of

signals beneficial for malware detection, such as

API calls or code patterns. Furthermore, the rapid

evolution of malware techniques poses a

challenge, suggesting that today's effective

models might struggle with tomorrow's threats.

Generalizing our promising results, especially

from the RF model, to real-world scenarios

requires caution due to the inherent

unpredictability of malware distribution in live

environments. The "black box" nature of some

models, intense learning ones, presents a

transparency challenge, and a more granular

comparative analysis among models could

further enrich our insights. These recognized

limitations pave the way for future research

aiming for a more holistic view of malware

detection.

4. Results

Our extensive analysis of Android permissions

using various machine-learning algorithms

observed notable distinctions in performance

metrics across the models.

Figure 4. CNN Accuracy and loss of training and validation values

As seen in Figure 4, the 20-epoch CNN results

show a model with stable performance but signs

of overfitting. While the training accuracy

increased slightly from 97.73% to 97.94% and

the loss decreased, the validation metrics were

less consistent. Validation loss rose from 0.1161

to 0.1307, and accuracy hovered in the 96-97%

range. This divergence between training and

validation suggests the model is overfitting,

excelling on training data but not generalizing

effectively to new data. Implementing dropout

layers, data augmentation, or regularization

might be beneficial to improve performance.

Figure 5. ANN Accuracy and loss of training and validation values

Selma Bulut, Adem Korkmaz

As seen in Figure 5, the results from the 20-epoch

ANN algorithm display consistent model

improvement. The training loss began at 0.2052

and decreased to 0.0824 by the end, while the

training accuracy rose from 92.70% to 97.34%.

Validation metrics also showed progress, with

accuracy starting at 96.20% and finishing at

97.17%. However, after the 10th epoch, the

validation metrics slightly oscillated, hinting at

possible overfitting. The closeness of the training

and validation metrics suggests good model

generalization, but future training beyond 20

epochs should be approached with caution to

avoid overfitting. Regularization or dropout

might be considered for enhanced robustness in

extended training.

Table 3. Analysis results of the Confusion Matrix

 CNN ANN RF k-NN SVM CatBoostClassifier XGBoost

 Predicted

A
ct

u
a

l 0 2849 95 2879 65 2876 68 2864 80 2800 156 2877 67 2874 70

1 100 2823 115 2808 100 2823 125 2798 116 2795 101 2822 90 2833

The Confusion Matrix is a diagnostic tool for

classification models, delineating the nuances of

their predictive performance. Each algorithm in

the confusion matrix in Table 3 reveals its

strengths and potential areas for improvement.

XGBoost distinctly emerges as the frontrunner,

delivering a harmonious blend of high true

positives and one of the lowest false positives,

underscoring its adeptness at accurately

distinguishing both classes. Conversely, the

SVM exhibits a propensity for a higher rate of

false negatives, indicating occasional oversights

in identifying positive instances. The k-NN

algorithm, while proficient, sometimes

misrepresents negative instances as positive, as

denoted by its elevated false positive count.

CatBoostClassifier and RF, both robust, closely

trail XGBoost's commendable performance.

Although slightly lagging behind the top trio of

XGBoost, CatBoostClassifier, and RF, CNN and

ANN still showcase admirable proficiency.

Collectively, these results underscore the

quintessential role of algorithm selection and

optimization dictated by the dataset's inherent

characteristics and distribution.

Table 4. Analysis results of the dataset

 CNN ANN RF k-NN SVM CatBoostClassifier XGBoost

Accuracy 0.966 0.969 0.971 0.952 0.953 0.971 0.972

F1 Score 0.966 0.969 0.971 0.961 0.953 0.971 0.972

Times 98sn 48sn 3sn 17sn 21sn 59sn 3sn

In the analysis presented in Table 4, seven

classification algorithms are compared based on

Accuracy, F1 Score, and running time, revealing

nuanced insights into their performance. The

XGBoost model achieves the highest accuracy

and F1 score at 0.972, closely followed by the

Random Forest and CatBoostClassifier models at

0.971. This suggests that ensemble methods,

particularly those based on decision tree

ensembles like XGBoost, Random Forest, and

CatBoost, perform exceptionally well in

accuracy and maintain a balance between

precision and recall, as reflected by the F1 scores.

CNN and ANN also show strong performance

with accuracy and F1 scores above 0.96,

indicating their capability to capture complex

data patterns. However, they require significantly

more computation time, with CNN being the

most time-consuming at 98 seconds and ANN at

48 seconds. This highlights a trade-off between

Sakarya University Journal of Science, 28(3) 2024, 517-530

526

performance and computational efficiency when

employing deep learning models.

K-NN and SVM exhibit the lowest accuracy and

F1 scores among the models, with k-NN at 0.952

and SVM at 0.953 for accuracy and a slightly

better F1 score for k-NN at 0.961 than SVM's F1

score. Despite their lower performance metrics,

k-NN and SVM are relatively more

computationally efficient than CNN and ANN

but less so than RF and XGBoost, which only

require 3 seconds to compute, making them

highly efficient choices with superior accuracy.

In summary, ensemble methods like XGBoost,

Random Forest, and CatBoostClassifier offer an

optimal blend of high accuracy, excellent F1

scores, and computational efficiency. In contrast,

CNN and ANN, while powerful in model

performance, demand significantly higher

computation times, potentially limiting their

applicability in scenarios where rapid model

inference is critical. Meanwhile, traditional

machine learning models like k-NN and SVM

provide a decent balance between computational

demand and model performance but do not match

the superior metrics of ensemble methods.

Table 5. Previous similar studies and their results
Ref / Year Dataset Number of features Applied models Results-Accuracy

[6] / 2021 NATICUSdroid 29,000 benign RF 97%

[13] / 2023 SFCGDroid 26,939 Android

software datasets

 98.22%

[17] / 2020 Didroid Deep Learning 93.36%

[20] / 2023 Drebin

CICMaldroid2020

Drebin: 204 features

CICMaldroid:337

features

RF, ET, DNN, 1D-CNN Drebin 1D-CNN and RF

99.6%

CICMaldroid DNN

98.26%, 1D-CNN 98.2%

[46] / 2014 Drebin 123,453 applications

and 5,560 malware

samples

SVM 94%

[47] / 2022 CICMaldroid2020 17,341samples semi-supervised DNN 97.7%

[48] / 2021 CCCS-CIC-

AndMal-2020

14 malware

categories and 180

malware families

J48, NB, SVM, AB, LR,

KNN, RF, MLP

Malware

Category over 96 %

Malware Family

over 99%

[49] / 2019 TFDroid SVM 93.7%

[18] / 2022 MaMaDroid

MAPAS

 CNN MAPAS 91.27%

MaMaDroid 84.99%

Our Study NATICUSdroid 29332 records of 86

permissions

CNN, ANN, RF, k-NN,

SVM,

CatBoostClassifier,

XGBoost

XGBoost 97.2%

RF 97.1%

Table 5 reviews studies from 2014 to 2023 on

malware detection across various datasets.

Mathur et al. [6] worked on the NATICUSdroid

dataset with 29,000 benign features, achieving a

97% accuracy using Random Forest (RF).

Similarly, Shi et al. [13] reported a 98.22%

accuracy and 98.20% F1 score from the

SFCGDroid dataset with 26,939 Android

software. On the Didroid dataset, Rahali et al.

[17] used deep learning to reach 93.36%

accuracy. A multi-model approach was taken by

Nguyen et al. [20] on two datasets (Drebin and

CICMaldroid2020), with the highest accuracy

being 99.6% on Drebin using 1D-CNN and RF.

Arp et al. [46] also analyzed the Drebin dataset,

achieving 94% accuracy using SVM. Employing

a semi-supervised DNN on the

CICMaldroid2020 dataset, Mahdavifar et al. [47]

reported a 97.7% accuracy. Fiky et al. [48]

showcased a broad model application on the

CCCS-CIC-AndMal-2020 dataset, with results

surpassing 96% for malware category accuracy

and over 99% for malware family accuracy.

CNN models were applied by Kim et al. [18] on

Selma Bulut, Adem Korkmaz

527

the MaMaDroid and MAPAS datasets, obtaining

accuracies of 84.99% and 91.27%, respectively.

Lastly, a multi-algorithm study labeled "Our

Study" was conducted on the NATICUSdroid

dataset, wherein the RF model yielded an

accuracy of 97.1%.

5. Conclusion and Discussion

The landscape of malware detection has

undergone significant advancements, with

studies spanning from 2014 to 2023 adopting

various datasets and leveraging diverse machine

learning and deep learning algorithms. Our

comprehensive review of these studies

showcases the consistent effort toward achieving

higher accuracy rates and understanding the

nuances of malware categorization and family

detection.

Upon comparison, it is evident that Random

Forest (RF) consistently performed well across

different datasets, as noted in studies by Mathur

et al. [6] and our own, registering accuracy rates

of around 97%. However, Nguyen et al. [20]

demonstrated that with a suitable dataset and

model combination, particularly 1D-CNN on the

Drebin dataset, accuracy could skyrocket to

99.6%. Such high-accuracy figures emphasize

the potential of hybrid approaches, blending

traditional machine-learning techniques with

deep-learning structures.

However, it is also essential to acknowledge the

robust results derived from singular models. The

SVM, as utilized by Arp et al. [46] and Lou et al.

[49], generated commendable results,

highlighting the continued relevance of

foundational machine learning methods amidst

the surge of deep learning models. Kim et al. [18]

focus on CNNs underscores the increasing

reliance on deep learning for complex

classification tasks, especially given the intricate

nature of malware detection.

Our study's multi-algorithm approach to the

NATICUSdroid dataset was insightful, revealing

each model's strengths and limitations in the

dataset's context. While XGBoost emerged as the

top performer, it was enlightening to juxtapose

its results against algorithms like CNN, ANN, k-

NN, SVM, CatBoostClassifier, and RF.

In conclusion, while the overarching goal across

studies remains consistent—achieving higher

accuracy in malware detection—the path to that

end varies. It is essential to focus on the accuracy

figures and consider factors like the false-

positive rate, F1 score, and the intricacies of the

dataset in use. As malware continues to evolve,

so too must our methodologies, urging a blend of

both foundational and avant-garde approaches to

stay ahead in the ever-evolving cyber landscape.

Article Information Form

Funding

The authors has no received any financial support

for the research, authorship or publication of this

study.

Authors' Contribution

The authors contributed equally

The Declaration of Conflict of Interest/

Common Interest

No conflict of interest or common interest has

been declared by the authors.

The Declaration of Ethics Committee Approval

This study does not require ethics committee

permission or any special permission.

The Declaration of Research and Publication

Ethics

The authors of the paper declare that they comply

with the scientific, ethical and quotation rules of

SAUJS in all processes of the paper and that they

do not make any falsification on the data

collected. In addition, they declare that Sakarya

University Journal of Science and its editorial

board have no responsibility for any ethical

violations that may be encountered, and that this

study has not been evaluated in any academic

publication environment other than Sakarya

University Journal of Science.

Copyright Statement

Authors own the copyright of their work

published in the journal and their work is

published under the CC BY-NC 4.0 license.

Sakarya University Journal of Science, 28(3) 2024, 517-530

528

References

[1] A. Turner. (2022, Jan 12). How many

Android users are there? Global statistics.

[Online]. Available:

https://www.bankmycell.com/blog/how-

many-android-users-are-there

[2] Google. (2023, Aug 26). Wear OS by

Google. [Online]. Available:

https://wearos.google.com

[3] Android. (2023, Aug 25). Android TV.

[Online]. Available:

https://www.android.com/tv/

[4] S. Büyükgöze, “Mobil uygulama

marketlerinin güvenlik modeli

incelemeleri,” Türkiye Bilişim Vakfı

Bilgisayar Bilimleri ve Mühendisliği

Dergisi, 12(1), pp.9-18. 2019.

[5] A. Kivva, (2023, Jun 07). IT threat

evolution Q1 2023. Mobile statistics.

[Online]. Available:

https://securelist.com/it-threat-evolution-

q1-2023-mobile-statistics/109893/

[6] A. Mathur, L. M. Podila, K. Kulkarni, Q.

Niyaz, A. Y. Javaid, “NATICUSdroid: A

malware detection framework for Android

using native and custom permissions,”

Journal of Information Security and

Applications, vol. 58, no. 102696, p.

102696, 2021.

[7] A. Mathur, E. Ewoldt, Q. Niyaz, A. Javaid,

X. Yang, “Permission-educator: App for

educating users about android

permissions,” in Conf. Intelligent Human

Computer Interaction, Cham: Springer

International Publishing, 2022, pp.361–

371.

[8] K. Liu, G. Zhang, X. Chen, Q. Liu, L.

Peng, L. Yurui, “Android malware

detection based on sensitive patterns,”

Telecommunication Systems, vol. 82, no.

4, pp. 435–449, 2023.

[9] Android Developers. (2023, Aug 26).

Permissions on android. [Online].

Available:

https://developer.android.com/guide/topic

s/permissions/overview.

[10] E. Georgescu, (2020, Oct 16). The hidden

dangers of Android permissions -

description and mitigation. [Online].

Available:

https://heimdalsecurity.com/blog/android-

permissions-full-guide/.

[11] R. Islam, M. I. Sayed, S. Saha, M. J.

Hossain, M. A. Masud, “Android malware

classification using optimum feature

selection and ensemble machine learning,”

Internet of Things and Cyber-Physical

Systems, vol. 3, pp. 100–111, 2023.

[12] Q. Wu, X. Zhu, B. Liu, (2021). “A survey

of android malware static detection

technology based on machine learning,”

Mobile Information Systems, pp. 1-18,

2021.

[13] S. Shi, S. Tian, B. Wang, T. Zhou, G. Chen,

“SFCGDroid: android malware detection

based on sensitive function call graph,”

International Journal of Information

Security, pp.1-10, 2023.

[14] L. Zhen, R. Wang, N. Japkowicz, D. Tang,

W. Zhang, J. Zhao, “Research on

unsupervised feature learning for Android

malware detection based on Restricted

Boltzmann Machines,” Future Generation

Computer Systems, Volume 120, pp.91-

108, 2021.

[15] Y. Zhou, X. Jiang, “Dissecting android

malware: Characterization and evolution,”

in Conf. Security and Privacy, 2012, pp.95-

109.

[16] S. Y. Yerima, S. Khan, “Longitudinal

performance analysis of machine learning

based Android malware detectors,” in

Conf. Cyber Security and Protection of

Digital Services (Cyber Security), 2019,

pp.1-8.

Selma Bulut, Adem Korkmaz

529

[17] A. Rahali, A. H. Lashkari, G. Kaur, L.

Taheri, F. Gagnon, F. Massicotte,

“DIDroid: Android malware classification

and characterization using deep image

learning,” in Conf. Communication and

Network Security, 2020, pp.70-82.

[18] J. Kim, Y. Ban, E. Ko, H. Cho, J. H. Yi,

“MAPAS: a practical deep learning-based

android malware detection system,”

International Journal of Information

Security, vol. 21, no. 4, pp. 725–738, 2022.

[19] F. Giannakas, V. Kouliaridis, G.

Kambourakis, “A closer look at machine

learning effectiveness in Android malware

detection,” Information (Basel), vol. 14,

no. 1, p. 2, 2022.

[20] C. D. Nguyen, N. H. Khoa, K. N. D. Doan,

N. T. Cam, “Android Malware Category

and Family Classification Using Static

Analysis,” in Conf. Information

Networking (ICOIN), IEEE, 2023, pp.

162-167.

[21] C. Ding, N. Luktarhan, B. Lu, W. Zhang,

“A hybrid analysis-based approach to

android malware family classification,”

Entropy, 23(8), 1009, 2021.

[22] M. N. U. R. Chowdhury, A. Haque, H.

Soliman, M. S. Hossen, T. Fatima, I.

Ahmed, “Android malware Detection

using Machine learning: A Review,” arXiv

preprint arXiv:2307.02412, 2023.

[23] H. Rathore, S. Chari, N. Verma, S. K.

Sahay, M. Sewak, “Android Malware

Detection Based on Static Analysis and

Data Mining Techniques: A Systematic

Literature Review,“ in Conf. Broadband

Communications, Networks and Systems

Cham: Springer Nature Switzerland, 2023,

pp. 51-71.

[24] A. Mathur, NATICUSdroid (Android

Permissions) Dataset. UCI Machine

Learning Repository, 2022.

[25] K. He, X. Zhang, S. Ren, J. Sun, “Deep

residual learning for image recognition,” in

Conf. Computer Vision and Pattern

Recognition (CVPR), 2016, pp.770-778.

[26] E. Öztemel, Yapay sinir ağlari, Papatya

Yayincilik, ISBN: 978-975-6797-39-6.

Istanbul, Turkey, 2023.

[27] S. Haykin, Neural Networks and Learning

Machines, Pearson: Upper Saddle River,

Neural Networks and Learning Machines,

vol. 3, India, 2009.

[28] E. Egrioglu, C. H. Aladag, U. Yolcu, V. R.

Uslu, M. A. Basaran, “A new approach

based on artificial neural networks for high

order multivariate fuzzy time series,”

Expert System with Applications, vol. 36,

no. 7, pp. 10589–10594, 2009.

[29] U. Porwal, Z. Shi, S. Setlur, Machine

learning in handwritten Arabic text

recognition, In Handbook of Statistics Vol.

31, pp. 443-469, Elsevier, 2013.

[30] Y. LeCun, L. Bottou, Y. Bengio, P.

Haffner, “Gradient-based learning applied

to document recognition.”, Proceedings of

the IEEE, 86(11), 1998, pp.2278-2324.

[31] A. Krizhevsky, I. Sutskever, G. E. Hinton,

“ImageNet classification with deep

convolutional neural networks”. In

Advances in neural information processing

systems, pp. 1097-1105, 2012.

[32] D. Scherer, A. Müller, S. Behnke,

“Evaluation of pooling operations in

convolutional architectures for object

recognition,” in Conf. Artificial Neural

Networks (ICANN), 2010, pp. 92-101.

[33] L. Breiman, “Random forests,” Machine

learning, 45(1), pp.5-32, 2001.

[34] S. J. Rigatti, “Random forests,” Journal of

Insurance Medicine, 47(1), 31-39, 2017.

[35] M. Schonlau, R. Y. Zou, “The random

forest algorithm for statistical learning,”

The Stata Journal, 20(1), pp.3-29, 2020.

Sakarya University Journal of Science, 28(3) 2024, 517-530

530

[36] S. B. Kotsiantis, I. Zaharakis, P. Pintelas,

“Supervised machine learning: A review of

classification techniques,” Emerging

artificial intelligence applications in

computer engineering, 160(1), pp.3-24,

2007.

[37] Ö. Tomak, Derin Öğrenme Algoritmalarının

EKG Aritmilerinin Sınıflandırılmasında

Değerlendirilmesi, Karadeniz Teknik

Üniversitesi, Trabzon, 2018.

[38] G. Bilgin, “Makine öğrenmesi

algoritmaları kullanarak erken dönemde

diyabet hastalığı riskinin araştırılması,”

Journal of Intelligent Systems: Theory and

Applications, 4(1), pp.55-64, 2021.

[39] O. Sevli, “Farklı Sınıflandırıcılar ve

Yeniden Örnekleme Teknikleri

Kullanılarak Kalp Hastalığı Teşhisine

Yönelik Karşılaştırmalı Bir Çalışma,”

Journal of Intelligent Systems: Theory and

Applications, 5(2), pp.92-105, 2022.

[40] V. Vapnik, S. Golowich, A. Smola,

“Support vector method for function

approximation, regression estimation and

signal processing,” Advances in neural

information processing systems, 9, pp.281-

287, 1996.

[41] S. R. Gunn, “Support vector machines for

classification and regression”, ISIS

technical report, 14(1), pp.5-16, 1998.

[42] B. Deekshitha, C. Aswitha, C. S. Sundar,

A. K. Deepthi, “URL Based Phishing

Website Detection by Using Gradient and

Catboost Algorithms.” International

Journal Research Applied Science and

Engineering Technology, 10(6), pp.3717-

3722, 2022.

[43] S. Ramraj, N. Uzir, R. Sunil, S. Banerjee,

“Experimenting XGBoost algorithm for

prediction and classification of different

datasets,” International Journal of Control

Theory and Applications, 9(40), pp.651-

662, 2016.

[44] N. Memon, S. B. Patel, D. P. Patel,

“Comparative analysis of artificial neural

network and XGBoost algorithm for

PolSAR image classification,” in Conf.

Pattern Recognition and Machine

Intelligence, Cham: Springer International

Publishing, 2019, pp.452-460.

[45] A. Korkmaz, S. Büyükgöze, “Sahte Web

Sitelerinin Sınıflandırma Algoritmaları İle

Tespit Edilmesi,” Avrupa Bilim ve

Teknoloji Dergisi, (16), pp.826-833, 2019.

[46] D. Arp, M. Spreitzenbarth, M. Hubner, H.

Gascon, K. Rieck, “Drebin: Effective and

explainable detection of android malware

in your pocket,” In Conf Network and

Distributed System Security Symposium

(NDSS), Vol. 14, 2014, pp. 23-26.

[47] S. Mahdavifar, D. Alhadidi, A. A.

Ghorbani, “Effective and efficient hybrid

android malware classification using

pseudo-label stacked auto-encoder,”

Journal of network and systems

management, 30, pp.1-34, 2022.

[48] A. H. E. Fiky, A. E. Shenawy, M. A.

Madkour, “Android malware category and

family detection and identification using

machine learning,” arXiv preprint

arXiv:2107.01927, 2021.

[49] S. Lou, S. Cheng, J. Huang, F. Jiang,

“TFDroid: Android malware detection by

topics and sensitive data flows using

machine learning techniques,” in Conf.

information and computer technologies

(ICICT) IEEE, 2019, pp.30-36.

