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The rapid growth of Android devices has led to increased security concerns, 

especially from malicious software. This study extensively compares machine-

learning algorithms for effective Android malware detection. Traditional models, 

such as random forest (RF) and support vector machines (SVM), alongside advanced 

approaches, such as convolutional neural networks (CNN) and XGBoost, were 

evaluated. Leveraging the NATICUSdroid dataset containing 29,332 records and 86 

traces, the results highlight the superiority of RF with 97.1% and XGBoost with 

97.2% accuracy. However, evolving malware and real-world unpredictability require 

a cautious interpretation. Promising as they are, our findings stress the need for 

continuous innovation in malware detection to ensure robust Android user security 

and data integrity. 

 

1. Introduction 

 

Mobile phones, which entered our lives in the 

1990s, were initially produced for texting and 

talking; however, with the advent of evolving 

technology and mobile internet, they have 

allowed us to perform all sorts of tasks 

efficiently. People use smartphones for various 

activities, from shopping, reading newspapers, 

and banking transactions to communicating via 

social media. Therefore, smartphones have 

become an indispensable part of our lives.  

 

In smartphones, one of the operating systems 

such as Android, IOS, Samsung, KaIOS, 

BlackBerryOS, Tizen, and Windows mobile can 

be found. By the end of 2022, with a 71.75% 

market share, Android has been recognized as the 

most widely used operating system. In 2023, it is 

anticipated that there will be approximately 3.6 

billion active Android smartphone users 

dispersed across 190 nations. Android has 

attained a 70.94% share of the global mobile 

operating system market, while Apple's iOS has 

secured a 28.33% share [1]. 

 

Google developed the Android operating system. 

It is the fastest-growing, open-source, and fully 

customizable mobile operating system software 

in smartphone operating systems. Android 

extends an open-source platform, offering 

unrestricted access and managerial control to 

Original Equipment Manufacturers (OEMs), 

encompassing entities such as Samsung, Xiaomi, 

Oppo, Vivo, Huawei, Motorola, and Google. 

Subsequently, these manufacturers have 

commercialized their devices at markedly 

economical price points, particularly when 
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contrasted with the average sale price of Apple 

iOS devices, quantified at 261 dollars in the fiscal 

year 2021. This situation reveals the fundamental 

reason for Android's success today. However, the 

Android operating system is preferred in 

smartphones, wearable devices, and smart TVs 

[2, 3]. 

 

With the increase in the number of smartphone 

applications downloaded and used through app 

stores (Google Play, App Store), security issues 

have emerged as a problem. Malware that we 

encounter on computers is now taking over our 

smartphones. Malicious software that permeates 

smartphones can precipitate a spectrum of 

harmful consequences, including unauthorized 

access to users' personal information, 

surveillance of user activities and geographical 

locations, unauthorized intrusion into social 

media accounts, penetration into banking 

accounts, dissemination of unauthorized 

messages, and diminution of memory and battery 

longevity [4]. The rapid increase in Android 

applications and being the most preferred 

operating system has made it a target for 

malicious software. 

 

According to the Kaspersky Security Network, 

4,948,522 mobile malicious software, adware, 

and risky software attacks were prevented in the 

first quarter of 2023. Advertising software is the 

most common threat to mobile devices, 

accounting for 34.8% of all detected threats [5]. 

In recent years, the Android operating system 

(AOS) has released several updates to address 

various security vulnerabilities [6]. 

 

The primary protection mechanism in the 

Android operating system is Google Play Protect, 

which identifies malicious software applications 

in the Google Play Store. However, there are 

many third-party app stores where malicious 

software applications can be downloaded. 

Another security element is a permission-based 

resource access system that prevents applications 

from unauthorized access to resources such as 

cameras, microphones, and internal file storage 

[7]. 

The AOS's Android Market Security Model 

operates similarly to the Linux security model. In 

this model, permissions granted to files are user-

based. A user cannot read, modify, and execute 

another user's file unless that user gives 

permission. When applications run, they must 

request permission from the user once during 

installation based on the resources they will use 

and the areas they will access. Permissions are 

defined within the AndroidManifest.xml file in 

the APK (Android application package) [4].  

 
Table 1. Android Sensitive Permissions [8]. 

 
 

Table 1 displays the list of these sensitive 

permissions. These permissions are divided into 

four protection levels: i) Normal, ii) Dangerous, 

iii) Signature, and iv) Signature|Privileged [9] 

Permissions classified as 'Dangerous' are the 

most sensitive among these, as they manage 

users' personal information, and when used with 

malicious intent, they can jeopardize users' 

security and privacy. Therefore, user consent is 

sought for these permissions [7]. For instance, 

SEND_SMS permission is essential for 

communication and social media apps that allow 

text messages to be sent.  

 

Malicious software can use this permission to 

communicate with their centers or send messages 

to premium numbers. This can lead to 

unexpected billing charges. While granting two 

permissions separately might be harmless, giving 

them simultaneously can significantly increase 

privacy and security risks. For example, while 

the INTERNET and READ SMS permissions are 

benign when taken separately, they can be used 

for an app that can read your text messages and 

send them to a third party [10].  
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Malicious software such as Trojans, ransomware, 

spyware, and worms exploit users unfamiliar 

with Android's permission system, jeopardizing 

their data. Hence, there is a need to educate users 

about Android permissions. In the AOS security 

model, the person installing the app must 

consciously grant these permissions. Third-

generation app developers sometimes use these 

permissions either knowingly or unwittingly. 

The primary responsibility lies with the user, the 

person installing the app. One must decide if the 

requested permission is necessary for the 

application and grant permissions accordingly. 

 

The principal objective of this study is to 

meticulously evaluate the efficacy of various 

machine learning algorithms in the context of 

Android permissions analysis, focusing on 

detecting potential security threats posed by 

malicious applications. Given the pervasive 

nature of mobile devices in daily life and the 

consequent escalation of security risks, the 

research endeavors to scrutinize and compare the 

predictive capabilities of a broad spectrum of 

models—including Convolutional Neural 

Networks (CNN), Artificial Neural Networks 

(ANN), Random Forest (RF), k-Nearest 

Neighbors (k-NN),  

 

Support Vector Machines (SVM), 

CatBoostClassifier, and XGBoost. This 

comparative analysis aims to identify the most 

effective algorithms in terms of accuracy, F1 

score, and computational efficiency and 

contribute to the development of robust, scalable 

solutions for enhancing the security of Android 

operating systems. Through a comprehensive 

assessment of the NATICUSdroid dataset, 

encompassing 29,332 records across 86 

permissions, this study seeks to advance our 

understanding of how machine learning 

techniques can be leveraged to fortify defenses 

against the ever-evolving landscape of mobile 

malware threats, thereby providing invaluable 

insights for both academic research and practical 

applications in cybersecurity. 

 

2. Related Work 

 

Machine learning-based Android malicious 

software detection studies are categorized into 

static and dynamic analyses. The static analysis 

includes notifications, permissions, API calls, 

and intents. It can be obtained without running 

the malicious software. On the other hand, 

dynamic analysis focuses on monitoring an 

application's activity, such as logcat errors, 

shared memory corruption, system calls, and 

processes [11]. Dynamic analysis can be 

obtained by running the malicious software. The 

most commonly used method is static analysis, 

but it lacks accuracy. Dynamic analysis is more 

effective but requires a virtual environment or an 

Android device [12]. Hybrid analysis combines 

static and dynamic features [13]. 

 

Various datasets for malicious software analysis 

have become available in recent years. Using 

these datasets, researchers have tried all 

supervised, unsupervised, and deep learning 

strategies to detect Android malicious software 

[14]. The datasets under scrutiny may 

encapsulate static attributes, such as Application 

Programming Interface (API) invocations, 

intentional actions, permission requests, and 

dynamic characteristics, including logcat error 

manifestations, shared memory allocations, and 

system call interactions. Studies conducted for 

this purpose have been examined. 

 

Y. Zhou and X. Jiang [15] conducted a 

significant study examining the characterization 

and evolution of Android malicious software. 

This research investigated how specific 

permissions and behaviors could be used to 

detect malicious applications by analyzing 

malware behaviors. S. Y. Yerima and S. Khan 

[16] employed static attributes, encompassing 

permissions, intents, API invocations, and 

instantiation dates, extracted from benign and 

malicious software datasets furnished with date 

labels to scrutinize the efficacy of assorted 

machine-learning classifiers. They preferred 

machine learning methodologies such as NB, 

SVM, and RF. 

 

A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. 

Gagnon, and F. Massicotte [17] proffered a 

methodology entailing an image-based deep 

neural network to systematically classify and 

characterize software exemplars, derived from a 

malware dataset that encompasses 12 paramount 

malware categories and 191 noteworthy 

malicious software entities.  
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J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi [18] 

propounded MAPAS, a malware detection 

system that furnishes elevated accuracy while 

enabling adaptable deployment of computational 

resources. MAPAS scrutinizes the behavioral 

attributes of malevolent applications by 

analyzing API call graphs, employing 

convolutional neural networks (CNN). The 

authors juxtaposed MAPAS with an alternative 

detection methodology, MaMaDroid, to evaluate 

its relative performance and efficacy. F. 

Giannakas, V. Kouliaridis, and G. Kambourakis 

[19] employed shallow and deep machine 

learning techniques to predict malicious software 

on the Android platform. This involved 

researching, optimizing, and evaluating the 

performance of 28 different machine learning 

algorithms, including a DNN model. 

 

K. Liu, G. Zhang, X. Chen, Q. Liu, L. Peng, and 

L. Yurui [10] summarized the process of sample 

collection, data preprocessing, feature selection, 

machine learning models, algorithms, and 

evaluation of detection efficiency using machine 

learning. They also assessed future expectations 

for research based on machine learning detection 

of malicious Android software. C. D. Nguyen, N. 

H. Khoa, K. N. D. Doan, and N. T. Cam [20] 

instantiated machine learning and deep learning 

algorithms to categorize malware into respective 

families and categories, leveraging multiple 

datasets. The researchers conducted a 

comprehensive evaluation and elected 

appropriate methodologies, ensuring optimal 

alignment with each dataset. 

 

C. Ding, N. Luktarhan, B. Lu, and W. Zhang [21] 

applied deep learning techniques, formulating a 

classification schema predicated upon 

permission and intent features discerned through 

static and network traffic attributes identified 

through dynamic analysis. S. Shi, S. Tian, B. 

Wang, T. Zhou, and G. Chen [13] introduced 

SFCGDroid, a malware detection method that 

uses precise function call graphs to identify 

malicious behaviors. SFCGDroid utilizes both 

static and dynamic features to identify malicious 

activities. The process achieved high accuracy 

and F1 scores on a broad dataset of Android 

software. 

 

R. Islam, M. I. Sayed, S. Saha, M. J. Hossain, and 

M. A. Masud [11] executed a classification of 

Android malicious software, employing an 

optimal feature selection methodology in tandem 

with an ensemble machine learning approach, 

aiming to enhance the precision and reliability of 

the categorization process. 

 

In the research conducted by M. N. U. R. 

Chowdhury, A. Haque, H. Soliman, M. S. 

Hossen, T. Fatima, I. Ahmed [22], an 

examination of various machine learning 

approaches—spanning supervised, 

unsupervised, and deep learning paradigms—

utilized for Android malware detection was 

undertaken. Moreover, a comparative analysis of 

the performance of assorted Android malware 

detection methodologies was proffered, and the 

evaluative metrics employed to gauge their 

efficacy were explored in the discourse. 

Conclusively, the discourse also illuminated the 

detriments and challenges inherent to 

contemporary methodologies. 

 

H. Rathore, S. Chari, N. Verma, S. K. Sahay, and 

M. Sewak [23] elucidate a comprehensive 

investigation predicated on data mining 

techniques for static malware detection. The 

authors proffer an exhaustive analysis of each 

phase inherent to data mining-based malware 

detection, including data aggregation, 

preprocessing, feature extraction, application of 

learning algorithms, and evaluative procedures, 

while also dialoguing upon the evolution of 

Android malware and extant detection 

techniques. 

 

3. Material and Method 

 

3.1. NATICUSdroid (Android Permissions) 

Dataset 

 

The dataset is in binary format and describes the 

permissions each application may be using. Each 

row represents an app, and each column 

represents a specific Android permission. A '1' in 

a cell indicates that the corresponding application 

uses this permission, while a '0' does not. The 

data set contains 29332 records of 86 permissions 

on Android phones, such as 

android.permission.CAMERA, and 

android.permission.READ_CONTACTS [24]. 



Selma Bulut, Adem Korkmaz   

 

521 
 

Figure 1 shows the Android Permission 

Classification attribute data distribution. 
 

 
Figure 1. Android Permissions Classification 

attribute data distribution 
 

3.2. Data analysis 
 

Before initiating the study, an examination of the 

data for preprocessing purposes revealed that 

data balancing measures were deemed 

unnecessary due to the relatively even 

distribution of the Android Permission 

Classification attribute, which comprised 14,700 

records for class 1 and 14,632 for class 0. Given 

the unconditional nature of the Android 

permission attributes, represented as 1 and 0, 

normalization procedures were not required. 

Furthermore, the dataset was found to be 

complete, with no instances of missing or 

incomplete data. This thorough data assessment 

ensured the dataset was adequately prepared for 

the subsequent analysis without additional 

preprocessing steps such as balancing or 

normalization. 
 

In the study, an extensive classification task was 

conducted utilizing a myriad of algorithms, 

including Convolutional Neural Networks 

(CNN), Artificial Neural Network (ANN), 

Random Forest (RF), k-nearest Neighbors (k-

NN), Support Vector Machines (SVM), 

CatBoostClassifier, and XGBoost. Each 

algorithm, ranging from the spatial hierarchy-

utilizing CNNs to the gradient-boosted precision 

of XGBoost, was rigorously trained and 

subsequently evaluated based on standard 

classification metrics like accuracy, F1 score, 

and AUC-ROC. A comprehensive comparative 

analysis spotlighted the superior performers, 

considering varied facets such as training 

duration, model interpretability, and predictive 

prowess. The culmination of the study offered 

invaluable insights, underscoring the most 

efficacious algorithms and proffering 

recommendations for practical deployments or 

prospective research avenues. The sequential 

process followed in the research study is shown 

in Figure 2. 

 
Figure 2. Research methodology steps 

 
 

F1 Score 

Precision 

Accuracy 

Recall 

Training Data 

Testing Data 

Import Data Set Data Splitting 
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SVM, CatBoost, 
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3.2.1. Artificial neural networks 
 

Artificial Neural Networks (ANNs) represent a 

category of machine learning models 

conceptualized and developed by drawing 

inspiration from biological neural networks' 

architectural structure and functional dynamics. 

ANNs are composed of interlinked artificial 

neurons, which are systematically arranged in 

layers and responsible for processing and 

transmitting information via connections that are 

weighted and adjusted during the learning 

process [25]. The artificial neuron mimics a 

biological neuron's input, processing, and output 

properties. Figure 3 shows the results produced 

by the network: The net input obtained by 

multiplying the information entered into the 

network by its weights (W) is processed with the 

transfer function and taken from the output layer 

[26-28]. 

   

 
  

Figure 3. Artificial neuron network structure [29] 

 

 Classification with artificial neural networks 

(ANNs) involves training a neural network 

model to classify data into different classes or 

categories. ANNs have been ubiquitously 

utilized for classification endeavors, attributed to 

their capacity to decipher intricate patterns and 

interrelations within data. The network 

comprises an input layer, an intermediate hidden 

layer hosting ten neurons, a subsequent hidden 

layer furnished with five neurons, and an output 

layer endowed with a neuron count equivalent to 

the number of classes inherent in the 

classification task. About the activation 

functions, the hidden layers employ the Rectified 

Linear Unit (ReLU), whereas the sigmoid 

activation function is implemented in the output 

layer. 

 

In case there is no linear relationship between the 

inputs and outputs of artificial neural networks, 

Multilayer Perceptrons (Multilayer Perceptron) 

are used to learn. Therefore, this method was 

used in the study. 

 

3.2.2. Convolutional neural networks (CNNs)  

 

Convolutional Neural Networks (CNNs) are a 

specialized category of deep neural networks 

predominantly applied to computer vision tasks, 

designed explicitly to process grid-like topology 

data, such as images [30]. These networks use 

convolutional layers with filters or kernels that 

traverse the input data, producing a feature map 

that emphasizes critical features, making them 

particularly adept at identifying local patterns 

ranging from simple edges to complex image 

structures [31]. A significant component, the 

pooling layer, typically follows the convolutional 

layer, aiming to down-sample the spatial 

dimensions of the data, enhancing the model's 

robustness and reducing computational demands 

[32]. As one progresses more profoundly into a 

CNN, the architecture detects intricate structures, 

with the concluding fully connected layers 

classifying the discerned high-level features into 

categories. Their hierarchical design, enabling 

the adaptive learning of spatial hierarchies from 

input images, has solidified CNNs as a premier 

choice for numerous computer vision 

applications. 

 

3.2.3. Random forest (RF) 

 

  The Random Forest (RF) algorithm efficiently 

amalgamates multiple randomized decision 

trees, producing results by averaging their 

predictions. Particularly powerful when 

variables outnumber observations, each tree 

within the RF is trained on a random data subset. 

Only a randomized subset of features is 

considered at every decision node, mitigating 

overfitting and enhancing generalization [33]. 

RF is a versatile supervised learning method 

suitable for classification and regression, 

building trees on random data samples, and 

finalizing predictions through a majority vote 

[34]. These decision trees recursively partition 

data based on specific criteria until a set stopping 

point, with tree splits determined by preset 

criteria [35]. 
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3.2.4. K-Nearest neighbor (k-NN) 

 

The K-nearest neighbor (KNN) algorithm is a 

supervised learning method predominantly used 

for classification. By measuring the similarity of 

data points to the nearest instances in the training 

set, KNN classifies them based on the most 

frequent class among its "K" neighbors. The 

effectiveness of KNN relies on several 

parameters, such as the choice of "K," distance 

metrics like Euclidean or Manhattan, and the 

normalization of data [36, 37] Introduced by Fix 

and Hodges (1952), the algorithm's 

computational demands increase with larger 

datasets [38]. Normalizing training data is pivotal 

to its accuracy [39]. 

 

3.2.5. Support vector machines (SVM) 

 

The Support Vector Machine (SVM) is a 

powerful supervised machine learning technique 

introduced by Vapnik et al. in 1997, rooted in 

statistical learning theory [40]. Designed for 

classification and regression tasks, SVMs excel 

in diverse applications such as learning, 

clustering, and density estimation. The algorithm 

is exceptionally versatile, addressing both binary 

and multi-class classification problems. The crux 

of SVM lies in identifying support vectors—the 

data points nearest to the class boundaries—and 

maximizing the distance between these vectors 

and the separating hyperplane. While various 

hyperplanes might separate the data, SVM 

chooses the one with the maximum distance from 

both classes, ensuring optimal and robust 

classification [41]. 

 

3.2.6. CatBoostClassifier 

 

The CatBoostClassifier is a gradient-boosting 

algorithm designed to work effectively with 

categorical features. Developed by Yandex, a 

Russian search engine company, it utilizes a 

collection of decision trees to make predictions. 

A standout capability of the CatBoostClassifier is 

its ability to handle categorical features without 

needing one-hot or label encoding. It employs a 

technique called "ordered boosting," which 

considers the order of categories, enhancing the 

algorithm's performance [42]. 

 

 

3.2.7. XGBoost 

 

XGBoost, for eXtreme Gradient Boosting, is a 

widely-used machine learning algorithm suitable 

for regression and classification tasks. It operates 

within a gradient-boosting framework, 

combining multiple weak predictive models, 

typically decision trees, to form a robust 

predictive model. XGBoost differentiates itself 

by building trees using numerous cores and 

organizing data to minimize search times. Such 

efficiency measures reduce model training times, 

improving performance [43, 44].  

 

3.3.  Model performance and evaluation 

 

The TP, TN, FP, and FN Confusion matrix 

metrics provide values for correct or incorrect 

classification of packets in the firewall. These 

values were used to calculate precision, recall, f-

measure, and accuracy metrics as follows [45]: 

 

Precision =      (1) 

 

Recall =      (2) 

 

F-measure =     (3) 

 

Accuracy =     (4) 

 

The Sigmoid and ReLU activation functions used 

in the artificial neural network are calculated as 

follows: 

 

Sigmoid : 𝑓(𝑎) =
1

1+𝑒−𝑎
=

𝑒𝑎

1+𝑒𝑎
    (5) 

 

  

ReLU : (0,a)=0,if a<0; (0,a)=a,if a≥0 (6) 

 

 

Table 2 gives the confusion matrix table. 

 
Table 2 Confusion matrix 

Predict Class 

Actual Class 

 Yes No 

Yes TP FN 

No FP TN 
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3.4. Limitations 

 

This study, while comprehensive in its approach, 

acknowledges several limitations. Our analysis 

primarily relied on the NATICUSdroid dataset, 

which, despite its breadth, might not encapsulate 

the entire Android ecosystem's nuances. The 

range of algorithms employed, from 

conventional techniques like RF and SVM to 

advanced ones like CNN and ANN, leaves out 

potential hybrid models and other sophisticated 

methodologies. Our focus on 86 permissions as 

features might not capture the full spectrum of 

signals beneficial for malware detection, such as 

API calls or code patterns. Furthermore, the rapid 

evolution of malware techniques poses a 

challenge, suggesting that today's effective 

models might struggle with tomorrow's threats. 

Generalizing our promising results, especially 

from the RF model, to real-world scenarios 

requires caution due to the inherent 

unpredictability of malware distribution in live 

environments. The "black box" nature of some 

models, intense learning ones, presents a 

transparency challenge, and a more granular 

comparative analysis among models could 

further enrich our insights. These recognized 

limitations pave the way for future research 

aiming for a more holistic view of malware 

detection. 
 

4. Results 
 

Our extensive analysis of Android permissions 

using various machine-learning algorithms 

observed notable distinctions in performance 

metrics across the models.

 

 
Figure 4. CNN Accuracy and loss of training and validation values 

 

As seen in Figure 4, the 20-epoch CNN results 

show a model with stable performance but signs 

of overfitting. While the training accuracy 

increased slightly from 97.73% to 97.94% and 

the loss decreased, the validation metrics were 

less consistent. Validation loss rose from 0.1161 

to 0.1307, and accuracy hovered in the 96-97% 

range. This divergence between training and 

validation suggests the model is overfitting, 

excelling on training data but not generalizing 

effectively to new data. Implementing dropout 

layers, data augmentation, or regularization 

might be beneficial to improve performance. 

 

 
Figure 5. ANN Accuracy and loss of training and validation values 
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As seen in Figure 5, the results from the 20-epoch 

ANN algorithm display consistent model 

improvement. The training loss began at 0.2052 

and decreased to 0.0824 by the end, while the 

training accuracy rose from 92.70% to 97.34%. 

Validation metrics also showed progress, with 

accuracy starting at 96.20% and finishing at 

97.17%. However, after the 10th epoch, the 

validation metrics slightly oscillated, hinting at 

possible overfitting. The closeness of the training 

and validation metrics suggests good model 

generalization, but future training beyond 20 

epochs should be approached with caution to 

avoid overfitting. Regularization or dropout 

might be considered for enhanced robustness in 

extended training. 

Table 3. Analysis results of the Confusion Matrix 

  CNN ANN RF k-NN SVM CatBoostClassifier XGBoost 

  Predicted 

A
ct

u
a

l 0 2849 95 2879 65 2876 68 2864 80 2800 156 2877 67 2874 70 

1 100 2823 115 2808 100 2823 125 2798 116 2795 101 2822 90 2833 

 

The Confusion Matrix is a diagnostic tool for 

classification models, delineating the nuances of 

their predictive performance. Each algorithm in 

the confusion matrix in Table 3 reveals its 

strengths and potential areas for improvement. 

XGBoost distinctly emerges as the frontrunner, 

delivering a harmonious blend of high true 

positives and one of the lowest false positives, 

underscoring its adeptness at accurately 

distinguishing both classes. Conversely, the 

SVM exhibits a propensity for a higher rate of 

false negatives, indicating occasional oversights 

in identifying positive instances. The k-NN 

algorithm, while proficient, sometimes 

misrepresents negative instances as positive, as 

denoted by its elevated false positive count. 

CatBoostClassifier and RF, both robust, closely 

trail XGBoost's commendable performance. 

Although slightly lagging behind the top trio of 

XGBoost, CatBoostClassifier, and RF, CNN and 

ANN still showcase admirable proficiency. 

Collectively, these results underscore the 

quintessential role of algorithm selection and 

optimization dictated by the dataset's inherent 

characteristics and distribution. 

 

Table 4. Analysis results of the dataset 

 CNN ANN RF k-NN SVM CatBoostClassifier XGBoost 

Accuracy 0.966 0.969 0.971 0.952 0.953 0.971 0.972 

F1 Score 0.966 0.969 0.971 0.961 0.953 0.971 0.972 

Times 98sn 48sn 3sn 17sn 21sn 59sn 3sn 

In the analysis presented in Table 4, seven 

classification algorithms are compared based on 

Accuracy, F1 Score, and running time, revealing 

nuanced insights into their performance. The 

XGBoost model achieves the highest accuracy 

and F1 score at 0.972, closely followed by the 

Random Forest and CatBoostClassifier models at 

0.971. This suggests that ensemble methods, 

particularly those based on decision tree 

ensembles like XGBoost, Random Forest, and 

CatBoost, perform exceptionally well in 

accuracy and maintain a balance between 

precision and recall, as reflected by the F1 scores. 

CNN and ANN also show strong performance 

with accuracy and F1 scores above 0.96, 

indicating their capability to capture complex 

data patterns. However, they require significantly 

more computation time, with CNN being the 

most time-consuming at 98 seconds and ANN at 

48 seconds. This highlights a trade-off between 
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performance and computational efficiency when 

employing deep learning models. 

K-NN and SVM exhibit the lowest accuracy and 

F1 scores among the models, with k-NN at 0.952 

and SVM at 0.953 for accuracy and a slightly 

better F1 score for k-NN at 0.961 than SVM's F1 

score. Despite their lower performance metrics, 

k-NN and SVM are relatively more 

computationally efficient than CNN and ANN 

but less so than RF and XGBoost, which only 

require 3 seconds to compute, making them 

highly efficient choices with superior accuracy. 

In summary, ensemble methods like XGBoost, 

Random Forest, and CatBoostClassifier offer an 

optimal blend of high accuracy, excellent F1 

scores, and computational efficiency. In contrast, 

CNN and ANN, while powerful in model 

performance, demand significantly higher 

computation times, potentially limiting their 

applicability in scenarios where rapid model 

inference is critical. Meanwhile, traditional 

machine learning models like k-NN and SVM 

provide a decent balance between computational 

demand and model performance but do not match 

the superior metrics of ensemble methods. 

Table 5. Previous similar studies and their results 
Ref / Year Dataset Number of features Applied models Results-Accuracy 

[6] / 2021 NATICUSdroid 29,000 benign RF 97% 

[13] / 2023 SFCGDroid 26,939 Android 

software datasets 

 98.22%  

[17] / 2020 Didroid  Deep Learning 93.36% 

[20] / 2023 Drebin 

CICMaldroid2020 

Drebin: 204 features 

CICMaldroid:337 

features 

RF, ET, DNN, 1D-CNN Drebin 1D-CNN and RF 

99.6% 

CICMaldroid DNN 

98.26%, 1D-CNN 98.2% 

[46] / 2014 Drebin 123,453 applications 

and 5,560 malware 

samples 

SVM 94% 

[47] / 2022 CICMaldroid2020 17,341samples semi-supervised DNN 97.7% 

[48] / 2021 CCCS-CIC-

AndMal-2020 

14 malware 

categories and 180 

malware families 

J48, NB, SVM, AB, LR, 

KNN, RF, MLP 

Malware 

Category over 96 %  

Malware Family  

over 99% 

[49] / 2019 TFDroid  SVM 93.7% 

[18] / 2022 MaMaDroid 

MAPAS 

 CNN MAPAS 91.27% 

MaMaDroid 84.99% 

Our Study NATICUSdroid 29332 records of 86 

permissions 

CNN, ANN, RF, k-NN, 

SVM, 

CatBoostClassifier, 

XGBoost 

XGBoost 97.2% 

RF 97.1% 

 

Table 5 reviews studies from 2014 to 2023 on 

malware detection across various datasets. 

Mathur et al. [6] worked on the NATICUSdroid 

dataset with 29,000 benign features, achieving a 

97% accuracy using Random Forest (RF). 

Similarly, Shi et al. [13] reported a 98.22% 

accuracy and 98.20% F1 score from the 

SFCGDroid dataset with 26,939 Android 

software. On the Didroid dataset, Rahali et al. 

[17] used deep learning to reach 93.36% 

accuracy. A multi-model approach was taken by 

Nguyen et al. [20] on two datasets (Drebin and 

CICMaldroid2020), with the highest accuracy 

being 99.6% on Drebin using 1D-CNN and RF. 

Arp et al. [46] also analyzed the Drebin dataset, 

achieving 94% accuracy using SVM. Employing 

a semi-supervised DNN on the 

CICMaldroid2020 dataset, Mahdavifar et al. [47] 

reported a 97.7% accuracy. Fiky et al. [48] 

showcased a broad model application on the 

CCCS-CIC-AndMal-2020 dataset, with results 

surpassing 96% for malware category accuracy 

and over 99% for malware family accuracy. 

CNN models were applied by Kim et al. [18] on 
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the MaMaDroid and MAPAS datasets, obtaining 

accuracies of 84.99% and 91.27%, respectively. 

Lastly, a multi-algorithm study labeled "Our 

Study" was conducted on the NATICUSdroid 

dataset, wherein the RF model yielded an 

accuracy of 97.1%. 

5. Conclusion and Discussion 

 

The landscape of malware detection has 

undergone significant advancements, with 

studies spanning from 2014 to 2023 adopting 

various datasets and leveraging diverse machine 

learning and deep learning algorithms. Our 

comprehensive review of these studies 

showcases the consistent effort toward achieving 

higher accuracy rates and understanding the 

nuances of malware categorization and family 

detection. 

 

Upon comparison, it is evident that Random 

Forest (RF) consistently performed well across 

different datasets, as noted in studies by Mathur 

et al. [6] and our own, registering accuracy rates 

of around 97%. However, Nguyen et al. [20] 

demonstrated that with a suitable dataset and 

model combination, particularly 1D-CNN on the 

Drebin dataset, accuracy could skyrocket to 

99.6%. Such high-accuracy figures emphasize 

the potential of hybrid approaches, blending 

traditional machine-learning techniques with 

deep-learning structures. 

 

However, it is also essential to acknowledge the 

robust results derived from singular models. The 

SVM, as utilized by Arp et al. [46] and Lou et al. 

[49], generated commendable results, 

highlighting the continued relevance of 

foundational machine learning methods amidst 

the surge of deep learning models. Kim et al. [18] 

focus on CNNs underscores the increasing 

reliance on deep learning for complex 

classification tasks, especially given the intricate 

nature of malware detection. 

 

Our study's multi-algorithm approach to the 

NATICUSdroid dataset was insightful, revealing 

each model's strengths and limitations in the 

dataset's context. While XGBoost emerged as the 

top performer, it was enlightening to juxtapose 

its results against algorithms like CNN, ANN, k-

NN, SVM, CatBoostClassifier, and RF. 

 

In conclusion, while the overarching goal across 

studies remains consistent—achieving higher 

accuracy in malware detection—the path to that 

end varies. It is essential to focus on the accuracy 

figures and consider factors like the false-

positive rate, F1 score, and the intricacies of the 

dataset in use. As malware continues to evolve, 

so too must our methodologies, urging a blend of 

both foundational and avant-garde approaches to 

stay ahead in the ever-evolving cyber landscape. 
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