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Abstract— With the advancement of the internet, humanity has gained easy access to a plethora of information. 

However, to access accurate content, numerous texts and sources must be read. These texts often contain repetitive 

words and sentences. The abundance of information renders reading texts in their entirety inefficient in terms of 

time and makes finding suitable content challenging. To overcome these difficulties, various methods have been 

developed in research on automatic summarization. In the literature, there are numerous methods developed for 

different purposes in text summarization. Nevertheless, text summarization can generally be divided into two 

distinct categories: extractive and abstractive summarization. Abstractive algorithms tend to create new sentences 

by learning from the text. However, this approach prolongs the working process due to the learning phase and the 

generated sentences may not possess absolute accuracy. On the other hand, extractive methods, if unable to 

generate new sentences, have the ability to provide faster and completely accurate summaries by selecting 

sentences that already exist in the text. For these reasons, in our study, the aim is to perform text summarization 

using graph theory and the Malatya Centrality Algorithm. The Malatya Centrality Algorithm offers a polynomial 

approach to solving Vertex Cover Problems and is regarded as an effective solution method. It is believed that the 

Malatya Centrality Algorithm will contribute to graph-based text summarization. The implementation has been 

developed using the Python programming language, and the obtained results have been evaluated. 

Keywords: Graph-Based Text Summarization, Malatya Centrality Algorithm, Text Summarization 

 

1. Introduction 

Text summarization is a widely used method to alleviate information overload, present lengthy texts concisely, 

or emphasize the main points of a text. However, traditional text summarization methods can sometimes encounter 

limitations and yield challenging results to obtain accuracy. With the advancement of internet technology, 

humanity has rapidly gained access to an abundance of information sources. Nonetheless, this wealth of 

information has made accessing accurate and relevant content cumbersome, rendering reading texts inefficient in 

terms of time. Frequently recurring words and sentences within texts have posed an obstacle to accessing essential 

information. In order to address this issue and provide an effective text summarization method, research has been 

conducted on automatic summarization, leading to the development of various techniques. 

In text summarization studies, two main approaches are commonly employed: extractive summarization and 

abstractive summarization. In extractive summarization, the primary objective is to identify the most important 

sentences. This involves detecting word repetitions and similar phrases to determine the significance of sentences. 

On the other hand, abstractive summarization involves extracting meaningful new sentences from a given text 

using methods such as deep learning and artificial neural networks. Within the scope of the literature examined in 

this article, numerous studies have been conducted on various methods and algorithms in the field of text 

summarization. Notably, graph-based extractive approaches and machine learning-based abstractive methods have 

garnered attention. For instance, a study highlighted the potential contributions of the Malatya Centrality 

Algorithm in solving Vertex Cover Problems through a polynomial approach and its potential implications for text 

summarization (Yakut S, Oztemiz F, Karci A, 2022). In a study on text summarization, a new approach for single-

document text summarization has been proposed, where texts are represented using graphs, sentences are weighted, 

and the suggested method has shown competitive performance compared to traditional methods (Hark C, Taner 

Uçkan T, Seyyarer E., Karcı A, 2019). In another study on text summarization, a new method has been introduced. 

In this method, it's observed that overlap and repetition can be simultaneously optimized, which significantly 
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enhances the summary quality in terms of ROUGE metrics (Hark C, Taner Uçkan T, Karcı A, 2022). Similarly, 

other researchers have developed different approaches using graph-based ranking algorithms, genetic algorithms, 

deep learning techniques, and other methods for text summarization. 

In this study, the aim is to develop a text summarization method based on graph theory and the Malatya 

Centrality Algorithm. Given the polynomial approach of the Malatya Centrality Algorithm to graph-based 

extractive methods, it is believed to possess the potential to generate faster and more comprehensible sentences. 

The proposed method seeks to expedite the transformation of the text into a summary by identifying crucial nodes 

within the text, aiming for more effective results. This work intends to contribute a novel graph-based extractive 

approach to the field of text summarization, offering a fresh perspective to the literature. The utilization of the 

Malatya Centrality Algorithm accelerates the text summarization process and yields efficient outcomes. The 

algorithm introduces a new approach to solving the Minimum Vertex Cover Problem and has been demonstrated 

to be successful in previous studies. Moreover, it presents a new approach to reevaluating the concept of centrality 

on graphs. 

 

2. Related Studies in the Literature 

The theme of text summarization encompasses a broad scope within the realm of academic literature. In this 

context, certain studies utilize graph-based inference methods, while others opt for interpretive approaches such 

as machine learning. Within the domain of inference-focused methods, we have scrutinized exemplar studies in 

the literature. For instance, Tülek employed stemming algorithms and root and affix analysis to generate 

summaries of Turkish texts, subsequently identifying sentences to be included in the summary (Tülek, M., 2007). 

On the other hand, Khushboo et al. amalgamated graphical ranking algorithms with shortest path algorithms to 

enhance automatic sentence extraction techniques (Khushboo S. Thakkar, R.V. Dharaskar, & M.B. Chandak, 

2010). Erkan and Dragomi, in their study, embraced the LexRank approach, evaluating sentence importance by 

adopting the principle of eigenvector centrality through graphical representation of sentences. This model involves 

constructing a connection matrix based on cosine similarity within the graphical representation of sentences 

(Güneş Erkan, & Dragomir R. Radev, 2004). Moawad and Aref adopted an approach wherein they represented the 

original document using a rich semantic graph to develop a summarization strategy. Herein, the generated graph 

is simplified to create a more concise document (Ibrahim F. Moawad, & Mostafa Aref, 2013). Ferreira et al. 

introduced an innovative graphical model for text processing applications, based on four distinct dimensions: 

similarity, semantic similarity, common references, and discourse information (Rafael Ferreira, Frederico Freitas, 

Luciano de Souza Cabral, Rafael Dueire Lins, Rinaldo Lima, Gabriel França, Steven J. Simskez, & Luciano 

Favaro, 2013). 

Mallick et al. proposed a graph-based text summarization method that captures the essence of a text document. 

This approach, developed by leveraging a modified TextRank calculated based on the PageRank principle tailored 

to each webpage, provides an approximation of the content (Chirantana Mallick, Ajit Kumar Das, Madhurima 

Dutta, Asit Kumar Das, & Apurba Sarkar, 2018). Sankarasubramaniam et al. meticulously examined a novel 

approach by amalgamating Wikipedia with graph-based ranking. This methodology involves utilizing a pre-

constructed two-part sentence-concept graph, and subsequently applying iterative updates to this graph to arrange 

introductory sentences (Yogesh Sankarasubramaniam, Krishnan Ramanathan, & Subhankar Ghosh, 2014). In their 

study, Alguliev and Aliguliyev investigated an unsupervised document summarization method, exploring 

techniques for clustering and extracting sentences from the original document to form a summary. They also 

introduced new criterion functions for sentence clustering as part of their research (Rasim ALGULIEV, & Ramiz 

ALIGULIYEV, 2009). 

The study by Nagwani and Verma demonstrates the design and implementation of a text summarization 

algorithm based on frequent terms in the Java programming language. The developed method consists of three 

main steps. In the initial step, stopwords are eliminated from the document to be summarized, and stemming is 

applied to convert words into their root forms. In the second step, term-frequency data is calculated from the 

document, and frequently used terms are selected; semantically equivalent terms are generated for these selected 

terms. Finally, in the third step, sentences containing frequently occurring and semantically equivalent terms are 

filtered to create the summary (Naresh Kumar Nagwani, & Dr. Shrish Verma, 2011). 

    In Mihalcea's study, a method utilizing graph-based ranking algorithms is presented for automatic sentence 

extraction (Rada Mihalcea, 2004). Akter and fellow researchers have proposed a text summarization method that 

extracts significant sentences from single or multiple Bengali documents. In this approach, input documents 

undergo preprocessing steps such as tokenization and stemming; subsequently, Term Frequency-Inverse 

Document Frequency (TF/IDF) is used to calculate word scores, and the scores of these words are aggregated to 

determine sentence scores. Additionally, the study employs the K-means clustering algorithm (Sumya Akter et al., 

2017). 
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Other studies in the literature also demonstrate that sentiment-based approaches have garnered significant 

interest. Ježek and Steinberger have provided a comprehensive overview of summarization methods, 

encompassing various types from classical techniques to compilation-based and information-rich approaches 

(Karel Ježek, & Josef Steinberger, 2007). Babar and Patil's work focuses on semantic approaches such as Fuzzy 

Logic Inference and Latent Semantic Analysis for text summarization (S.A. Babar, & Pallavi D. Patil, 2015). 

Additionally, Ozsoy et al. have introduced distinct Latent Semantic Analysis (LSA) based summarization 

algorithms, with these proposals originating from the authors of the article as well (Makbule Gulcin Ozsoy, & 

Ferda Nur Alpaslan, 2011). 

Some studies that employ techniques like machine learning and deep learning have also been examined. 

Erhandı conducted a summarization study on Turkish and English texts using the deep learning approach (Erhandı 

B., 2020). Neto et al. presented a summarization process for text using trainable machine learning algorithms, 

which utilize features extracted directly from the original text (Joel Larocca Neto, Alex A. Freitas, & Celso A. A. 

Kaestner, 2003). Silla et al. tackled text summarization as a classification problem and developed an automatic 

summarization method. In this approach, summaries for documents were generated based on attributes that define 

the documents. The aim of the study is to investigate the effectiveness of Genetic Algorithm-based feature selection 

in improving the performance of classification algorithms (Carlos N. Silla Jr., Gisele L. Pappa, Alex A. Freitas, & 

Celso A. A. Kaestner, 2004). 

Several studies developed using genetic algorithms have been discussed. In the study by Kaynar, a genetic 

algorithm was employed for sentence-based summarization from text. The genetic algorithm was utilized to train 

the system using datasets (O. Kaynar, Y. E. IŞIK, Y. GÖRMEZ, & F. DEMİRKOPARAN, 2017). Al-Abdallah 

and Al-Taani proposed the Particle Swarm Optimization (PSO) algorithm for Arabic document summarization in 

their research. The PSO approach was compared with Evolutionary Algorithms (EA) and Harmony Search (HS) 

methods (R. Z. Al-Abdallah, & A. T. Al-Taani, 2017). Jain and his team suggested the use of Real-Coded Genetic 

Algorithm (RCGA) on health text data from the Kaggle dataset to develop an Automatic Text Summarization 

(ATS) methodology for Hindi. The proposed methodology encompasses preprocessing, feature extraction, 

processing, sentence ordering, and summary generation steps (A. Jain, A. Arora, J. Morato, D. Yadav, & K. V. 

Kumar, 2022). 

 

3. Proposed Method 

In extractive text summarization, graph-based methods are commonly employed, aiming to identify the most 

influential nodes within the graph. Various algorithms are utilized to find these influential nodes. Some of these 

algorithms include the PageRank algorithm, Closeness algorithm, and Eigen algorithm. In this study, however, the 

Malatya Centrality Algorithm is utilized to determine the most influential nodes. The Malatya Centrality Algorithm 

presents a polynomial remedy for addressing the Vertex Cover Dilemma, encompassing a duo of discrete phases: 

computing the Malatya centrality score and cherry-picking the pertinent nodes. The Malatya centrality score for 

every distinct node within the graph is established by the cumulative fusion of proportions, particularly the 

proportion of the node's degree to the collective sum of degrees among its adjacent nodes. The subsequent stage 

necessitates resolving a quandary concerning the selection of nodes, aiming to craft a vertex enclosure (Yakut S, 

Oztemiz F, Karci A, 2022). 

   In this study, text summarization was carried out using an approach based on the Malatya algorithm. The 

flowchart of the proposed method is presented in Figure 3.1. The pseudocode associated with this approach is 

provided in Algorithm 1. In the proposed method, the input text data is transformed into a graph format. Using the 

Malatya algorithm, the centrality values of nodes in this graph structure are determined. The nodes with the highest 

values are selected, and nodes are chosen in a way that maximizes coverage within the graph. These identified 

nodes constitute the nodes responsible for the summarization process of the input text. By selecting these nodes, 

sentences that can represent the input text are chosen. In this algorithm, the number of nodes capable of 

representing the text is determined based on the input text. 

In Figure 3.1, the flowchart of the algorithm illustrates the process of determining the stop words in the text to 

be summarized. Subsequently, these stop words are extracted and transferred to the graph. After each sentence is 

transferred to the graph, the Malatya Centrality algorithm is applied to the nodes of the graph to select the most 

influential node. In each step, the most influential node is removed from the graph, and the process is repeated to 

find the most influential node in the new graph. Finally, these most influential nodes are combined to create the 

summarized text. The detailed operation of this new method and the utilization of the Malatya Centrality Algorithm 

in text summarization can be observed in the flowchart. 
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Figure 3.1. Flowchart of the Proposed Method 
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Proposed Algorithm Pseudocode 

1. function CalculateMalatyaCentrality(graph): 

2.     vertexList = GetNodes(graph)  // Store nodes of the graph in an array 

3.     centralityValues = []  // Initialize an empty list to store centrality values 

4.     for each vertex in vertexList: 

5.         vDegree = GetDegree(graph, vertex)  

6.         adjacentDegree = 0  // Sum of degrees of neighbors of the current vertex 

7.         for each neighbor in GetNeighbors(graph, vertex): 

8.             adjacentDegree = adjacentDegree + GetDegree(graph, neighbor) 

9.         if adjacentDegree ≠ 0:  // If the sum of neighbor degrees is not zero 

10.             value = vDegree / adjacentDegree  // Calculate the centrality value 

11.         else:  // If the sum of neighbor degrees is zero 

12.             value = 0 

13.         Add value to centralityValues 

14.     return centralityValues 

15. function FindMaxMalatyaCentralityValue(graph): 

16.     centralityValues = CalculateMalatyaCentrality(graph) 

17.     maxIndex = FindMaxIndex(centralityValues)  // Find the index of the maximum value 

18.     maxVertex = GetNodeAtIndex(graph, maxIndex)  // Find the vertex associated 

19.     RemoveNode(graph, maxVertex)  // Remove the vertex with the highest centrality value 

20.     return maxVertex, GetEdgeCount(graph) 

21. function FindMinVertexCover(graph): 

22.     while GetEdgeCount(graph) ≠ 0:  // Repeat until there are no uncovered 

edges 

23.         maxVertex, edgeCount = FindMaxMalatyaCentralityValue(graph) 

24.     return maxVertex, edgeCount 

25. function ReadText(url): 

26.     return text 

27. function CreateGraph(sentences, wordOccurrences): 

28.     stopWords = GetStopwords()  // Get a list of common stopwords 

29.     G = CreateEmptyGraph()  // Create an empty graph 

30.     for each sentence in sentences: 

31.         AddNode(G, sentence)  // Add a node for each sentence 

32.         for each word, occurrenceCount in wordOccurrences: 

33.             if WordExistsIn(sentence, word) and WordNotInStopwords(word): 

34.                 AddEdge(G, sentence, word, weight=occurrenceCount) 

35.     return G 

36. function CalculateRouge(reference, summary): 

37.     return  CalculateRougeMetrics(summary, reference) 

38. function Main(): 

39.     text = ReadText()  // Read the text 

40.     sentences = SplitSentences(text)  // Split the text into sentences 

41.     wordOccurrences = CountWordOccurrences(text)  // Count occurrences of words 

42.     G = CreateGraph(sentences, wordOccurrences)  // Create the graph 

43.     minCover, edgeCount = FindMinVertexCover(G)  // Find the minimum vertex cover 

44.     mostEffectiveSentences = GetSentenceByIndex(sentences, minCover) 

45.     Print mostEffectiveSentences 

46.     referenceText = "Sample Reference Text"  // Reference text for comparison 

47.     scores = CalculateRouge(referenceText, mostEffectiveSentence) 

48.     Print scores 

 

 

4. Experimental Results 

In extractive text summarization, graph-based methods are commonly employed. The primary objective of 

these methods is to identify the most influential nodes within the graph. Various algorithms are used to identify 

these influential nodes. In this study, the Malatya Centrality Algorithm will be utilized to determine the most 
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effective nodes. The Malatya Centrality algorithm offers a polynomial approach to solving the Vertex Cover 

Problem. This approach consists of two steps: the calculation of the Malatya centrality value and the selection of 

covering nodes. The Malatya centrality value of each node within the graph is computed as the summation of 

ratios, specifically the ratio of the node's degree to the sum of degrees among its neighboring nodes. The second 

step involves addressing a node selection problem for the purpose of constructing a vertex cover. 

To carry out this study, text summarization was performed using the Python programming language. The study 

allows text summarization both from files and web pages through URL input. For instance, when a portion of the 

text from the article "A New Approach Based on Centrality Value in Solving the Minimum Vertex Cover Problem" 

(Yakut S, Oztemiz F, Karci A, 2022) was tested, the text was processed as follows: A node was created for each 

sentence within the text, as illustrated in the diagram at each step. Subsequently, the words were added as edges 

to these nodes, and common words were identified as depicted in the graph. 

 

 

Figure 4.1. Graph Structure in the First Sentence 

 

Figure 4.1 illustrates the addition of the first sentence to the graph, with each word being added as a node 

labeled as "0". 

 

 

Figure 4.2. Depicts the graph structure after the addition of the second sentence 
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In Figure 4.2, upon adding the second sentence to the graph, the shared nodes in the first sentence are identified 

and included. This process reveals the relationship between the sentences. 

 

 

Figure 4.3. Graph Structure after Adding the 3rd Sentence 

 

 

Figure 4.4. Graph Structure after Adding the 6th Sentence 

 

In Figure 4.4, as we reach the 6th sentence in the graph, we can observe a further increase in the relationships 

between sentences. As we proceed, more common words will emerge, enabling us to select the most effective 

sentences from within the text.a 
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 The same example text was tested with other algorithms used in text summarization. The compared algorithms 

to the proposed method are TextRank, LexRank, and PageRank algorithms. The Rouge scores of the results 

obtained from these algorithms were compared with the results generated from the proposed method. The 

comparisons were conducted based on Rouge-1 metric in Table-1, Rouge-2 metric in Table-2, and Rouge-l metric 

in Table-3. 

 Rouge-1 assesses the similarity of snippets of one-word length between the summarized text and the reference 

text. These scores measure the similarity at the word level. Rouge-2 measures the similarity of snippets with two-

word length. Rouge-l utilizes a Longest Common Subsequence (LCS) based similarity measure, gauging the 

similarity of the longest shared subsequence between all summary and reference texts. 

 

Table 1. Comparison of the Proposed Method with TextRank, LexRank, and PageRank Algorithms for Text 

Summarization based on ROUGE-1 Metric 

Summarization 

Methods 

Rouge-1 

Sensitivity Precision Ratio F-Score 

TextRank 0.32374 0.51724 0.39823 

LexRank 0.39568 0.44354 0.41825 

PageRank 0.28057 0.43333 0.34061 

Proposed Method 0.46762 0.38690 0.42345 

 

Table 2. Comparison of the Proposed Method with TextRank, LexRank, and PageRank Algorithms in Text 

Summarization based on ROUGE-2 Metric 

Summarization 

Methods 

Rouge-2 

Sensitivity Precision Ratio F-Score 

TextRank 0.11372 0.21323 0.14833 

LexRank 0.09803 0.12886 0.11135 

PageRank 0.07843 0.16129 0.10554 

Proposed Method 0.14117 0.14173 0.14145 

 

Table 3. Comparison of the Proposed Method with TextRank, LexRank, and PageRank Algorithms in Text 

Summarization based on ROUGE-L Metric 

Summarization 

Methods 

Rouge-l 

Sensitivity Precision Ratio F-Score 

TextRank 0.30215 0.51724 0.39823 

LexRank 0.31654 0.44354 0.41825 

PageRank 0.26618 0.43333 0.34061 
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Proposed Method 0.41726 0.34523 0.37785 

 

 

Figure 4.5. Comparison of F-Score Values Based on ROUGE Metricse 

 

5. Conclusion 

This proposed novel approach has been realized through the implementation of the graph-based extraction 

method known as the Malatya Centrality Algorithm. Due to its graph-based nature, it has the potential to generate 

sentences that are faster and more comprehensible compared to abstractive summaries. The Malatya Centrality 

Algorithm is renowned for its polynomial approach to solving vertex cover problems in graphs. Therefore, utilizing 

the Malatya Centrality Algorithm in graph-based methods for text summarization could contribute to achieving 

more effective results. This new method possesses the ability to infer during the summarization process. The graph-

based approach expedites the transformation of the text into a summary by identifying significant nodes within the 

text. The polynomial nature of the Malatya Centrality Algorithm is optimized for graph analysis, implying that 

more effective results can be achieved during inference. 

This study introduces a new perspective in the field of text summarization. Graph-based extraction methods 

hold the potential to generate effective and comprehensible summaries even with large datasets. As a result of this 

study, it is evident that the employed method offers faster and more comprehensible outputs during the text 

summarization process. The algorithm functions swiftly even with lengthy texts, identifying the most impactful 

nodes within the text to generate the summary. Furthermore, there is a focus on enhancing sentence-to-sentence 

semantic coherence by further refining the summarization methods and algorithms. This novel approach could 

later be hosted on servers, allowing numerous users to access and generate summaries from texts via the internet. 
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