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Abstract
Solving some systems of operator equations, new kinds of generalized inverses are intro-
duced. Since these new inverses can be expressed by inner and gMP inverses, they are
called inner-gMP and gMP-inner inverses. In this way, the concepts of gMP, 1MP and
MP1 inverses are generalized. Various representations and characterizations of inner-gMP
and gMP-inner inverses are presented. Using the inner and *gMP inverse, we define the
inner-*gMP and *gMP-inner inverses which are new extensions of 1MP, MP1 and *gMP
inverses. We apply inner-gMP and gMP-inner inverses as well as inner-*gMP and *gMP-
inner inverses to solve several kinds of linear equations. Consequently, we obtain solvability
of the normal equation which is connected to the least-squares solution. Numerical exam-
ples are given to illustrate our results.
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1. Introduction
Let B(H, K) be the set of all bounded linear operators from H to K, where H and K

are arbitrary Hilbert spaces. If H = K, the notation B(H) = B(H, H) will be used. The
symbols A∗, R(A), N(A) and σ(A) represent the adjoint, the range, the null space and the
spectrum of A ∈ B(H, K), respectively. An operator P ∈ B(H) is a projector if P 2 = P ,
and it is the orthogonal projector if P 2 = P = P ∗.

Recall that A ∈ B(H) is generalized Drazin invertible [10], if there is X ∈ B(H) such
that

XAX = X, AX = XA, A − A2X is quasinilpotent,
where Q ∈ B(H) is quasinilpotent if σ(Q) = {0}. If the generalized Drazin inverse X of A
exists, it is unique and denoted by Ad [10]. Note that Ad exists if and only if 0 /∈ acc σ(A),
where acc σ(A) is the set of all accumulation points of σ(A). The symbol B(H)d denotes
the set of all generalized Drazin invertible operators of B(H).

In the case that A − A2X is nilpotent (or equivalently Ak+1X = Ak, for some non-
negative integer k) in the definition of the generalized Drazin inverse, then AD = Ad is
the Drazin inverse of A. The symbol ind(A) denotes the index of A, i.e. the smallest
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non-negative integer k such that Ak+1X = Ak holds. If ind(A) ≤ 1, A# = AD is the
group inverse of A. The sets of all Drazin invertible and group invertible operators of
B(H) are denoted by B(H)D and B(H)#, respectively. Recent results about expressions
for the Drazin inverse can be found in [19,20].

An operator X ∈ B(K, H) is the Moore–Penrose inverse of A ∈ B(H, K) [3] if

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore–Penrose inverse of A is unique (if it exists) and denoted by A†. If AXA = A is
satisfied, X is an inner inverse (or {1}-inverse) of A and the operator A is regular. Notice
that the Moore–Penrose inverse of A exists if and only if A is regular if and only if R(A) is
closed in K. The set of all inner inverses of A will be denoted by A{1}. We use the following
notations: A{1, 3} = {X ∈ A{1} : (AX)∗ = AX}, B(H)d,− = {A ∈ B(H)d : A is regular}
and B(H)D,− = {A ∈ B(H)D : A is regular}.

Let us recall that X ∈ B(K, H) is an outer inverse (or {2}-inverse) of A ∈ B(H, K) if
XAX = X ̸= 0. The outer inverse X of A with R(X) = T and N(A) = S, where T and
S are subspaces of H and K, respectively, is unique (if it exists) and denoted by A

(2)
T,S

[3]. When A
(2)
T,S satisfies AA

(2)
T,SA = A, it will be denoted by A

(1,2)
T,S . The operator A

(2)
T,S

(or A
(1,2)
T,S ) such that (A(2)

T,SA)∗ = A
(2)
T,SA (or (A(1,2)

T,S A)∗ = A
(1,2)
T,S A) is marked by A

(2,4)
T,S (or

A
(1,2,4)
T,S ).
The notion of the core–EP inverse firstly defined in [12] for a square matrix, was gen-

eralized in [14, 15] for a generalized Drazin invertible operator on a Hilbert space. Let
A ∈ B(H)d. There is a core–EP inverse X ∈ B(H) of A for which

XAX = X, R(X) = R(X∗) = R(Ad).

As the dual core–EP inverse, there exists a *core–EP inverse X ∈ B(H) of A satisfing

XAX = X, R(X) = R(X∗) = R((Ad)∗).

The core–EP (or *core–EP) inverse of A is unique and denoted by A d⃝ (A d⃝) [14, 15].
Recall that, by [15, Theorem 6.1], A d⃝ satisfies

A d⃝AA d⃝ = A d⃝, (AA d⃝)∗ = AA d⃝, A d⃝AAd = Ad and A d⃝ = AdAA d⃝.

Especially, if A ∈ B(H)D and k = ind(A), according to [7], A d⃝ = AD⃝ = ADAk(Ak)†

and A d⃝ = AD⃝ = (Ak)†AkAD. Consequently, for A ∈ B(H)#, the core–EP (or *core–
EP) inverse of A coincides with the core (or dual core) inverse A#⃝ = A#AA† (or A#⃝ =
A†AA#) [1]. Significant results about the core and core–EP inverse are established in
[2, 5, 6, 9, 11,21–23].

The above mentioned generalized inverses are significant in various applications: the
Drazin inverse gives the solution of a singular linear control system; the group inverse has
applications in Markov chain theory; the Moore-Penrose inverse is applied to solve the
least-squares problem; the core–EP inverse is used to solve some approximation problems
[3, 16].

To extend the concept of the Moore-Penrose inverse from an operator with closed range
to a generalized Drazin invertible operator, the generalized Moore-Penrose inverse was
introduced in [18] as a new generalized inverse. For A ∈ B(H)d, the generalized Moore–
Penorse (or gMP) inverse of A is defined as unique solution to the system

XAX = X, AX = A(A d⃝A)†A d⃝ and XA = (A d⃝A)†A d⃝A.

The gMP inverse of A is denoted by A⋄ and it is expressed as

A⋄ = (A d⃝A)†A d⃝.
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Dually, the dual gMP (or *gMP) inverse of A [18] is represented by

A⋄ = A d⃝(AA d⃝)†.

When A ∈ B(H)#, the gMP inverse A⋄ and the *gMP inverse A⋄ reduce to the Moore–
Penrose inverse A† [18]. Interesting properties of the gMP inverse can be found in [4,18].

As a new type of generalized inverses, the 1MP inverse was presented recently in [8] for
a rectangular complex matrix, based on the Moore–Penrose and inner inverses. We give
the definition of the 1MP inverse for a regular operator A ∈ B(H): if A− ∈ A{1}, a 1MP
inverse of A is introduced in [8] as

A−,† = A−AA†.

Also, a MP1 inverse of A is defined as
A†,− = A†AA−.

Interesting results about 1MP and MP1 inverses, which are used in studying partial orders,
were proposed in [8] for rectangular complex matrices and in [13,17] for elements of a ring
with involution.

Motivated by the fact that the gMP and *gMP inverses are generalizations of the
Moore–Penrose inverse and by the recent researches about the 1MP and MP1 inverses,
we further continue to study these topics and connect them. In particular, our intention
is to introduce new generalized inverses for a bounded linear generalized Drazin invertible
regular operator on a Hilbert space. Firstly, we use the gMP inverse instead of the Moore–
Penrose inverse in the definitions of the 1MP and MP1 inverses and present the inner-gMP
and gMP-inner inverses. The names of these inverses origin from the fact that we define
them using the inner and gMP inverses. We will observe that 1MP, MP1 and gMP
inverses are special cases of the inner-gMP and gMP-inner inverses and so we propose
wider classes of generalized inverses. Some properties and characterizations of inner-gMP
and gMP-inner inverses are shown. Since operator matrix forms find their use in various
different fields, such as solving some linear equations, numerical computations involving
matrix inversion etc., operator matrix forms of inner-gMP and gMP-inner inverses are
computed. Utilizing the *gMP inverse, we also define the inner-*gMP and *gMP-inner
inverses which are new extensions of 1MP, MP1 and *gMP inverses. Applying inner-
gMP and gMP-inner inverses as well as inner-*gMP and *gMP-inner inverses, we obtain
solvability of several kinds of linear equations. As a consequence of our result, we get
solvability of the normal equation which is connected to the least–squares solution. We
also give numerical examples to illustrate our results.

The content of this paper is organized as follows. Section 2 contains definitions, prop-
erties and characterizations of inner-gMP and gMP-inner inverses. Section 3 is devoted to
inner-*gMP and *gMP-inner inverses. Applications of inner-gMP and gMP-inner inverses
in solving some linear equations are given in Section 4. Section 5 involves linear equations
which are solved in terms of inner-*gMP and *gMP-inner inverses.

2. Inner-gMP and gMP-inner inverses
To extend the concepts of 1MP and MP1 inverses, we define new kinds of generalized

inverses based on the inner and gMP inverses.

Theorem 2.1. For A ∈ B(H)d,− and an arbitrary but fixed A− ∈ A{1}, we have
(a) X = A−AA⋄ represents the unique solution to the system

XAX = X, AX = AA⋄ and XA = A−AA⋄A; (2.1)
(b) X = A⋄AA− represents the unique solution to the system

XAX = X, AX = AA⋄AA− and XA = A⋄A.
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Proof. (a) Let X = A−AA⋄. Then AX = (AA−A)A⋄ = AA⋄, XA = A−AA⋄A and

X(AX) = (XA)A⋄ = A−A(A⋄AA⋄) = A−AA⋄ = X.

Hence, the system (2.1) has a solution X = A−AA⋄.
If X is a solution to (2.1), then

X = (XA)X = A−AA⋄(AX) = A−A(A⋄AA⋄) = A−AA⋄.

Thus, X = A−AA⋄ is the unique solution to (2.1).
(b) As part (a), we can show this part too. □

Definition 2.2. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed.
(a) The inner-gMP inverse of A is defined by

A−,⋄ = A−AA⋄.

(b) The gMP-inner inverse of A is defined by

A⋄,− = A⋄AA−.

Several particular cases of inner-gMP and gMP-inner inverses are given:
- if A ∈ B(H)#, we know that A⋄ = A† and thus A−,⋄ = A−AA† = A−,† and

A⋄,− = A†AA− = A†,−, that is, inner-gMP and gMP-inner inverses become 1MP
and MP1 inverses, respectively;

- for A− = A†, notice that

A−,⋄ = A†AA⋄ = A†A(A d⃝A)†A d⃝ = A†A(A d⃝A)†A d⃝AA d⃝

= ((A d⃝A)†A d⃝AA†A)∗A d⃝ = ((A d⃝A)†A d⃝A)∗A d⃝

= (A d⃝A)†A d⃝AA d⃝ = (A d⃝A)†A d⃝

= A⋄,

i.e. the inner-gMP inverse reduces to the gMP inverse.
By the definition of the gMP inverse and [18, Corollary 1], we get the next representa-

tions of inner-gMP and gMP-inner inverses.

Corollary 2.3. For A ∈ B(H)d,− and an arbitrary but fixed A− ∈ A{1}, we have

A−,⋄ = A−AA⋄ = A−A(A d⃝A)†A d⃝ = A−A(AA d⃝A)†

and
A⋄,− = A⋄AA− = (A d⃝A)†A d⃝AA− = (AA d⃝A)†AA−.

If A ∈ B(H)D,− in Corollary 2.3, notice, by [18, Corollary 2], that A−,⋄ = A−A(Ak(Ak)†A)†

and A⋄,− = (Ak(Ak)†A)†AA−, where ind(A) = k.

Example 2.4. Let A be a 3 × 3 complex matrix given by

A =

 3 1 0
0 0 0
0 0 0

 .

Then

A d⃝ =

 1
3 0 0
0 0 0
0 0 0

 , A⋄ =

 3
10 0 0
1
10 0 0
0 0 0

 ,

A† =

 3
10 0 0
1
10 0 0
0 1 0

 and A− =

 a d c
1 − 3a −3d c1

0 1 c2

 ,
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where a, d, c, c1, c2 ∈ C are arbitrary. Notice that

A−,⋄ = A−AA⋄ =

 a 0 0
1 − 3a 0 0

0 0 0

 , A⋄,− = A⋄AA− =

 3
10 0 9c+3c1

101
10 0 c2

10
0 0 0

 ,

A−,† = A−AA† =

 a d 0
1 − 3a −3d 0

0 1 0

 and A†,− = A†AA− =

 3
10 0 9c+3c1

101
10 0 3c+c1

10
0 1 c2

 .

Comparing A−,⋄ and A⋄,− with already known generalized inverses: A d⃝, A⋄, A†, A−, A−,†

and A†,−, we see that they are different and so inner-gMP and gMP-inner inverses present
new types of generalized inverses.

Necessary and sufficient conditions for an operator to be the inner-gMP inverse, are
studied now.

Theorem 2.5. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and X ∈ B(H), the
following statements are equivalent:

(i) X = A−,⋄;
(ii) XAX = X, AXA = AA⋄A, AX = AA⋄ and XA = A−AA⋄A;
(iii) XA = A−AA⋄A and XAA⋄ = X;
(iv) XA = A−AA⋄A and XAA d⃝ = X;
(v) XAA† = A−AA⋄AA† and XAA d⃝ = X;
(vi) XAA∗ = A−AA⋄AA∗ and XAA d⃝ = X;
(vii) AX = AA⋄ and A−AA⋄AX = X;
(viii) AX = AA⋄ and A−AX = X;
(ix) A†AX = A⋄(= A†AA⋄) and A−AX = X;
(x) A∗AX = A∗AA⋄ and A−AX = X;
(xi) XAA⋄AX = X, AA⋄AXAA⋄A = AA⋄A, AA⋄AX = AA⋄ and XAA⋄A = A−AA⋄A;
(xii) XAA⋄AX = X, AA⋄AX = AA⋄ and XAA⋄A = A−AA⋄A.

Proof. (i) ⇒ (ii): This implication follows by Theorem 2.1.
(ii) ⇒ (iii): The conditions XAX = X and AX = AA⋄ yield X = X(AX) = XAA⋄.
(iii) ⇒ (iv): Using XAA⋄ = X, we obtain

X = XAA⋄ = XA(A d⃝A)†A d⃝ = (XA(A d⃝A)†A d⃝)AA d⃝ = XAA d⃝.

(iv) ⇒ (i): The assumptions XA = A−AA⋄A and XAA d⃝ = X imply

X = (XA)A d⃝ = A−AA⋄AA d⃝ = A−A(A d⃝A)†A d⃝AA d⃝ = A−AA⋄.

The rest can be verified in the analogy manner. □
The following characterizations of the gMP-inner inverse can be proved as Theorem 2.5.

Theorem 2.6. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and X ∈ B(H), the
following statements are equivalent:

(i) X = A⋄,−;
(ii) XAX = X, AXA = AA⋄A, AX = AA⋄AA− and XA = A⋄A;
(iii) AX = AA⋄AA− and A⋄AX = X;
(iv) AX = AA⋄AA− and (A d⃝A)†A d⃝AX = X;
(v) A†AX = A†AA⋄AA− and A⋄AX = X;
(vi) A∗AX = A∗AA⋄AA− and A⋄AX = X;
(vii) XA = A⋄A and X = XAA⋄AA−;
(viii) XA = A⋄A and XAA− = X;
(ix) XAA† = A⋄(= A⋄AA†) and XAA− = X;
(x) XAA∗ = A⋄AA∗ and XAA− = X;
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(xi) XAA⋄AX = X, AA⋄AXAA⋄A = AA⋄A, AA⋄AX = AA⋄AA− and XAA⋄A =
A⋄A;

(xii) XAA⋄AX = X, AA⋄AX = AA⋄AA− and XAA⋄A = A⋄A.

Remark that, replacing A⋄ with one of its representations (A d⃝A)†A d⃝ or (AA d⃝A)†, we
can obtain more characterizations of A−,⋄ or A⋄,−.

Lemma 2.7. If A ∈ B(H)d,− and A− ∈ A{1} is arbitrary but fixed, then
(i) AA−,⋄ is a projection onto R(A(A d⃝A)∗) along N(A d⃝);
(ii) A−,⋄A is a projection onto R(A−A(A d⃝A)∗) along N(A d⃝A);
(iii) A−,⋄ = A

(2)
R(A−A(A d⃝A)∗),N(A d⃝) = (AA⋄A)(1,2)

R(A−A(A d⃝A)∗),N(A d⃝);
(iv) AA⋄,− is a projection onto R(A(A d⃝A)∗) along N(A d⃝AA−);
(v) A⋄,−A = (A d⃝A)†A d⃝A is the orthogonal projection onto R((A d⃝A)∗);
(vi) A⋄,− = A

(2,4)
R((A d⃝A)∗),N(A d⃝AA−) = (AA⋄A)(1,2,4)

R((A d⃝A)∗),N(A d⃝AA−).

Proof. (i) By Theorem 2.7, we conclude that AA−,⋄ is a projector. Since AA−,⋄ = AA⋄ =
A(A d⃝A)†A d⃝, we have R(AA−,⋄) = R(A(A d⃝A)†) = R(A(A d⃝A)∗) and

N(AA−,⋄) = N(A(A d⃝A)†A d⃝AA d⃝) ⊆ N(A d⃝A(A d⃝A)†A d⃝AA d⃝) = N(A d⃝) ⊆ N(AA−,⋄).

Hence, N(AA−,⋄) = N(A d⃝).
(ii) The equality A−,⋄A = A−AA⋄A = A−A(A d⃝A)†A d⃝A yields A−,⋄A is a projection

onto R(A−,⋄A) = R(A−A(A d⃝A)∗) along N(A−,⋄A) = N(A d⃝A) by

N(A−,⋄A) ⊆ N(A d⃝AA−A(A d⃝A)†A d⃝A) = N(A d⃝A) ⊆ N(A−,⋄A).

(iii) This part is clear by R(A−,⋄A) = R(A−,⋄) and N(AA−,⋄) = N(A−,⋄).
The proof can be finished similarly. □

The orthogonal projector onto a closed subspace V will be marked by PV , and, for
closed subspaces V and U of H satisfying H = V ⊕ U , a projector onto the subspace V
along U will be denoted by PV,U . Inner-gMP and gMP-inner inverses can be considered
as solutions of the following restricted equations.

Theorem 2.8. If A ∈ B(H)d,− and A− ∈ A{1} is arbitrary but fixed, then
(i) A−,⋄ is uniquely determined solution to

AX = PR(A(A d⃝A)∗),N(A d⃝) and R(X) ⊆ R(A−A); (2.2)

(ii) A⋄,− is uniquely determined solution to

AX = PR(A(A d⃝A)∗),N(A d⃝AA−) and R(X) ⊆ R((A d⃝A)∗).

Proof. (i) Remark that A−,⋄ is a solution to (2.2) by Lemma 2.7.
In the case that (2.2) has two solutions Y and X, by A(Y − X) = 0 and R(Y − X) ⊆

R(A−A), it follows R(Y − X) ⊆ N(A−A) ∩ R(A−A) = {0}. So, Y = X implies that (2.2)
has the unique solution A−,⋄.

The part (ii) can be checked in an analogous way. □

Theorem 2.9. If A ∈ B(H)d,− and A− ∈ A{1} is arbitrary but fixed, then
(i) A−,⋄ is uniquely determined solution to

XA = PR(A−A(A d⃝A)∗),N(A d⃝A) and R(X∗) ⊆ R((A d⃝)∗); (2.3)

(ii) A⋄,− is uniquely determined solution to

XA = PR((A d⃝A)∗) and R(X∗) ⊆ R((AA−)∗).
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Proof. (i) We see, by Lemma 2.7, that (2.3) has a solution A−,⋄.
For two solutions Y and X of (2.2), note that A∗(Y ∗ − X∗) = 0 and R(Y ∗ − X∗) ⊆

R((A d⃝)∗) imply R(Y ∗ − X∗) ⊆ N(A∗) ∩ R((A d⃝)∗) ⊆ N((A d⃝)∗A∗) ∩ R((A d⃝)∗A∗) = {0}.
Therefore, Y = X = A−,⋄ is the uniquely determined solution to (2.3).

Similarly, we prove part (ii). □
As we know A−,⋄ and A⋄,− are outer inverses of A, but it is interesting to study equiv-

alent conditions for A−,⋄ (or A⋄,−) to be an inner inverse of A.

Theorem 2.10. For A ∈ B(H)d,− and an arbitrary but fixed A− ∈ A{1}, the following
statements are equivalent:

(i) A = AA−,⋄A;
(ii) A = AA⋄A;
(iii) A = AA⋄,−A;
(iv) N(A⋄A) = N(A) (or equivalently N(A d⃝A) = N(A));
(v) R(A) = R(AA⋄) (or equivalently R(A) = R(A(A d⃝A)∗).

Proof. (i) ⇔ (ii) ⇔ (iii): These equivalences follow by AA−,⋄A = AA⋄A = AA⋄,−A.
(ii) ⇔ (iv): It is clear by [18, Theorem 3] and N(A) ⊆ N(A⋄A) = N(A d⃝A).
(ii) ⇔ (v): We have

A = AA⋄A ⇔ (I − AA⋄)A = 0
⇔ R(A) ⊆ N(I − AA⋄)
⇔ R(A) ⊆ R(AA⋄)
⇔ R(A) = R(AA⋄).

□
We can represent A ∈ B(H)d with respect to the orthogonal sum H = R(Ad)⊕N((Ad)∗)

as [14, Lemma 2.1 and Corollary 2.2]:

A =
[

A1 A2
0 A3

]
:

[
R(Ad)

N((Ad)∗)

]
→

[
R(Ad)

N((Ad)∗)

]
, (2.4)

where A1 ∈ B(R(Ad)) is invertible and A3 ∈ B[N((Ad)∗)] is quasinilpotent. The operator
matrix forms for the inner-gMP and gMP-inner inverses are developed now.

Theorem 2.11. If A ∈ B(H)d,− is expressed by (2.4) and A− ∈ A{1} is arbitrary but
fixed, then

A−,⋄ =
[

A−1
1 (I − A2Y3) + Y2A3A∗

2(A1A∗
1 + A2A∗

2)−1 0
Y3 + Y4A3A∗

2(A1A∗
1 + A2A∗

2)−1 0

]
:[

R(Ad)
N((Ad)∗)

]
→

[
R(Ad)

N((Ad)∗)

]
(2.5)

and
A⋄,− =

[
A∗

1(A1A∗
1 + A2A∗

2)−1 A∗
1(A1A∗

1 + A2A∗
2)−1(A1Y2 + A2Y4)

A∗
2(A1A∗

1 + A2A∗
2)−1 A∗

2(A1A∗
1 + A2A∗

2)−1(A1Y2 + A2Y4)

]
:[

R(Ad)
N((Ad)∗)

]
→

[
R(Ad)

N((Ad)∗)

]
,

where (A1Y2 + A2Y4)A3 = 0, A3Y3 = 0 and A3Y4A3 = A3.

Proof. According to [18, Theorem 5], we have

A⋄ =
[

A∗
1(A1A∗

1 + A2A∗
2)−1 0

A∗
2(A1A∗

1 + A2A∗
2)−1 0

]
:

[
R(Ad)

N((Ad)∗)

]
→

[
R(Ad)

N((Ad)∗)

]
. (2.6)
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Note that

A− =
[

A−1
1 (I − A2Y3) Y2

Y3 Y4

]
:

[
R(Ad)

N((Ad)∗)

]
→

[
R(Ad)

N((Ad)∗)

]
,

where (A1Y2 + A2Y4)A3 = 0, A3Y3 = 0 and A3Y4A3 = A3. Hence, (2.5) holds:

A−,⋄ = A−AA⋄ = A−
[

I 0
A3A∗

2(A1A∗
1 + A2A∗

2)−1 0

]
=

[
A−1

1 (I − A2Y3) + Y2A3A∗
2(A1A∗

1 + A2A∗
2)−1 0

Y3 + Y4A3A∗
2(A1A∗

1 + A2A∗
2)−1 0

]
.

The formula for A⋄,− follows similarly. □
We investigate equivalent conditions for the expression A−AE to be equal to A−,⋄.

Theorem 2.12. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and E ∈ B(H), the
following statements are equivalent:

(i) A−,⋄ = A−AE;
(ii) AA⋄ = AE;
(iii) N(AA⋄) = N(AE) and AA⋄A = AEA;
(iv) E = A⋄ + (I − A−A)F , for arbitrary F ∈ B(H).

Proof. (i) ⇒ (ii): Notice that
AA⋄ = A(A−AA⋄) = AA−,⋄ = (AA−A)E = AE.

(ii) ⇒ (iii): It is clear.
(iii) ⇒ (i): Since R(I − AA⋄) = N(AA⋄) = N(AE), we get AE = AEAA⋄. Thus, by

AA⋄A = AEA,
A−(AE) = A−(AEA)A⋄ = A−A(A⋄AA⋄) = A−AA⋄ = A−,⋄.

(ii) ⇒ (iv): Since all solutions of equation AA⋄ = AE present a sum of a particular
solution of this equation and the general solutions to the homogeneous equation AE = 0,
by [3, p. 52], AE = 0 can be solved and the general solution form for AA⋄ = AE is equal
to E = A⋄ + (I − A−A)F , for arbitrary F ∈ B(H).

(iv) ⇒ (ii): This implication follows by elementary computations. □
Similar result is true for A⋄,−.

Theorem 2.13. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and E ∈ B(H), the
following statements are equivalent:

(i) A⋄,− = EAA−;
(ii) A⋄A = EA;
(iii) R(A⋄A) = R(EA) and AA⋄A = AEA;
(iv) E = A⋄ + F (I − AA−), for arbitrary F ∈ B(H).

The sets of all inner-gMP and gMP-inner inverses of A are marked by A{−, ⋄} and
A{⋄, −} and have the next properties.

Theorem 2.14. If A ∈ B(H)d,− and A− ∈ A{1} is arbitrary but fixed, then
A{−, ⋄} = {A−,⋄ + (I − A−A)MAA⋄ : M ∈ B(X)}

and
A{⋄, −} = {A⋄,− + A⋄AM(I − AA−) : M ∈ B(X)}.

Proof. This result follows by [3]
A{1} = {A− + M − A−AMAA− : M ∈ B(X)}.

□
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3. Inner-*gMP and *gMP-inner inverses
The fact that the *gMP inverse is also an extension of the Moore–Penorse inverse

motivated us to introduce inner-*gMP and *gMP-inner inverses as new types of generalized
inverses which generalized the 1MP and MP1 inverses, respectively. We give the next
results in this section without the proofs which are analogue to adequate results of Section
2.

Theorem 3.1. For A ∈ B(H)d,− and an arbitrary but fixed A− ∈ A{1}, we have
(a) X = A−AA⋄ represents the unique solution to the system

XAX = X, AX = AA⋄ and XA = A−AA⋄A;
(b) X = A⋄AA− represents the unique solution to

XAX = X, AX = AA⋄AA− and XA = A⋄A.

Definition 3.2. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed.
(a) The inner-*gMP inverse of A is defined by

A−,⋄ = A−AA⋄.

(b) The *gMP-inner inverse of A is defined by
A⋄,− = A⋄AA−.

Remark that, for A ∈ B(H)#, A⋄ = A† and so the inner-*gMP and *gMP-inner inverses
reduce to the 1MP and MP1 inverses, respectively. In the case that A− = A†, we can
check that A−,⋄ = A⋄.

We establish the following expressions for inner-*gMP and *gMP-inner inverses by
[18, Corollary 4].

Corollary 3.3. For A ∈ B(H)d,− and an arbitrary but fixed A− ∈ A{1}, we have
A−,⋄ = A−AA⋄ = A−AA d⃝(AA d⃝)† = A−A(AA d⃝A)†

and
A⋄,− = A⋄AA− = A d⃝(AA d⃝)†AA− = (AA d⃝A)†AA−.

When A ∈ B(H)D,− with ind(A) = k, Corollary 3.3 and [18, Corollary 5] give A−,⋄ =
A−A(A(Ak)†Ak)† and A⋄,− = (A(Ak)†Ak)†AA−.

Theorem 3.4. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and X ∈ B(H), the
following statements are equivalent:

(i) X = A−,⋄;
(ii) XAX = X, AXA = AA⋄A, AX = AA⋄ and XA = A−AA⋄A;
(iii) XA = A−AA⋄A and XAA⋄ = X;
(iv) XA = A−AA⋄A and XAA d⃝(AA d⃝)† = X;
(v) XAA† = A−AA⋄AA† and XAA⋄ = X;
(vi) XAA∗ = A−AA⋄AA∗ and XAA⋄ = X;
(vii) AX = AA⋄ and A−AA⋄AX = X;
(viii) AX = AA⋄ and A−AX = X;
(ix) A†AX = A⋄(= A†AA⋄) and A−AX = X;
(x) A∗AX = A∗AA⋄ and A−AX = X;
(xi) XAA⋄AX = X, AA⋄AXAA⋄A = AA⋄A, AA⋄AX = AA⋄ and XAA⋄A = A−AA⋄A;
(xii) XAA⋄AX = X, AA⋄AX = AA⋄ and XAA⋄A = A−AA⋄A.

Analogously, we characterize the *gMP-inner inverse.

Theorem 3.5. For A ∈ B(H)d,−, an arbitrary but fixed A− ∈ A{1} and X ∈ B(H), the
following statements are equivalent:
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(i) X = A⋄,−;
(ii) XAX = X, AXA = AA⋄A, AX = AA⋄AA− and XA = A⋄A;
(iii) AX = AA⋄AA− and A⋄AX = X;
(iv) AX = AA⋄AA− and A d⃝AX = X;
(v) A†AX = A†AA⋄AA− and A d⃝AX = X;
(vi) A∗AX = A∗AA⋄AA− and A d⃝AX = X;
(vii) XA = A⋄A and X = XAA⋄AA−;
(viii) XA = A⋄A and XAA− = X;
(ix) XAA† = A⋄(= A⋄AA†) and XAA− = X;
(x) XAA∗ = A⋄AA∗ and XAA− = X;
(xi) XAA⋄AX = X, AA⋄AXAA⋄A = AA⋄A, AA⋄AX = AA⋄AA− and XAA⋄A =

A⋄A;
(xii) XAA⋄AX = X, AA⋄AX = AA⋄AA− and XAA⋄A = A⋄A.

4. Applications of inner-gMP and gMP-inner inverses
Inner-gMP and gMP-inner inverses can be applied in solving some kinds of linear equa-

tions.

Theorem 4.1. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

Ax = AA⋄b (4.1)
is

x = A−,⋄b + (I − A−A)z, (4.2)
for arbitrary z ∈ H.

Proof. According to Theorem 2.1, recall that AA−,⋄ = AA⋄. When x is given by (4.2),
it is a solution of (4.1) by

Ax = AA−,⋄b + A(I − A−A)z = AA⋄b.

Suppose that equation (4.1) has a solution x. We have that A−Ax = A−AA⋄b = A−,⋄b
gives

x = A−,⋄b + (I − A−A)x.

So, (4.2) is the form of the solution x. □
In the case that A ∈ B(H)#, by A⋄ = A†, the equation (4.1) becomes Ax = AA†b

which is equivalent to A∗Ax = A∗b. The least equation, known as the normal equation of
Ax = b, has a solution x if and only if x is a least-squares solution to the equation Ax = b
(i.e. ∥Ax − b∥ ≤ ∥Az − b∥, for all z). The least-squares solution of Ax = b is an often used
approximate solution in statistical applications [3].

Theorem 4.1 implies the following result for b ∈ R(AA⋄).

Corollary 4.2. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The general
solution form of equation

Ax = b, b ∈ R(AA⋄), (4.3)
is

x = A−b + (I − A−A)z,

for arbitrary z ∈ H.

Proof. The hypothesis b ∈ R(AA⋄) yields b = AA⋄b. We finish this proof applying
Theorem 4.1. □

We also consider when the solution of equation (4.1) is unique.

Theorem 4.3. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A−,⋄b is uniquely determined solution in R(A−A(A d⃝A)∗) of the equation (4.1).
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Proof. By Theorem 4.1, we conclude that the equation (4.1) has a solution A−,⋄b ∈
R(A−,⋄) = R(A−A(A d⃝A)∗).

Let x = A−,⋄b and y be two solutions in R(A−A(A d⃝A)∗) = R(A−,⋄) of (4.1). Then
x − y ∈ N(A) ∩ R(A−,⋄) = N(A−,⋄A) ∩ R(A−,⋄A) = {0}

yields x = y. Hence, the equation (4.1) has the unique solution A−,⋄b in R(A−A(A d⃝A)∗).
□

We can verify the solvability of the next equation and determined its unique solution
as Theorem 4.1 and Theorem 4.3.
Theorem 4.4. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

A d⃝Ax = A d⃝b (4.4)
is

x = A−,⋄b + (I − A−,⋄A)z,

for arbitrary z ∈ H.
Theorem 4.5. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A−,⋄b is uniquely determined solution in R(A−A(A d⃝A)∗) of the equation (4.4).

In a similar manner, we solve the following equation based on the gMP-inner inverse.
Theorem 4.6. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

A d⃝Ax = A d⃝AA−b (4.5)
is

x = A⋄,−b + (I − A⋄A)z,

for arbitrary z ∈ H.
Theorem 4.7. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A⋄,−b is uniquely determined solution in R((A d⃝A)∗) of the equation (4.5).

To illustrate Theorem 4.1 and Theorem 4.6, we give the next example.
Example 4.8. Suppose that A is represented as in Example 2.4, z = [z1 z2 z3]∗ and
b = [2 1 0]∗. Firstly, we observe that

x = A−,⋄b + (I − A−A)z

=

 2a + (1 − 3a)z1 − az2 − dz3
2(1 − 3a) − (3 − 9a)z1 + 3az2 + 3dz3

0


satisfies

Ax =

 2
0
0

 = AA⋄b.

Theorem 4.3 implies that A−,⋄b = [2a 2(1 − 3a) 0]∗ is uniquely determined solution of the
equation (4.1) in

R(A−A(A d⃝A)∗) = {[ay1 (1 − 3a)y1 0]∗ : y1 ∈ C}.

Also, for
x = A⋄,−b + (I − A⋄A)z

=

 3
5 + 1

10z1 − 3
10z2

1
5 − 3

10z1 + 9
10z2

0

 ,
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note that

A d⃝Ax =

 2
3
0
0

 = A d⃝AA−b.

According to Theorem 4.7, we have that A⋄,−b = [3
5

1
5 0]∗ is the unique solution of (4.5) in

R((A d⃝A)∗) =
{[

y1
1
3

y1 0
]∗

: y1 ∈ C
}

.

5. Applications of inner-*gMP and *gMP-inner inverses
Similarly, we verify the following results for solving several linear equations using inner-

*gMP and *gMP-inner inverses.

Theorem 5.1. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

Ax = AA⋄b (5.1)
is

x = A−,⋄b + (I − A−A)z,

for arbitrary z ∈ H.

If b ∈ R(AA d⃝) in Theorem 5.1, we obtain the next consequence.

Corollary 5.2. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The general
solution form of equation

Ax = b, b ∈ R(AA d⃝), (5.2)
is

x = A−b + (I − A−A)z,

for arbitrary z ∈ H.

The uniqueness of the solution to equation (5.1) can be obtained.

Theorem 5.3. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A−,⋄b is uniquely determined solution in R(A−A) of the equation (5.1).

One more equation can be solved using inner-*gMP inverse.

Theorem 5.4. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

(AA d⃝)∗Ax = (AA d⃝)∗b (5.3)
is

x = A−,⋄b + (I − A−,⋄A)z,

for arbitrary z ∈ H.

Theorem 5.5. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A−,⋄b is uniquely determined solution in R(A−AA d⃝) of the equation (5.3).

We now consider solvability of equations by *gMP-inner inverse.

Theorem 5.6. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

A d⃝Ax = A⋄,−b (5.4)
is

x = A⋄,−b + (I − A d⃝A)z,

for arbitrary z ∈ H.
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Corollary 5.7. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The general
solution form of equation

A d⃝Ax = A⋄b, b ∈ R(A),
is

x = A⋄b + (I − A d⃝A)z,

for arbitrary z ∈ H.

Theorem 5.8. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A⋄,−b is uniquely determined solution in R(A d⃝) of the equation (5.4).

Theorem 5.9. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The
general solution form of equation

(AA d⃝)∗Ax = (AA d⃝)∗AA−b (5.5)
is

x = A⋄,−b + (I − A⋄A)z,

for arbitrary z ∈ H.

Corollary 5.10. Let A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. The general
solution form of equation

(AA d⃝)∗Ax = (AA d⃝)∗b, b ∈ R(A),
is

x = A⋄b + (I − A⋄A)z,

for arbitrary z ∈ H.

Theorem 5.11. Let b ∈ H, A ∈ B(H)d,− and A− ∈ A{1} be arbitrary but fixed. Then
A⋄,−b is uniquely determined solution in R(A d⃝) of the equation (5.5).
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