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Introduction

Pepper (Capsicum annuum L.), a member of the Solanaceae family, is one of the 
most important vegetable crops grown worldwide, with economic value as a 
spice, medicine, vegetable and biopesticide (Lim et al., 2018b; Bea et al., 2021). 
It is important in terms of consumption after tomatoes and onions worldwide 
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molybdenum+72 hours cold stress application (44.51 cm). Application of 
25 ppm molybdenum was effective in alleviating the negative effect of cold 
stress on plant stem diameter, plant fresh-dry weight and turgor potential. 
Moisture content wet basis was lowest in 25 ppm molybdenum +72 hours 
cold stress application. SPAD value in pepper plants decreased under cold 
stress conditions. It was observed that 25 ppm molybdenum application 
was ineffective and the decrease increased under cold stress conditions. 
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cold stress conditions, 25 ppm molybdenum application was ineffective. 
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(Ocharo et al., 2017). Although the demand for chillies is 
increasing worldwide, their productivity can be limited 
to varying degrees due to unfavourable environmental 
conditions such as dehydration, high salinity, low and 
high temperatures. To address this problem, numerous 
studies have focused on defence mechanisms activated 
in response to such environmental stresses (Chen et 
al., 2014; Guo et al., 2014; Park et al., 2016; Lim et al., 
2018a, 2020; Kang et al., 2020; Wu et al., 2020). Pepper 
is a species native to tropical and subtropical regions. 
The optimum temperature required for germination 
and plant development is between 25°C and 30°C, and 
temperatures below 15°C are detrimental to germination 
and fruit set (Lorenz and Maynard, 1988). Chilling 
temperatures, which are often encountered in unheated 
greenhouses during autumn or winter production, 
can adversely affect fruit set of marketable fruits due 
to poor pollination and delay ripening and earliness in 
production (Sharaf-Eldin et al., 2022). In addition, the 
growth and development of pepper, especially in the 
reproductive stage, is affected by cold stress in early 
spring.

In many parts of the world, cold stress is one of the 
most important problems in agricultural production. 
Approximately 25% of the terrestrial area of the world 
consists of regions that do not drop below 15 °C and 
are safe from freeze damage, while the remaining 75% 
consists of regions where the temperature drops below 
0 °C during certain periods. In these regions, sensitive 
plants can be damaged (Gözen and Kuşvuran, 2021; 
Aslantaş et al., 2010; Peşkircioğlu et al., 2016).  Cold stress 
(low temperature stress) is one of the environmental 
stress factors that economically limit plant growth, crop 
productivity and quality, and post-harvest life. Cold 
stress occurs at temperatures above 0°C (usually 0-15°C). 
In low temperature stress, it causes damage to plant 
tissues without forming ice crystals. Most tropical and 
subtropical plants belong to this group. The damage to 
the plant is defined as chilling or cold damage (Gözen 
and Kuşvuran, 2021; Chen, 1994; Hasanuzzaman et al., 
2013; Kumar et al., 2018). Symptoms of damage vary 
depending on factors such as the temperature and 
duration of exposure, genotype, developmental stage 
and light intensity of the environment (Gözen and 
Kuşvuran, 2021). 

Each plant species has different optimum temperature 
limits. As a result of cold stress, cellular changes 
such as changes in the structure and composition of 
membranes, decreased protoplasmic flow, electrolyte 
leakage and plasmolysis occur in cold-sensitive plants.  
Depending on the severity of stress, metabolic changes 
such as increased or decreased respiration, production 
of unusual metabolites due to anaerobic state also occur 
(Kumar et al., 2018; Gözen and Kuşvuran, 2021). This 
situation shows that metabolic and physiological events 
are negatively affected and enzymatic activity decreases 

in sensitive plants under low temperature stress. 
Furthermore, osmolytes (such as amino acids, sugars 
and K+) and products of photosynthesis leak out through 
the plasma membranes (Guy et al., 1992). Physiological 
damage to many plant tissues below 15°C and above the 
freezing point is called ‘chilling injury’. Chilling damage 
is seen in plants as the formation of surface lesions, 
tissue water absorption, water loss, drying or shrinkage, 
internal discolouration, tissue degradation, accelerated 
senescence and ethylene production, changes in cell 
integrity due to leakage of plant metabolites, reduced 
growth, wilting and increased putrefaction (Lukatkin 
et al., 2012; Gözen and Kuşvuran 2021). In the study 
to identify lines resistant to low temperature stress in 
tomato genotypes, three pure lines tolerant to cold 
were identified in the results of electrolyte leakage and 
dry matter yield parameters (Tepe et al., 2022). It was 
reported that electrolyte leakage increased in tomato 
exposed to cold stress (4°C) for 3 days. Cold stress tolerant 
tomato lines have been reported to show low electrolyte 
leakage (Cao et al., 2015).

In recent years, different applications have been made to 
reduce the negative effects of cold stress. One of these 
applications is chemical applications. Molybdenum (Mo) 
is one of the chemicals used to reduce the negative 
effects of cold stress.  Mo is a very important and 
essential micronutrient for plants, animals and bacteria 
(Rana et al., 2020a; Ismael et al., 2018). It has a major 
role within the plant system although only required in 
small amounts. Molybdenum application beneficial to 
increase plant growth (Müftüoğlu et al. 2021). Mo uptake 
is low in acidic media, so foliar Mo application was 
important (Bambara and Ndakidemi, 2010). Mo is one of 
the components of nitrate reductase and nitrogenase in 
nitrogen metabolism in plants (Zhang et al., 2012). The 
amount of molybdenum in the soil and its uptake by the 
plant directly affect symbiotic N fixation in legumes (Gök, 
1993; Haktanır and Arcak, 1997; Durrant, 2001; Ferreira 
et al., 2002).  Mo is utilized by certain plant enzymes in 
the process of reduction and oxidative reactions (Mendel 
and Hansch, 2002). An integral part of an organic pterin 
complex is called a molybdenum co-factor (Moco). Most 
higher plants have molybdoenzymes (enzymes that 
require molybdenum) and bind to Moco plants (Zimmer 
and Mendel, 1999; Kaiser et al., 2005; Mendel and Kruse, 
2012; Bittner, 2014; Kovács et al., 2015). Mo is known 
to be involved in phosphorus and sulphur metabolism 
(Mendel and Hansch, 2002; Liu et al., 2010; Zhang et al., 
2012). Mo also plays an important role in resistance to 
many abiotic stresses in plants. Winter wheat under cold 
stress has been shown to benefit from Mo application in 
terms of photosynthetic rates and products (Yaneva et 
al., 1996). When winter wheat was under drought stress, 
Mo application had a positive impact on photosynthetic 
rates and products (Zakhurul et al. 2000). By enhancing 
the activities of antioxidant enzymes, Mo also improved 
the cold tolerance of turf grasses (Yu et al., 2005). In the 



study conducted by Sun et al. (2009), it was reported that 
application of Mo increased the resistance of winter wheat 
to cold stress. It was reported that application of three 
amounts of Mo (0, 0.15, 0.3 mg kg-1) to Chinese cabbage 
under salt stress significantly increased fresh weight; 
significantly improved the activities of antioxidant 
enzymes such as peroxidase, superoxide dismutase 
and catalase; significantly increased the content of non-
enzymatic antioxidants such as glutathione, carotenoids 
and ascorbic acid. A significant increase in osmotic 
adjustment products such as soluble low molecular 
weight sugar, soluble protein and proline was also 
observed. In addition, Mo was reported to significantly 
increase the level of potassium ions (K+) and improve the 
K+/Na+ ratio by decreasing the level of sodium ions (Na+). 
At the end of the study, Chinese cabbage was reported 
to improve its tolerance to salt stress by increasing its 
capacity to eliminate active oxygen and its osmotic 
adaptability (Zhang et al., 2014).

However, there is no report on whether Mo fertiliser 
application creates resistance to cold stress, especially 
in pepper plants. Therefore, the aim of our study was to 
reveal some physiological and morphological effects of 
Mo application in Mazamort pepper variety under cold 
stress conditions.

MATERIALS AND METHODS

This study was carried out in the climate chamber and 
laboratory of Siirt University Faculty of Agriculture. 
Mazamort pepper variety was used as plant material and 
this variety was purchased from Sunagri Seed Company. 
This variety is a widely used commercial variety. Seeds 
are not hybrid. They are local vegetable seeds collected 
as a result of research from various regions of Anatolia. 
It is a variety which is cultivated under greenhouse and 
also suitable for open field cultivation. Fruits are 10-
12 cm long, crisp, sweet, smooth shaped, dark green 
coloured and have three tips. It is used for edible. For 
the sowing of pepper seeds, peat and perlite were mixed 
in 2:1 ratio and sown. After the seeds were sown and 
irrigation was done. One month pepper seedlings (4-5 
leaf stage) were transferred to plastic pots in a volume 
of 2 liters. The application was started 15 days after 
the pepper seedlings were transplanted. In the study, 
control, 25 ppm Mo concentration, 72 hours cold stress 
and 25 ppm Mo+72 hours cold stress applications were 
applied. Molybdenum is a brand of Alfa Aesar and was 
purchased from BigMed.  Molybdenum concentration 
was determined by conducting preliminary studies. In our 
previous preliminary studies, cold stress was applied for 
12 hours and 24 hours with 25 ppm, 50 ppm and 75 ppm 
molybdenum doses on different species and cultivars. 
The climate chamber conditions were set at an average 
humidity of 60–65% and a light intensity of 8000 lux. 
Pots of 2 L were used to grow the plants and the growing 
medium was a mixture of peat and perlite in a ratio of 
2:1 by volume. Climatic chamber (19 m2) conditions were 

set to 24±1°C during the day and 18±1°C at night with 
16/8 h light/dark photoperiodicity for control conditions 
and 24±1°C during the day and 5±1°C at night with 
photoperiodicity for cold stress conditions. In pepper, 
the application was started before the flowering stage. 
Molybdenum application was applied as a spray every 
other day at the same time. Molybdenum application 
was performed 9 times. Control plants were sprayed with 
distilled water at application times.

The experiment was planned according to the random 
plots factorial design with 3 replications and 6 plants 
in each replicate. It was planned as 1 plant in each pot. 
Plants were irrigated with standard nutrient solution 
during the experiment. Sample pots were kept in 
order to determine the amount and time of irrigation 
in order to prevent the water holding capacity to be 
different in the pots. Pot plates were placed in the pots 
of each application and irrigation was made to reach 
the saturation point and the amount of irrigation was 
calculated by considering the amount of water drained. 
The ratio of “drained solution/applied solution” was taken 
as basis in irrigation (Schröder and Lieth, 2002). Drainage 
levels were determined and this ratio was adjusted to 
approximately 30-32% during the experiment. The pH 
and EC of the drained water were measured irrigation at 
times. 

Nutrient content was prepared using Hoagland nutrient 
solution. The pH of the nutrient solution was kept 
between 6.0-6.5 and EC between 1.5-2.5 dS m-1. Plant 
measurements were made 54 days after sowing. Plant 
height, stem diameter, number of leaves, plant fresh 
and dry weight, SPAD measurement, wet base moisture 
content, leaf proportional water content and ion leakage 
parameters were analysed in at least 4 plants.

Determination of Plant Height

At the end of the experiment, the plant was measured 
from the root collar to the growing tip with a metre and 
recorded in centimetre (cm).

Determination of Plant Stem Diameter

Plant stem diameter was measured using compass and 
recorded in millimetre (mm). Plant stem diameter were 
made 54 days after sowing.

Determination of the Number of Leaves

All leaves on the plant were counted at the end of the 
study and the number of leaves was determined as 
number/plant.

Plant Fresh Weight

All green parts were weighed on a precision balance and 
recorded in grams (g).

Plant Dry Weight

After the plant fresh weights were taken, the plant 
samples were dried in an oven at 75°C for 48 hours and 
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recorded in g (Arshadullar and Zaidi, 2007).

Measurement with SPAD Meter for Chlorophyll

Readings were taken with a Minolta SPAD meter to 
determine the tone of green in young, middle-aged and 
young leaves of pepper plants depending on the amount 
of chlorophyll (Daşgan et al., 2010).

Wet Basis Moisture Content (%)

Wet basis moisture content was determined by using 
fresh weight and dry weight of the plants according to 
the following formula (Koksal et al., 2016).

MCwb = ((FW − DW)/FW)*100

MCwb: Moisture content wet basis (%), FW: Plant fresh 
weight (g), DW: Plant dry weight (g)

Leaf Proportional Water Content (RWC)

Five pieces of 1 cm discs were taken from fresh plant 
leaves and weighed and recorded. After the leaves 
were kept in pure water for 24 hours, the leaves were 
removed from the water, dried and their turgor weights 
were determined. The leaves whose turgor weights 
were determined were kept in an oven at 70ºC for 24 
hours. After drying, the dry weight was taken in grams. 
Leaf proportional water content (%) was calculated by 
placing the values in the following formula (Van Laere et 
al., 2011).  

RWC= (FW-DW)/(TW-DW)*100

FW: Fresh Weight     DR: Dry Weight         TW: Turgor Weight

Ion Leakage

The 3rd leaves of the plant from the growth tip were 
used for this purpose. For this purpose, 1 cm diameter 
leaf discs were kept in de-ionised water for 5 hours and 
then EC was measured (EC1), the same discs were kept at 
75oC for 24 hours and then the EC value of the solution 
(EC2) was measured again.  Ion leakage was calculated as 
% using the formula (Arora et al., 1998).

Ion leakage= (EC1/ EC2)*100

Statistical Analysis

The significance between control, molybdenum 
application, cold stress and molybdenum+cold stress 
application was evaluated by analysis of variance 
(ANOVA) test. In case ANOVA showed significant 
differences between control, molybdenum application, 
cold stress and molybdenum+cold stress application, 
Least Significant Difference (LSD) test (P≤0.05) was used 
to compare the means. Differences in the data were 
evaluated using JMP 8th statistical software (Steel et al., 
1997).

RESULTS AND DISCUSSION

Molybdenum is a rare element that is essential for plant 
growth and can be obtained from soil (Kaiser et al., 2005). 
However, at high concentrations Mo is known to have a 
negative effect on plant growth (Rihan et al., 2014). Many 
studies have reported that Mo application may have 
ameliorative effect against frost (Du et al., 1994; Li et al., 
2001) and cold stress (Sun et al., 2006; Al-Issawi et al., 
2013) damage.

The difference among applications in terms of plant 
height was found statistically significant (p≤0.05). 
Plant height values are shown in Figure 1. Among the 
applications, the highest plant height was determined in 
25 ppm Mo+72 hours cold stress application with 44.51 
cm and the lowest plant height was determined in 72 
hours cold stress with 38,75 cm. It was determined that 
plant height increased in 25 ppm Mo application under 
72 hours cold stress conditions. Plant height was higher 
in 25 ppm Mo application and 25 ppm Mo+72 h cold 
stress application compared to control. The highest plant 
height of Mazamort pepper variety was determined in 
25 ppm Mo+72 hours cold stress application (44.51 cm). 
Molybdenum application was effective in alleviating 
the negative effect of cold stress on plant height. 
Molybdenum application under control conditions 
positively affected plant height. It has been reported 
that prolonged cold stress conditions cause a decrease 
in plant height (Hassan et al., 2021).

Figure 1. Effect of applications on plant height

The values of the applications in terms of plant diameter 
are shown in Figure 2. Plant diameter values of the 
applications were not statistically significant (p≤0.05). 
The highest plant diameter among the applications was 
in the control application.  The lowest plant diameter 
was 6.14 mm in 72 hours cold stress application. Plant 
diameter was 6.98 mm in 25 ppm Mo application under 
72 hours cold stress. Plant diameter decreased in other 
applications compared to the control, but the least 
decrease was determined in 25 ppm Mo+72 hours 
cold stress application. Cold stress decreased the plant 
diameter. The negative effect of cold stress was alleviated 
by 25 ppm Mo application under cold stress conditions. 



Figure 2. Effect of applications on plant diameter

The number of leaves was found to be statistically 
insignificant (p≤0.05). The number of plant leaves is 
shown in Figure 3. The number of leaves varied between 
25.75 and 29.75 number/plant. The highest number of 
leaves (29.75 number/plant) was obtained in the control 
application. The lowest number of leaves was in Mo 
application with 25.75 number /plant. While the number 
of leaves was 27.25 number/plant under cold stress, it 
was 27.00 number/plant in 25 ppm Mo application under 
cold stress. The number of leaves of Mazamort pepper 
variety differed among applications. The lowest number 
of leaves was in Mo application compared to the control. 
It was determined that cold stress decreased the number 
of leaves and 25 ppm Mo application did not stop this 
decrease. It was determined that 30 ppm application of 
Mo decreased micro shoot growth. It was also reported 
that Mo application increased the average plant weight 
under low temperature stress (Rihan et al., 2014).

Figure 3. Effect of applications on the number of leaves

It was found that plant fresh weight of Mazamort pepper 
variety differed between applications, but this difference 
was not statistically significant (p≤0.05). The plant fresh 
weight obtained as a result of the applications was 
shown in Figure 4. Plant fresh weight varied between 
22.78 g and 27.48 g. The highest plant fresh weight was 
in the control application (27.48 g) and the lowest was 
in the 72 hours cold stress application (22.78 g). Higher 
plant fresh weight was obtained in Mo application than 
72 hours cold stress and 25 ppm Mo+72 hours cold 
stress application. Plant fresh weight decreased under 

cold stress conditions. Application of 25 ppm Mo was 
effective in alleviating the negative effect of cold stress 
on plant fresh weight. It has been reported that leaf 
size, leaf area and shoot biomass are reduced under 
cold stress (Valluru et al., 2012). It was reported that the 
combined application of cold and freezing stress caused 
chlorosis and a decrease in shoot biomass compared to 
the control (Hassan et al., 2021). It was reported that Mo 
application increased the micro shoot weight (Rihan et 
al., 2014). 

Figure 4. Effect of applications on plant fresh weight

It was determined that the applications had no statistically 
significant effect on plant dry weight (p≤0.05). Plant dry 
weight obtained as a result of the applications is shown 
in Figure 5. The highest plant dry weight was 2.57 g in the 
control application and the lowest was 2.22 g in the 72 
hours cold stress application. While the plant dry weight 
was 2.22 under cold stress conditions, 25 ppm Mo+72 
hours cold stress application increased the plant dry 
weight to 243 g. The lowest plant dry weight of Mazamort 
pepper variety was found under cold stress. It was found 
that 25 ppm Mo application was effective under cold 
stress conditions and increased plant dry weight under 
cold stress. Molybdenum application also had a negative 
effect on plant dry weight in control conditions. Mo 
application was reported to increase plant dry weight 
(Imran et al., 2019). 

Figure 5. Effect of applications on plant dry weight

Pepper moisture content wet basis was shown in 
Figure 6. The moisture content of Mazamort pepper 
variety differed among the applications, but it was not 
statistically significant (p≤0.05). The highest moisture 
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content was in 25 ppm Mo application with 90.81% 
and the lowest was in 25 ppm Mo+72 hours cold stress 
application with 89.53%. Moisture content wet basis was 
lowest in 25 ppm+72 hours cold stress application. It was 
observed that cold stress decreased the moisture content 
wet basis and 25 ppm Mo application was ineffective in 
alleviating this decrease. Under control conditions, Mo 
application increased the moisture content wet basis. 

Figure 6. Effect of applications on moisture content of 
wet basis

SPAD value of Mazamort pepper variety showed a 
difference between applications and this difference 
was found statistically significant (p≤0.0001). SPAD 
value is shown in Figure 7. The highest SPAD value was 
in control application with 34.78 and the lowest was in 
72 hours cold stress+25 ppm Mo application with 29.46. 
SPAD value decreased in other applications compared to 
control. SPAD value, which is important in determining 
the amount of chlorophyll in the plant, was the highest 
under control conditions. SPAD value in pepper plants 
decreased under cold stress conditions. It was observed 
that 25 ppm Mo application was ineffective and the 
decrease increased under cold stress conditions. The 
main damage site of cold stress is the chloroplast and 
photosynthesis. Tolerance in these aspects is expressed 
in native vegetation adapted to cold conditions 
(Sanghera et al., 2011). Yield losses occurring under cold 
stress conditions have been reported to be associated 
with low leaf area and reduced photosynthetic capacity. 
It has been stated that prolonged cold stress conditions 
cause leaf chlorosis (Hassan et al., 2021). Cold stress 
conditions affect cellular function due to changes in the 
photosynthetic apparatus (Manasa et al., 2022).

The difference in turgor potential of Mazamort pepper 
variety between applications was found statistically 
significant (p≤0.0001). RWC value is shown in Figure 
8. RWC value varied between 93.80% and 96.31%. We 
think that some chemical applications can be effective in 
increasing plant growth and content, therefore, 25 ppm 
Mo application increased RWC. RWC decreased in 72 h 
cold stress and 25 ppm Mo+72 h cold stress application 
compared to the control. While RWC was 93.80% in 
cold stress, RWC increased to 94.36% in 25 ppm Mo 

application under cold stress conditions. Under control 
conditions, 25 ppm Mo application increased RWC. Water 
and nutrient relations have been stated to deteriorate 
in plants exposed to prolonged cold stress conditions 
(Hassan et al., 2021). The turgor potential was the lowest 
in 72 hours cold application. In alleviating the negative 
effect of cold stress on turgor potential, 25 ppm Mo 
application was effective under cold stress conditions. In 
control conditions, Mo application had a positive effect 
on turgor potential and increased it. It was reported that 
root length was more sensitive to cold stress conditions 
than dry weight. It has been reported that root length 
decreases under cold stress conditions and this disrupts 
the balance of water and nutrient uptake (Hussain et al., 
2018).

Figure 7. Effect of applications on SPAD value

Figure 8. Effect of applications on RWC value

The difference among applications in terms of ion 
leakage was found to be statistically insignificant 
(p≤0.05). The ion leakage of Mazamort pepper variety 
as a result of the applications was shown in Figure 9. Ion 
leakage increased in other applications compared to the 
control. It was determined that 25 ppm Mo application 
did not reduce ion leakage under cold stress conditions 
and had the same rate of ion leakage with cold stress. 
The lowest ion leakage was in the control application 
with 17.32% and the highest was in the 72 hours cold 
stress and 25 ppm Mo+72 hours cold stress application 
with 17.88%. Changes in membrane fluidity occur 
during temperature stresses. This is a consequence of 
temperature stress damage and represents a potential 
sensing and/or damage zone (Horvath et al., 1998; Orvar 



et al., 2000). Ion leakage is an important parameter in 
determining the effect of stress in stress applications. 
Ion leakage in Mazamort pepper variety was highest 
under 72 hours cold stress and 25 ppm Mo +72 hours 
cold stress conditions. Under cold stress conditions, 25 
ppm Mo application was ineffective. It has been shown 
that the primary site of freezing damage in plants is the 
membrane systems of the cell (Steponkus, 1984; Levitt, 
1980). It is well known that freeze-induced membrane 
damage is initially caused by severe dehydration related 
with freezing (Steponkus, 1984; Steponkus et al., 1993). 
At non-freezing low temperatures, many species of 
tropical or subtropical origin are known to be damaged 
or killed. Various symptoms of chilling damage such as 
chlorosis, necrosis or growth retardation have also been 
reported. However, it has been reported that cold stress 
tolerant species continue to grow under cold conditions. 
Therefore, it is important to stabilise membranes in 
tolerance to cold stress (Sanghera et al., 2011). Under 
cold stress conditions, it affects cellular function due 
to changes in electron flow (Manasa et al., 2022). It was 
reported that Mo application was effective in reducing 
the negative effect of cold stress on ion leakage under 
cold stress conditions (Rihan et al., 2014).

Figure 9. Effect of applications on ion leakage

CONCLUSION

The highest plant height of Mazamort pepper variety 
was determined in 25 ppm Mo+72 hours cold stress 
application. Application of 25 ppm Mo was effective in 
alleviating the negative effect of cold stress on plant stem 
diameter, plant fresh-dry weight and turgor potential. 
Moisture content wet basis was lowest in 25 ppm Mo+72 
hours cold stress application. SPAD value in pepper 
plants decreased under cold stress conditions. It was 
observed that 25 ppm Mo application was ineffective 
and the decrease increased under cold stress conditions. 
Ion leakage in Mazamort pepper variety was highest 
under 72 hours cold stress and 25 ppm+72 hours cold 
stress conditions. Under cold stress conditions, 25 ppm 
Mo application was ineffective. Mo application under 
cold stress conditions was found to have positive effects 

on some parameters in general. We believe that the 
application of different Mo concentrations and different 
cold stress periods in future studies will reveal the effects 
of Mo more clearly.
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