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ABSTRACT 

 
Micro-beams are building blocks for many micro- and nano-electro-mechanical systems (MEMS/NEMS) and cannot accurately 

be modeled by classical continuum theories due to significant size effects at the length scales associated with these structures. 

Size effects can be taken into account by the so-called higher-order continuum theories. In this study, Euler-Bernoulli micro-

beams are analyzed with the Modified Strain Gradient Theory (MSGT), which extends the classical local continuum theories 

of grade one with the introduction of three additional length scale parameters. In this contribution, finite element 

implementation is briefly demonstrated by using Galerkin discretization techniques for Euler-Bernoulli beams. The size effect 

for gold-micro beams is demonstrated and the length scale parameters of gold micro-beams for MSGT are identified from the 

existing experimental data from literature for the first time. As a novel aspect, significant size effect is demonstrated for the 

length-scales associated with the state of the art gold micro-beam structures developed for MEMS and NEMS applications, 

which reveals the necessity of the use of higher-order theories at these length scales. 
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1. INTRODUCTION 

 

Micro- and nano-electro-mechanical systems (MEMS/NEMS) are integral parts of the modern world 

and their application areas are steadily growing thanks to their small sizes, low weights, ease of 

implementation in integrated circuits, low energy consumption, and manufacturing costs, earning them 

vast utilization areas from automotive to defense industry, from biomedical engineering to consumer 

electronics, and from optics to communication systems. Several products in these areas can be counted 

as metering devices, sensors, computer hardware, micro-power terminals, RF-MEMS and relevant 

equipment. MEMS devices can be made of metallic, polymeric, silicon-based or functionally graded 

materials. It must be noted that the most common deformation modes analyzed and modeled in literature 

are bending, vibration, and buckling, yet depending on specific applications. The most common types 

of micro-beams encountered in MEMS design are double-cantilever, cantilever, and simply supported 

beams where the classical Euler Bernoulli Beam theory is the most suitable mathematical model for the 

analysis. 

 

Recently, the feature size of the state of the art NEMS/MEMS devices has approached the nanometer 

scale [2]. As these deformations are to remain mostly in the elastic regime, the elastic material 

parameters and the mechanical behavior of micro and nano-sized materials should be assessed 

accurately at this length scale. Gold possesses excellent mechanical and electrical properties, such as 

high electrical conductivity, chemical inertness, resistance to surface wear, relatively lower residual 

stress after manufacturing due to thermo-mechanical loads, and relatively lower thermal fluctuation. 

These properties make gold popular for MEMS/NEMS applications [1-4]. Hence, the mechanical 

behavior of gold under bending dominated loading conditions at micron scale will be targeted in this 

study. 

 



Dal / Anadolu Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 18 (3) – 2017 
 

664 

The fact that most engineering materials exhibit size dependent mechanical response is a well known 

phenomenon for a long time [5-7]. This phenomenon is known as size effect or scale effect and it affects 

the material properties such as strength, elastic response, hardness, and isotropy. Size effect in gold 

micro-structures was experimentally shown under tensile [8], compressive [9], bending [10] tests 

respectively. The size effect in engineering materials dates back to early work of Voigt [11]. The early 

works were oriented towards understanding the physical phenomena rather than defining mathematical 

and continuum models. Numerous contributions in explaining size effect in micro-structures have been 

made in 1960’s. Within this context Couple Stress Theory (CST) was introduced by Mindlin and 

Tiersten [12] as an extension to Voigt’s work where surface loads are in fact both force and moment 

vectors. Various continuum approaches were presented in e.g. Grioli [13], Aero and Kuvshinskii [14], 

Eringen [15], and Nowacki [16]. General higher-order theories with improved accuracy for finding 

solutions to singularity problems in classical elasticity theory, e.g. concentrated loads, regions around 

crack tips, negative slope regime in stress-strain curve of strain softening were also developed. Works 

of Toupin [17], Mindlin [18, 19], Mindlin and Eshel [20], and Koiter [21] and can be counted as the 

originators of the higher-order elasticity theories. These are generally categorized as couple-stress 

theories (CST) and strain-gradient theories (SGT). The primary difference between CST and SGT was 

the inclusion of symmetric part of second-order deformation gradient in SGT which leads to three 

additional length-scale parameters. Hence, SGT includes five length-scale parameters whereas CST 

includes only two. In this way, CST can be considered as a mathematically more simple form of SGT. 

Fleck and Hutchinson used the previous concept of strain gradient and extended it in an improved SGT 

framework of higher order theories, which is also implemented in this study [23]. This approach was 

originally developed for plasticity problems [6, 22]. Lam et al. [25] decreased this number from five to 

three in SGT using new equilibrium conditions. Yang et al. [24] introduced a new equilibrium equation 

in CST, which decreased the number of independent length scale parameters from two to one. The 

studies by Lam et al. [25] and Yang et al. [24] led the way to what is currently known as modified strain-

gradient theory (MSGT) and modified couple-stress theory (MCST) in the literature, where the number 

of length scale parameters are further reduced to three and one, respectively. 

 

MSGT proposed by Lam et al. [25], is proven to be an accurate, consistent, and mathematically complete 

model especially when applied to beams as concluded by various studies in the literature. This enabled 

the use of MSGT in the analysis of micro-structure and MEMS devices. Kong et al. [26] used this 

extended theory to solve bending and vibration problems for Euler-Bernoulli beams. Wang et al. [27] 

developed micro-scale Timoshenko and Euler-Bernoulli micro-beam models, which recover the 

classical Timoshenko and Euler-Bernoulli beam theories for vanishing length scale parameters. They 

solved bending and free vibration problems for a simply supported Timoshenko beam with this model. 

Kahrobaiyan et al. [28, 29] analyzed non-linear Euler-Bernoulli micro-beams and developed accurate 

size-dependent strain-gradient beam finite elements and compared them with readily available 

experimental data. Akgöz and Civalek studied bending behavior of an axially loaded micro-beam [30] 

as well as deriving analytical formulations for various boundary conditions for Euler-Bernoulli micro-

beams [31], as well as developing beam and plate models which captures the microstructural and shear 

deformation effects without shear correction factors [32, 33, 34]. Zhao et al. [35] derived a nonlinear 

governing equation including Hamilton’s principle, also considering residual stresses that exist as a 

result of micromachining. Ashgari et al. [36] focused on nonlinear Timoshenko beam model for free 

vibration and static problems using hinged-hinged boundary condition. Vatankhah et al. [37] focused 

on nonlinear vibrations caused by immovable supports and they considered the nonlinear phenomena 

that happen in the large amplitude deflections, which is due to the induced mid-plane stretching during 

transverse deflections. Zhang et al. [38] focused on development of a new Timoshenko beam finite 

element that can be used with SGT that satisfies C0 continuity and C1 weak continuity, and modeled 

bending, vibration, buckling type deformation modes. Rafaeifard et al. [39] developed a SGT-based 

yield criterion that is in satisfactory compliance with experimental findings. Taati et al. [40] pursued 

thermo-elasticity extension of the theory where SGT is coupled with non-Fourier heat conduction and 

applied it to a thermo-elastic problem of a simply supported micro-beam. Unlike the statically 
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determinate beam formulations proposed in the literature, Triantafyllou and Giannakopoulos [41] 

argued that MEMS designers need statically indeterminate beam formulations and proposed a 

Timoshenko beam formulation that can be used in general statically indeterminate problems. Ghayesh 

et al. [42] studied nonlinear forced vibrations of micro-beams and obtained frequency-response curves 

for a micro-beam. Ansari et al. [43] analyzed free vibration behavior of functionally graded micro-beams 

based on the strain gradient Timoshenko beam theory as well as coming up with a parametric study 

covering the influences of various parameters on the natural frequencies of these micro-beams. Liebold 

and Müler [44] implemented various higher-order theories including MSGT into finite element method 

and identified material parameters for epoxy and SU-8 polymer under bending. Papargyri-Beskou et al. 

[45] used a simple theory of gradient elasticity with surface energy and derived a model of beam bending 

and buckling. Shojaeian et al. [46] modelled clamped-guided nanobeams under axial loads including the 

effect of nonlinear electrostatic and van der Waals forces for analysis of electromechanical buckling in 

NEMS structures.  

 

Despite the well-known fact for the mechanics community that considerable size effect occurs in gold, 

it has not attracted significant attention in the MEMS-NEMS community so far. This study aims to 

identify the length scale parameters based on the existing experimental data published in literature for 

the modified strain gradient theory and assess the order of error introduced by using the classical theory 

for micro-beams, where to the author’s best knowledge, has not been done so far. To this end, the 

Modified Strain Gradient Theory (MSGT) has been applied to Euler-Bernoulli micro-beams. Within this 

context, the modified strain gradient theory and the finite element formulation based on Galerkin-type 

weak formulation is briefly discussed. The finite element method is chosen for two reasons: Firstly, it is 

the most common numerical analysis tool in engineering practice. Secondly, analytical solutions can 

only be utilized for well defined geometry and boundary conditions. Finite element method can treat 

arbitrary beam geometries and boundary conditions in a strainghtforward manner. 

 

The paper is organized as follows: In Section 2, the MSGT is introduced and incorporation into the 

Euler-Bernoulli beam theory is explained. With the help of the internal energy expression for purely 

bending deformations, Galerkin type weak form is derived as the first variation of the total potential 

energy. Finally, the discrete counterpart of the weak form for the finite element method is obtained by 

incorporating the interpolation (shape) functions leading to the element stiffness matrix. Numerical 

analysis of double cantilever beams for various geometries are carried out and the length scale 

parameters of MSGT are identified for gold micro-beams in Section 3. Critical length scale parameters, 

which necessitate the use of higher-order theories, are identified from existing experimental data from 

the literature [47]. The results of the paper are discussed in Section 4. 

 

2. THEORY AND NUMERICAL IMPLEMENTATION 

 

2.1. Theoretical Background for Modified Strain Gradient Theory 

 

The starting point of gradient theories is the introduction of the free energy density function 𝛹, which, 

is not only a function of strains (first-order displacement gradients), but also a function of first and 

second gradient of strains 

 

𝛹 = 𝑓(𝜺, 𝜺𝟏, 𝜺𝟐)         (1) 

 

unlike the classical local theories of grade one [48]. Herein, the strain measures 

 

𝜺 =
1

2
(∇𝒖 + ∇𝑇𝒖), 𝜺𝟏 = ∇∇ 𝒖 , 𝜺𝟐 = ∇∇∇ 𝒖     (2) 

 

denote the first, second and third order strain tensors, respectively, where 𝒖 is the displacement field. 

This formulation yields eighteen coefficients, two of which are classical Lamé constants (𝜆 and 𝜇). The 
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above given ansatz (1) lead to a mathematically complete and elegant theory requiring 16 additional 

elastic constants parameters. This causes certain difficulties in the analytical investigations and the 

parameter identification. The reduced form of the free energy density 

 

𝛹 = 𝑓(휀𝑖𝑗 , 𝜂𝑖𝑗𝑘)        (3) 

 

reduces the number of elastic constants to five. Herein,  

 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)      and        𝜂𝑖𝑗𝑘 = 𝜕𝑖𝑗𝑢𝑘     (4) 

 

are the conventional strain tensor and the second order displacement gradient tensor in indicial notation, 

respectively.  

 

Lam et al. [25] expressed the second order displacement gradient tensor 

 

𝜂𝑖𝑗𝑘 = 𝜂𝑖𝑗𝑘
𝑆 + 𝜂𝑖𝑗𝑘

𝐴 = 𝜂𝑖𝑗𝑘
𝑆(0)

+ 𝜂𝑖𝑗𝑘
𝑆(1)

+ 𝜂𝑖𝑗𝑘
𝐴      (5) 

 

i.e. the summation of its symmetric part (𝜂𝑖𝑗𝑘
𝑆 ) and anti-symmetric part (𝜂𝑖𝑗𝑘

𝐴 ) or equivalently, as the 

summation of the trace part of symmetric part (𝜂𝑖𝑗𝑘
𝑆(0)

), deviatoric part of the symmetric part (𝜂𝑖𝑗𝑘
𝑆(1)

), and 

anti-symmetric part. By neglecting the contributions of the antisymmetric part and the trace part of the 

second order displacement gradient tensor, the internal strain energy 𝑊𝑖𝑛𝑡 for a linear elastic beam based 

on MSGT can be expressed in the form 

 

𝑊𝑖𝑛𝑡 =
1

2
∫(𝜎𝑖𝑗휀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘

𝑆(1)
𝜂𝑖𝑗𝑘

𝑆(1)
+ 𝑚𝑖𝑗

𝑆 𝜒𝑖𝑗
𝑆 )𝑑𝑉 ,    (6) 

 

where the additional deformation measures are defined as 

 

                              𝛾𝑖 = 휀𝑚𝑚,𝑖 = 𝜕𝑖휀𝑚𝑚  , 

 

                         𝜂𝑖𝑗𝑘
𝑆(1)

=
1

3
(𝜕𝑖휀𝑗𝑘 + 𝜕𝑗휀𝑘𝑖 + 𝜕𝑘휀𝑖𝑗) −

1

15
[𝛿𝑖𝑗(𝜕𝑘휀𝑚𝑚 + 2𝜕𝑚휀𝑚𝑗)        (7) 

 

            −𝛿𝑗𝑘(𝜕𝑖휀𝑚𝑚 + 2𝜕𝑚휀𝑚𝑖) − 𝛿𝑘𝑖(𝜕𝑗휀𝑚𝑚 + 2𝜕𝑚휀𝑚𝑗)] , and 

 

                            𝜒𝑖𝑗
𝑆 =

1

2
(𝑒𝑖𝑝𝑞𝜕𝑝휀𝑞𝑗 + 𝑒𝑗𝑝𝑞𝜕𝑝휀𝑞𝑖) . 

 

Therein, 𝛾𝑖 is the dilatation strain gradient vector, 𝜂𝑖𝑗𝑘
𝑆(1)

 is the deviatoric stretch gradient tensor, and  𝜒𝑖𝑗
𝑆  

is the symmetric rotational gradient tensor, 𝛿𝑖𝑗 is the Kronecker delta and 

 

                     𝑒𝑖𝑗𝑘 = {

+1: even permutation (𝑒123, 𝑒231, 𝑒312)
−1: odd permutation   (𝑒132, 𝑒213, 𝑒321) 
    0: double indexing  (𝑒112, 𝑒121, … 𝑒𝑡𝑐. )

     (8) 

 

is the third order Ricci permutation tensor. The corresponding stress measures, which are the work 

conjugates of deformation measures, are  

 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗휀𝑚𝑚 + 2𝜇 휀𝑖𝑗 , 
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                                             𝑝𝑖 = 2𝜇𝑙0
2𝛾𝑖 , 

         (9) 

                                    𝜏𝑖𝑗𝑘
𝑆(1) = 2𝜇𝑙1

2𝜂𝑖𝑗𝑘
𝑆(1)

 , 

 

                                          𝑚𝑖𝑗
𝑆 = 2𝜇𝑙2

2𝜒𝑖𝑗
𝑆  . 

 

Therein, 𝜎𝑖𝑗 is the Cauchy stress tensor, 𝑝𝑖 is the pressure gradient, 𝜏𝑖𝑗𝑘
(1) is the double stress tensor, 

𝑚𝑖𝑗
𝑆  is the couple stress tensor (symmetric part), and 𝑙0, 𝑙1, 𝑙2 are the length scale parameters that are of 

major concern in this article. Here, the Lamé constants (𝜆 and 𝜇) are expressed as 

 

𝜆 = 𝐸𝜈 (1 + 𝜈)(1 − 2𝜈)⁄ ,      𝜇 = 𝐸 2(1 + 𝜈)⁄     (10) 

 

where 𝐸 is the elastic modulus, 𝜈 is the Poisson’s ratio. 

 

2.2. Euler-Bernoulli Beam 

 

An Euler-Bernoulli beam under bending is depicted in Figure 1. The basic kinematic assumptions for 

the deformations are 

𝑢 = −𝑧
𝑑𝑤(𝑥)

𝑑𝑥
        and      𝑤 = 𝑤(𝑥),     (11) 

 

respectively. Therein 𝑢 and   𝑤 corresponds to displacements in 𝑥 and 𝑧 directions respectively, 𝜃 is the 

rotation angle of the centroidal axis of the beam. Plane sections are assumed to remain plane in Euler-

Bernoulli beam theory leading to 

 

               𝜃 =
𝑑𝑤(𝑥)

𝑑𝑥
.       (12) 

 
 

In 𝑦 direction, plane stress or plane strain conditions can be made according to the width/thickness ratio. 

For thin films, plane strain conditions will be assumed (as 𝑏/𝑡 ≥ 5 for the beams considered in this 

article as given in Tables 1 and 2 and Figure 3) leading to 

 

휀𝑦𝑦 = 휀𝑦𝑥 = 휀𝑦𝑧= 0 .      (13) 

 

Substituting equation (11) into the conventional strain tensor equation (4), the in-plane strain 

components are obtained 

 

휀𝑥𝑥 = −𝑧
𝑑2𝑤(𝑥)

𝑑𝑥2 ,   휀𝑥𝑧 =
1

2
(

𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
) =

1

2
(−

𝑑𝑤

𝑑𝑥
+

𝑑𝑤

𝑑𝑥
) = 0,       휀𝑧𝑧 =

𝑑𝑤

𝑑𝑧
= 0 .   (14) 

 

 
Figure 1. (a) Coordinate frame and kinematic parameters, (b) forces acting on a differential Euler-Bernoulli 

beam under bending. 
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Then, by substituting equation (9) into equation (14), the stress components are obtained  

 

𝜎𝑥𝑥 =
𝐸(1 − 𝜈)

(1 − 2𝜈)(1 + 𝜈)
(−𝑧

𝑑2𝑤(𝑥)

𝑑𝑥2 ) , 
 

                  𝜎𝑦𝑦 = 𝜎𝑧𝑧 =
𝐸𝜈

(1−2𝜈)(1+𝜈)
(−𝑧

𝑑2𝑤(𝑥)

𝑑𝑥2 ) ,     (15) 
 

𝜎𝑥𝑦 = 𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 0 . 
 

The following expression can then be derived for the total potential energy 𝛱 = 𝑊𝑖𝑛𝑡 − 𝑊𝑒𝑥𝑡, using 

equations (6-15) 

 

𝛱 =
1

2
∫ [(𝐸′𝐼 + 2𝜇𝐴𝑙𝑜

2 + 𝜇𝐴
8

15
𝑙1

2 + 𝜇𝐴𝑙2
2) (

𝑑2𝑤

𝑑𝑥2 )
2

+ 𝜇𝐼 (2𝑙𝑜
2 +

4

5
𝑙1

2) (
𝑑3𝑤

𝑑𝑥3 )
2

] 𝑑𝑥
𝐿

0

− 𝑊𝑒𝑥𝑡  ,    (16) 

 

where 𝐸′ is defined as 

 

                                                                      𝐸′ =
𝐸(1−𝜈)

(1−2𝜈)(1+𝜈)
             (17) 

 

and 𝐼 is the area moment of inertia, and 𝐴 is the cross-sectional area of the beam [31].  

 

It must be noted that various authors take different values for 𝐸′ with an additional simplification of 

disregarding Poisson’s ratio 𝜈 in the derivation of equation (17). Kahrobaiyan et al. [28] take 𝐸′ = 𝐸 

for general case and Zhao et al. [35] take it to be 𝐸′ = 𝐸/(1 − 𝜈2) for plane strain case. There are also 

different opinions of the requirement of Poisson’s ratio in the relevant formulation [49,50]. The results 

in this article will be obtained by using equation (17) based on plane strain assumption, but a comparison 

of length scale parameters based on plane stress assumption is also provided in Section 3. 

 

 𝑊𝑒𝑥𝑡 is the external work due to applied surface and body forces and is given as:  

 

𝑊𝑒𝑥𝑡 = ∫ 𝑞(𝑥)
𝐿

0
𝑤𝑑𝑥 + [𝑉(𝑥)𝑤]|0

𝐿 + [𝑀(𝑥)𝑤′]|0
𝐿 + [𝑄(𝑥)𝑤′′]|0

𝐿          (18) 

 

Taking the first variation of (15) and incorporation of  

 

𝐶1  = 𝐸′𝐼 + 𝜇𝐴 (2𝑙𝑜
2 +

8

15
𝑙1

2 + 𝑙2
2),  and 

 

                                𝐶2 = 𝜇𝐼 (2𝑙𝑜
2 +

4

5
𝑙1

2) ,       (19) 

 

leads to 

 

𝛿𝛱 = ∫ [𝐶1𝑤(𝑖𝑣) − 𝐶2𝑤(𝑣𝑖)]𝛿𝑤𝑑𝑥
𝐿

0
+ [−𝐶1𝑤′′′ + 𝐶2𝑤(𝑣)]𝛿𝑤|0

𝐿                      (20) 

 

                                        +[𝐶1𝑤′′ − 𝐶2𝑤(𝑖𝑣)]𝛿𝑤′|0
𝐿 + 𝐶2𝑤′′′𝛿𝑤′′|0

𝐿 − 𝛿𝑊𝑒𝑥𝑡 = 0 . 
 

For the variation 𝛿𝑤, the corresponding external conjugate forces are the shear forces 𝑞(𝑥) and 𝑉(𝑥), 

whereas the conjugate forces for the variation of rotation 𝛿𝑤′ is the bending moment 𝑀(𝑥). The work 

conjugate of the variational curvature term 𝛿𝑤′′ is the higher-order load 𝑄(𝑥). Within this context, the 

first variation of the external  𝛿𝑊𝑒𝑥𝑡 can be described as: 
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𝛿𝑊𝑒𝑥𝑡 = ∫ 𝑞(𝑥)
𝐿

0
𝛿𝑤𝑑𝑥 + [𝑉(𝑥)𝛿𝑤]|0

𝐿 + [𝑀(𝑥)𝛿𝑤′]|0
𝐿 + [𝑄(𝑥)𝛿𝑤′′]|0

𝐿  (21) 

 

Incorporation of equation (21) into equation (20) results in  

 

𝛿𝛱 = ∫ [𝐶1𝑤(𝑖𝑣) − 𝐶2𝑤(𝑣𝑖) − 𝑞(𝑥)]𝛿𝑤𝑑𝑥
𝐿

0
+ [−𝐶1𝑤′′′ + 𝐶2𝑤(𝑣) − 𝑉(𝑥)]𝛿𝑤|0

𝐿    (22) 

    +[𝐶1𝑤′′ − 𝐶2𝑤(𝑖𝑣) − 𝑀(𝑥)]𝛿𝑤′|0
𝐿 + [𝐶2𝑤′′′ − 𝑄(𝑥)]𝛿𝑤′′|0

𝐿 = 0 . 
 

Equation (22) leads to the  Euler-Lagrange equation of the variational formulation based on the total 

potential energy (16) for the Euler-Bernoulli beam equation derived under pure bending for MSGT as 

 

      𝐶1
𝑑4𝑤

𝑑𝑥4 − 𝐶2
𝑑6𝑤

𝑑𝑥6 − 𝑞(𝑥) = 0                                         (23) 

 

along with the relations between the force terms and displacement field at the boundaries 

 

𝑉(𝑥) = −𝐶1
𝑑3𝑤

𝑑𝑥3 + 𝐶2
𝑑5𝑤

𝑑𝑥5  ,       𝑀(𝑥) = 𝐶1
𝑑2𝑤

𝑑𝑥2 − 𝐶2
𝑑4𝑤

𝑑𝑥4  ,  and       𝑄(𝑥) = 𝐶2
𝑑3𝑤

𝑑𝑥3   . (24) 

 

Equation (23) can be considered as the strong form of the static force balance which also enforces the 

moment balance (due to the symmetry of the stress tensor). The terms in equation (24) can be considered 

as the beam counterpart for the Cauchy stress theorem which relates the stresses and surface tractions 

in solids in MSGT. 

 

While constructing the Boundary Conditions (BC’s), the following should be defined:  

 

 either a Dirichlet BC for vertical displacement 𝑤 or a Neumann BC for shear force 𝑉, 

 either a Dirichlet BC for rotation 𝜃 or a Neumann BC for bendig moment 𝑀, 

 either a Dirichlet BC for curvature 𝜅 or a Neumann BC for higher order moment 𝑄 (the non-

classical BC), 

 

where 𝑤, 𝜃, and 𝜅 =
𝑑2𝑤(𝑥)

𝑑𝑥2  correspond to vertical displacement, rotation, and curvature, respectively, 

see also Figure 2. 

 

(a)  (b)  
 

Figure 2. (a) The boundary 𝜕B = 𝜕B 𝑢 ∪ 𝜕B𝑡 is decomposed into Dirichlet (essential) 𝜕B 𝑢and Neumann (natural) 

type conditions 𝜕B𝑡 for a beam in MSGT. Dirichlet boundary conditions require the specification of 

the displacement, rotation and curvature {𝑤, 𝜃, 𝜅} whereas, the Neumann boundary conditions require 

the specification of shear force, bending moment, and higher order moment {𝑉, 𝑀, 𝑄}, respectively. (b) 

Undeformed and deformed configurations of a beam element. 

 

2.3. Weak Formulation and Finite Element Discretization 

 

The analytical solution of equation (23) for an Euler-Bernoulli beam under certain boundary conditions 

is given by Kong et al. [26], and Akgöz and Civalek [31]. Relevant solutions can be derived for other 

boundary conditions and varying cross sections as well. However, given real life applications of micro-
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beams in MEMS and NEMS structures [1, 2], finite element analysis is less tedious and easier to apply 

for complex boundary conditions involving forces and displacements, for both design and analysis 

purposes, and therefore is the focus of this research. In this section, the stiffness matrix of an Euler-

Bernoulli beam based on MSGT is derived. 

 

𝛿𝛱 =
1

2
∫ [𝑤′′𝐶1𝛿𝑤′′ + 𝑤′′′𝐶2𝛿𝑤′′′]𝑑𝑥

𝐿

0
      (25) 

 − ∫ 𝑞(𝑥)
𝐿

0

𝛿𝑤𝑑𝑥 + [𝑉(𝑥)𝛿𝑤]|0
𝐿 + [𝑀(𝑥)𝛿𝑤′]|0

𝐿 + [𝑄(𝑥)𝛿𝑤′′]|0
𝐿  = 0. 

 

Herein, we define curvature 𝜅 as an additional field variable for each node of the 2-node beam element 

(corresponding conjugate of which is 𝑄(𝑥) in equation (23) in addition to vertical displacement 𝑤 and 

rotation 𝜃.  Recall that by replacing 𝑣(𝑥) = 𝛿𝑤, one can easily show the equivalence of the weak form 

(25) and the first variation (20) of the total potential energy functional (16) by multiplying the beam 

equation (23) with a test function 𝑣(𝑥) = 𝛿𝑤 and integrating over the length of beam element 𝐿, and 

then using integration by parts and reorganizing terms.  

 

In order to solve the equation (25), the finite element method will b used. To do so , the nodal vector of 

generalized displacements is defined 

 

𝑫𝑘 = [𝑤1 𝜃1 𝜅1 𝑤2 𝜃2 𝜅2]𝑇     (26) 

 

 
 

Figure 3. (a) Nodal degrees of freedom and (b) nodal forces acting on a higher order beam element 
 

𝑵(𝒙) = [𝑁1(𝑥) 𝑁2(𝑥) 𝑁3(𝑥) 𝑁4(𝑥) 𝑁5(𝑥) 𝑁6(𝑥)]   (27) 

 

which interpolate the displacement field within the element. A special choice of shape functions 

 

𝑤(𝑥) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2 + 𝑎4𝑥3+𝑎5 cosh (𝑥√
𝐶1

𝐶2
) +𝑎6 sinh (𝑥√

𝐶1

𝐶2
)  (28) 

 

satisfy the solution of the partial differential equation (23) for 𝑞(𝑥) = 0.  Moreover,  the following 

relations for the vertical displacement, rotation, curvature fields  

 

𝑤(𝑥) = 𝑵(𝑥)𝑫       𝜃(𝑥) ≔ 𝑤′(𝑥) = 𝑵′(𝑥)𝑫       𝜅(𝑥) ≔ 𝑤′′(𝑥) = 𝑵′′(𝑥)𝑫   ,  (29) 

 

can be established along with their variations 

 

𝛿𝑤(𝑥) = 𝑵(𝑥)𝛿𝑫      𝛿𝜃(𝑥) ≔ 𝛿𝑤′(𝑥) = 𝑵′(𝑥)𝛿𝑫      𝛿𝜅(𝑥) ≔ 𝛿𝑤′′(𝑥) = 𝑵′′(𝑥)𝛿𝑫  (30) 

 

 or  

 𝛿𝑤(𝑥) = 𝛿𝑫𝑇 𝑵(𝑥)𝑇      𝛿𝑤′(𝑥) = 𝛿𝑫𝑇 𝑵′(𝑥)𝑇     𝛿𝑤′′(𝑥) = 𝛿𝑫𝑇 𝑵′′(𝑥)𝑇   (31) 

 

1 2 1 2 
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with 𝑵′(𝑥) =
𝑑𝑵(𝑥)

𝑑𝑥
 and  𝑵′′(𝑥) =

𝑑2𝑵(𝑥)

𝑑𝑥2 . The shape functions (27) which satisfy the displacement 

function (28) are derived with the help of the MATLAB by symbolic math toolbox and are given in 

Appendix. Incorporation of the interpolation functions within the element subdomain for displacement 

𝑤′′(𝑥), 𝑤′′′(𝑥) and their variations 𝛿𝑤′′(𝑥), 𝛿𝑤′′′(𝑥) into (25) one obtains the discrete counterpart 

 

⋃ {𝛿𝑫𝑘𝑇 {∫ [𝐶1 (
𝑑2𝑵(𝑥)

𝑑𝑥2 )

𝑇

(
𝑑2𝑵(𝑥)

𝑑𝑥2 )] + [𝐶2 (
𝑑3𝑵(𝑥)

𝑑𝑥3 )

𝑇

(
𝑑3𝑵(𝑥)

𝑑𝑥3 )]  𝑑𝑥
𝐿𝑒

0

} 𝑫𝑘}  

𝑛𝑒𝑙𝑒𝑚

𝑘=1

= 𝛿𝑫g𝑇𝑭g                                                     
 

of the continuous functional (25). The variational discrete displacement vector 𝛿𝑫𝑘 vanishes at essential 

boundaries (the global vector has to have zero entries at essential boundaries) where 𝑫 = �̅�|𝜕B 𝑢is 

prescribed. The equality (32) must hold for arbitrary variation 𝛿𝑫g ⋃ 𝛿𝑫𝑘𝑛𝑒𝑙𝑒𝑚
𝑘=1 . Therefore, for linear 

problems, the continuous system (25) reduces to a set of linear algebraic equations in the form 

 

         𝑲g ∙ 𝑫g = 𝑭g ,       (33) 

 

where 𝑲g = ⋃ 𝑲𝑘𝑛𝑒𝑙𝑒𝑚
𝑘=1  is the global stiffness matrix, 𝑫g = ⋃ 𝑫𝑘𝑛𝑒𝑙𝑒𝑚

𝑘=1  is the global displacement vector,  

and 𝑭g = ⋃ 𝑭𝑘𝑛𝑒𝑙𝑒𝑚
𝑘=1 , respectively. The element stiffness matrix 𝑲𝑒 is evaluated as 

 

 𝑲𝑒  = ∫ [(
𝑑2𝑵(𝑥)

𝑑𝑥2 )
𝑇

𝐶1 (
𝑑2𝑵(𝑥)

𝑑𝑥2 ) + (
𝑑3𝑵(𝑥)

𝑑𝑥3 )
𝑇

𝐶2 (
𝑑3𝑵(𝑥)

𝑑𝑥3 )] 𝑑𝑥 
𝐿𝑒

0
.          (34) 

 

Element nodal force vector can also be defined as 

 

 𝑭e =      ∫ [𝑵(𝑥)𝑇𝑞(𝑥)]𝑑𝑥 
𝐿𝑒

0
 +   𝑭d ,                (35) 

 

where  𝑭d = [V1 M1 Q1 V2 M2 Q2] is the element nodal force vector. The second 𝑵′′(𝑥) and third  

𝑵′′′(𝑥) derivatives of the shape functions 𝑵(𝑥) can be derived in a straightforward manner leading to 

lengthy expressions which are omitted from the manuscript. This has been carried out with the MATLAB 

symbolic toolbox. The elements of the row vector for shape functions 𝑵(𝑥) are given in the Appendix. 

In the limiting case, where all the length scale parameters 𝑙0, 𝑙1, and 𝑙2 vanish, MSGT formulation tends 

to the classical theory as leading to 𝐶1 → 𝐸′𝐼 and 𝐶2 → 0. Then, the well-known element stiffness matrix 

for classical Euler-Bernoulli beam theory is achieved as 

 

𝑲𝑒  = ∫ [(
𝑑2�̂�(𝑥)

𝑑𝑥2 )
𝑇

𝐸𝐼 (
𝑑2�̂�(𝑥)

𝑑𝑥2 )] 𝑑𝑥 
𝐿𝑒

0
 .            (36) 

 

The sahape functions �̂�(𝑥) → [�̂�1 �̂�2 �̂�3 �̂�4] reduce to the classical third order Hermite cubic 

polynomials given in the Appendix. 

 
3. NUMERICAL ANALYSIS AND PARAMETER IDENTIFICATION 

 
The finite element method outlined in Section 2 is implemented into MATLAB and used for the 

subsequent investigations carried out in this section using double cantilever and cantilever beams 

illustrated in Figure 4. The finite element codes developed in this study are verified using the values 

reported in Lam et al. [25], Kong et al. [26] and Kahrobaiyan et al. [28]. A number of experiments are 

conducted on gold micro- and nano-beams and reported in the literature [47]. The linear elastic portions 

of the load-displacement curves reported in the literature are used for the parameter identification of the 

elastic constants of the modified strain gradient theory for gold micro-beams.  

(32) 
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Several remarks on the selection of the experimental data and the parameter identification: 

 

 There are actually various experiments published with gold specimens in the literature, however 

as they don’t present raw load-displacement curves but stress-strain curves (based on classical 

theories), they are not incorporated in the study. 

 The analysis will focus on the extraction of the length scale parameters (𝑙0, 𝑙1, 𝑙2) for gold in 

order to obtain the best fit to the load-displacement curves for beams with various thicknesses. 

 For the sake of convenience, the length scale parameters (𝑙0, 𝑙1, 𝑙2) are taken identical for MSGT 

(as in many studies including the breakthrough study of Lam et al. [25]) and will be referred to 

as 𝑙. 
 Among all the experimental data in the literature, the investigation the data provided by 

Espinosa et al. [47] is the only one which provides sufficient information for the extraction of 

the length-scale parameter for gold. Therein, load-displacement curves for double cantilever 

beam with two different thicknesses are presented. The dimensions of the specimen geometries 

are depicted in Figure 4 and Table 1. 

 The finite element mesh for the double cantilever beam and the cantilever beam used throughout 

the simulations consists of 10 beam elements. 

 

 
 

Figure 4. Illustration of double cantilever (left) and cantilever beams (middle) along with their cross section 

(right). F is a point load applied to the middle of the double cantilever beam, and free end of the 

cantilever beam 

 
Table 1. Specimen dimensions and force-displacement values for the double cantilever beams reported in Espinosa 

et al. [47]. 𝑏, 𝑡, 𝐿 denote the width, thickness and length of the specimen respectively. 𝐹 and 𝑤 are the 

vertical force and the actual mid-point displacement, respectively. (*gage dimension) 

 

Type Specimen # 
𝑏  

[μm] 
𝑡 [μm] 𝐿 [μm] 𝐹 [mN] 𝑤 [μm] 

Double-cantilever 1 10* 0.5 400* 0.3 15 

Double-cantilever 2 10* 1 400* 0.3 9 

 
For the quantification of the best fit, an error function  

 

𝐸𝑟𝑟(𝑤) = (𝑤′1 − 𝑤1)2 + (𝑤′2 − 𝑤2)2      (37) 

 

is defined as the L2-norm of the residual vector. Here 𝑤′1 and 𝑤′2 are the mid-point deflections predicted 

by MSGT and 𝑤1 and 𝑤2 are the actual deflections from experiments, for specimens 1 and 2 

respectively. The error function is evaluated for different values of 𝐸 and 𝑙 (𝐸 varying from 20 GPa to 

140 GPa with a resolution of 1 GPa, 𝑙 varying from 2 μm to 8 μm with a resolution of 0.05 μm), in order 

to find the minimum error, see Figure 5.  
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Figure 5. Error function (RSS) per various values of 𝐸 and 𝑙. 

The minimum and maximum values of E are chosen according to the upper and lower limits reported in 

the literature. It is seen that the error function is minimum along a curve as given in Figure 6 

(corresponding to the dark blue region in Figure 5). It is also found that the error values are 

monotonically decreasing as 𝐸 decreases. Values smaller than E=20 GPa are excluded since they are 

not found realistic. Hence a realistic evaluation for 𝐸 and 𝑙 at the minimum error point could not be 

made. Instead, set of values for 𝐸 and 𝑙 are identified (which are in fact those corresponding to minimum 

error values given in Figure 5 and Figure 6). However, for all reported values, significant size effect is 

present (𝑙 ∈ [2.70, 7.15] μm). 

 

 
Figure 6. 𝐸 [MPa] and 𝑙 [μm] values corresponding to minimum values of error function 

 

It is found that the minimum error for bulk elastic modulus of gold (𝐸=80 GPa), 𝑙 is found as 3.60 μm, 

whereas for arbitrary values of 𝐸=20 GPa and 140 GPa, the length scale parameters are 7.15 μm and 

2.70 μm respectively. It must also be noted that the error margin for these length scale parameters is 

±0.025 μm because of the resolution of the length scale parameter in the analysis. For the sake of 

convenience, these length scale parameters are to be referred as 𝑙20 (corresponding to 𝐸=20 GPa), as 𝑙80 

(corresponding to 𝐸=80 GPa), and 𝑙140 (corresponding to 𝐸=140 GPa). 
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This size effect, which is characterized with length scale parameters is crucial in determining actual 

beam behavior. The ratio of maximum deflections for a double-cantilever beam (i.e. at the middle node) 

predicted by classical theory (𝑤0′) and MSGT (𝑤′) are drawn in Figure 7 below with various thicknesses, 

with width 𝑏 = 5𝑡, and length 𝐿 = 4𝑏, 𝐹 = 30 mN as found with the developed codes. 

 

It is seen that the MSGT asymptotically approaches to the classical theory as the thickness, which is 

related to the structural length scale, increases. With the assumed thickness-width-length ratio (1:5:20) 

for gold micro-beams, the error of using classical theory with macroscopic material parameters in 

predicting beam deflections is more than 10% if thickness is reduced below t={16,32} μm for E={80,140} 

GPa. Further analysis shows that variation in the thickness-width-length ratio does not affect these values 

significantly and beam thickness is seen to be the critical parameter controlling the size effect.  

 

There is also another distinctive feature of MSGT that separates it from classical beam theory. In 

classical theory, deflection under a constant force is directly proportional to 𝐿3 and inversely 

proportional to 𝐸𝐼 = 𝐸𝑏𝑡3/12. When thickness-width-length proportionality is preserved, this results 

in a directly proportional decrease in deflections with increasing dimensions, as given in Figure 8. In 

MSGT, however, there is a particular size for the same thickness-width-length ratio for which there is a 

maximum deflection (𝑡=10 μm in this example for 𝐸=80 GPa).  

 
Moreover, between zero and this maximum deflection point (for constant thickness-width-length ratio), 

the trends in deflections predicted by classical beam theory and MSGT are completely reversed (a 

decrease in classical theory, an increase in MSGT). This aspect, if explored further with experiments 

and if found compatible, can be made use of for finding optimum shapes and dimensions for various 

MEMS applications. 

 
 

Figure 7. The ratio of mid-point deflection predicted by MSGT (𝑤′) to that predicted by classical theory (𝑤0′) 
with 𝑙 = 3.60 μm (𝑙80), for geometrical parameters and the force applied to the middle node as defined, 

and the corresponding thickness level for an error of 10% and 25% respectively. The figures for 𝑙20 and 

𝑙140 are also shown with dashed lines. 

 

In order to further emphasize the effects of the size effect, the following case, this time for a cantilever 

beam is also run, as given in Table 2. 
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Figure 8. The deflections predicted by MSGT (𝑤′) (for 𝑙20, 𝑙80, and 𝑙140), and by classical Euler Bernoulli Beam 

Theory (𝑤0′) for geometrical parameters and the force applied to the middle node as defined above. 

 
In Figure 9, the deflected shapes for the beam with the geometric properties given in Table 2, , are drawn 

according to classical theory and MSGT. The results are normalized with respect to the maximum 

deflection at the free node for classical theory, length of the beam normalized by diving to the overall 

beam length. The examples can be varied to show the size effect in beam bending; the outcome of would 

be the principle of increasing beam stiffness as beam sizes decrease. 

 
Table 2. Selected beam to show size effect under a vertical load of 1 mN applied on the free node of the cantilever 

beam 

 

type 𝑏 [μm] 𝑡 [μm] 𝐿 [μm] 

Cantilever 20 4 80 
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Figure 9. The deflections predicted by classical theory (EBBT) (denoted as 𝑤0) and MSGT (denoted as 𝑤) divided 

by tip deflection predicted by classical theory 𝑤0
𝑡𝑖𝑝

, for the specimen with geometric properties given 

in Table 2. 

 

The length scale parameters for three different assumptions for 𝐸′ are outlined in Table 3, where  𝐸=80 

GPa. 

 

Table 3. Length scale parameters identified with  different assumptionf for the parameter 𝐸′. 

 

Formulation 𝒍 [μm] 

𝐸′ =
𝐸(1−𝜈)

(1−2𝜈)(1+𝜈)
, Akgöz and Civalek [31] 3.577 

𝐸′ = 𝐸, Kahrobaiyan et al. [28] 3.582 

𝐸′ =
𝐸

(1−𝜈2)
, Zhao et al. [35] 3.581 

 

It must be noted that the plane stress or plane strain assumption do not affect the length scale parameter 

identified significantly. This is due to the fact that, the contribution of length scale parameters to the 

bending stiffness of the beam is considerably higher than that of the  Young’s modulus.  

 
4. REMARKS AND CONCLUSION 

 
In this contribution, a compact formulation of Euler-Bernoulli beam theory is proposed for the modified 

strain gradient theory of elasticity of Lam et al. [25]. The finite element formulation based on Galerkin 

approach is briefly introduced. As a novel aspect, the length scale parameter of gold is identified with 

the help of the experimental data reported by Espinosa et al. [47]. 

 

The comparison of the results of classical beam theory with MSGT clearly demonstrates the 

insufficiency of the classical beam theory at micron-scale. It is shown that for a double cantilever gold 

beam, the deviation in classical theory with bulk properties of gold is approximately 10% for a beam 

thickness of around 60/30 μm, and 25% for a beam thickness of around 32/16 μm for elasticity modulus 
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E=140/80 GPa. It can be concluded that higher-order theories should definitely be employed for beams 

with thickness smaller than 50 μm. From MSGT,  the length scale parameter is identified to be in the 

range 𝑙 ∈ [2.7,7.15] μm. Unfortunately, due to lack of adequate number of experimental data performed 

on varying beam thickness, a unique set of parameters could not be obtained. For this purpose, the length 

scale parameter according to the selected modulus of elasticity parameters are identified by minimizing 

the error function described as L2-norm of the mid-point displacement of the double cantilever beam. 

However, all identified parameters demonstrate significant size effect. 

 

It is crucial to mention that more experiments need to be undertaken with various dimensions as 

controlled parameters in order to verify length scale parameters. In this study, only two specimens with 

variable thicknesses (0.5 μm and 1 μm) are used, and more data is needed for different thicknesses. It 

may as well be the case that width and length of the beams should be taken as controlled parameters to 

ultimately verify that thickness is the sole parameter to be used along with bending parameter in order 

to come up with length scale parameters. 

 

The length scale parameters for MSGT are taken as equal in this work as in many studies for 

simplification purposes (𝑙0 = 𝑙1 = 𝑙2).  However, more experimental data is required for reaching better 

fit between theory and experiment. This aspect can be elaborated in the future with the help of additional 

experimental data. This work clearly demonstrates the lack of sufficient experimental data on gold 

micro-beams at varying sizes and the necessity of the incorporation of higher-order beam theories for 

the analysis and design of NEMS-MEMS devices. 
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APPENDIX 

 
The shape functions mentioned in equation (27) and form the major part of the stiffness matrix in 

equation (31) are given as: 

 

𝑁1(𝑠) = [12cosh(q(s − 1)) − 12cosh(qs) + 12cosh(q) + 6q2s2 − 4q2s3 + 8q2cosh(q) − q3sinh(q) + 

6qsinh(qs) − 6q2s − 18qsinh(q) + 4q2 + 6qsinh(q(s − 1)) + 12qssinh(q) − 6q2scosh(q) − 6q2s2cosh(q) 

+ 4q2s3cosh(q) + 3q3s2 sinh(q) − 2q3s3 sinh(q) − 12]  / D 

 

𝑁2(𝑠)= −[12sinh(q(s − 1)) − 12sinh(qs) + 12sinh(q) − 2q3s3 + 4q2sinh(q) − 12qs + 4q2sinh(q(s − 1)) 

+ 2q3s − 12qcosh(q) + 12qcosh(q(s − 1)) + 2q2sinh(qs) + 12qscosh(q) + 4q3scosh(q) − 12q2ssinh(q) − 

q4ssinh(q) − 6q3s2cosh(q) + 2q3s3cosh(q) + 6q2s2 sinh(q) + 2q4s2 sinh(q) − q4s3sinh(q)]L  / (−qD) 

 

𝑁3(𝑠) = −[6sinh(q(s − 1)) − 2q − 6sinh(qs) + 6sinh(q) + q3s2 − q3s3 + q2sinh(q) + 6qs + q2sinh(q(s − 

1))+2qcosh(qs) − 12qs2 + 4qs3 − 4qcosh(q) + 4qcoshh(q(s − 1)) − 6qscosh(q) + 12qs2cosh(q) − 

4qs3cosh(q) − q3scosh(q) + 4q2ssinh(q) + 2q3s2cosh(q) − q3s3cosh(q) − 9q2s2 sinh(q) + 4q2s3 sinh(q)]L2 

 / (−qD) 
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𝑁4(s) = −[12cosh(q(s − 1)) − 12cosh(qs) − 12cosh(q) + 6q2s2 − 4q2s3 + 6qsinh(qs) − 6q2s − 6qsinh(q) 

+ 6qsinh(q(s − 1)) + 12qssinh(q) − 6q2scosh(q) − 6q2s2cosh(q) + 4q2s3cosh(q) + 3q3s2 sinh(q) − 2q3s3 

sinh(q) + 12]  / D 

𝑁5(𝑠) = −[12q − 12sinh(q(s − 1)) + 12sinh(qs) − 12sinh(q) + 6q3s2 − 2q3s3 + 2q2sinh(q) − 12qs + 

2q2sinh(q(s − 1)) − 12qcosh(qs) − 4q3s + 4q2sinh(qs) + 12qscosh(q) − 2q3scosh(q) + 2q3s3cosh(q) − 

6q2s2 sinh(q) + q4s2sinh(q) − q4s3 sinh(q)]L/(−qD) 

 

𝑁6(s ) = −[6sinh(q(s − 1)) − 4q − 6sinh(qs) + 6sinh(q) − 2q3s2 + q3s3 + 6qs + 4qcosh(qs) + 4qs3 + q3s 

− 2qcosh(q) + 2qcoshh(q(s − 1)) − q2sinh(qs) − 6qscosh(q) + 4qs3cosh(q) + 2q2ssinh(q) − q3s2cosh(q) 

+ q3s3cosh(q) + 3q2s2sinh(q) + 4q2s3sinh(q)]L2 / (−qD) 

where: 

 

q = L/√𝑐1 𝑐2⁄ , s = x/L, D = 24cosh(q) + 8q2cosh(q) − q3sinh(q) − 24qsinh(q) + 4q2 – 24. 

 

In the limiting case where all the length scale parameters 𝑙0, 𝑙1, and 𝑙2 vanish, MSGT formulation tends 

to the classical theory as leading to 𝐶1 → 𝐸′𝐼 and 𝐶2 → 0. 

 

For vanishing length scale parameter 𝑙 The classical shape functions in the stiffness matrix in Equation 

(32) reduces to 

 

𝑁1 → �̂�1 =1−3s2+2s,3    𝑁2 → �̂�2=Ls(1−s) 2,    𝑁4 → �̂�3=3 s2 (1−2s),     𝑁5 → �̂�4 =L s2(s−1) 

𝑁3 → 0 ,     𝑁6 → 0  . 
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