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Abstract: In this study, we defined the concept of quasi e∗ -θ -closed sets by means of e∗ -θ -open sets.

Depending on this concept, we introduced approximately e∗θ -open functions and investigated some of its

basic properties. Also, we defined and studied contra pre e∗θ -open functions, which are stronger than the

approximately e∗θ -open functions. Moreover, we characterized the class of e∗θ -T 1
2

spaces.
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1. Introduction

In 2015, Farhan and Yang [10] introduced a new class of open sets called e∗ -θ -open. In the

following years, some concepts of open functions in relation to e∗ -θ -open sets [10] have been

investigated. The notion of e∗θ -open functions is introduced by Ayhan [3] as follows: A function

f ∶ X → Y is said to be e∗θ -open if the image of each open set U of X is e∗ -θ -open in Y . In

2018, Ayhan and Özkoç [6] defined a new type of open functions called e∗θ -semiopen functions.

Again within the same year, Ayhan and Özkoç [5] defined and studied pre e∗θ -open functions. In

2022, Ayhan [4] introduced and investigated weakly e∗θ -open functions and also obtained some

characterizations of its.

Rajesh and Salleh [14] gave the definition of quasi-b -θ -closed sets via b -θ -open sets [13]

in their work titled “Some more results on b -θ -open sets”. Caldas and Jafari [7] introduced and

studied gβθ -closed sets through β -θ -openness [12], in 2015.

In this paper, we introduce quasi e∗ -θ -closed sets [1] defined with the help of e∗ -θ -open

sets. Moreover, we define and study approximately e∗θ -open functions and contra pre e∗θ -open

functions such that these are weaker than e∗θ -open functions.
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2. Preliminaries
Throughout this paper, X and Y represent topological spaces. For a subset A of a space X ,

cl(A) and int(A) denote the closure of A and the interior of A , respectively. A point x ∈ X is

called to be δ -cluster point [16] of A if int(cl(U)) ∩A ≠ ∅ for every open neighborhood U of x .

The set of all δ -cluster points of A is called the δ -closure [16] of A and is denoted by clδ(A) . If

A = clδ(A) , then A is called δ -closed [16] and the complement of a δ -closed set is called δ -open

[16]. The set {x∣(∃U ∈ O(X,x))(int(cl(U)) ⊆ A)} is called the δ -interior of A and is denoted by

intδ(A) .

A subset A is called e∗ -open [9] A ⊆ cl(int(clδ(A))) . The complement of an e∗ -open set

is called e∗ -closed [9]. The intersection of all e∗ -closed sets of X containing A is called the e∗ -

closure [9] of A and is denoted by e∗ -cl(A) . The union of all e∗ -open sets of X containing in A

is called the e∗ -interior [9] of A and is denoted by e∗ -int(A) . A subset A is said to be e∗ -regular

[10] set if it is e∗ -open and e∗ -closed.

A point x of X is called an e∗ -θ -cluster point of A if e∗ -cl(U) ∩A ≠ ∅ for every e∗ -open

set U containing x . The set of all e∗ -θ -cluster points of A is called the e∗ -θ -closure [10] of A and

is denoted by e∗ -clθ(A) . A subset A is said to be e∗ -θ -closed if A = e∗ -clθ(A) . The complement

of an e∗ -θ -closed set is called an e∗ -θ -open [10] set. A point x of X said to be an e∗ -θ -interior

point [10] of a subset A , denoted by e∗ -intθ(A) , if there exists an e∗ -open set U of X containing

x such that e∗ -cl(U) ⊆ A. Also it is noted in [10] that

e∗-regular⇒ e∗-θ-open⇒ e∗-open.

The family of all open (resp. closed, e∗ -θ -open, e∗ -θ -closed, e∗ -open, e∗ -closed, e∗ -regular) sub-

sets of X is denoted by O(X) (resp. C(X) , e∗θO(X) , e∗θC(X) , e∗O(X) , e∗C(X) , e∗R(X)) .

The family of all open (resp. closed, e∗ -θ -open, e∗ -θ -closed, e∗ -open, e∗ -closed, e∗ -regular) sets

of X containing a point x of X is denoted by O(X,x) (resp. C(X,x) , e∗θO(X,x) , e∗θC(X,x) ,

e∗O(X,x) , e∗C(X,x) , e∗R(X,x)) .

We shall use the well-known accepted language almost in the whole of the proofs of the

theorems in this article.

Lemma 2.1 [10, 11] Let X be a topological space and A,B ⊆ X . Then the following properties

are hold:
(i) A ⊆ e∗ -cl(A) ⊆ e∗ -clθ(A) .

(ii) If A ∈ e∗θO(X), then e∗ -clθ(A) = e∗ -cl(A).

(iii) If A ⊆ B , then e∗ -clθ(A) ⊆ e∗ -clθ(B).

(iv) e∗ -clθ(A) ∈ e∗θC(X) and e∗ -clθ(e∗ -clθ(A)) = e∗ -clθ(A).
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(v) If Aα ∈ e∗θO(X) for each α ∈ Λ , then ⋃{Aα∣α ∈ Λ} ∈ e∗θO(X).

(vi) e∗-clθ(A) = ⋂{F ∣(A ⊆ F )(F ∈ e∗θC(X))}.

(vii) e∗ -clθ(X/A) =X/e∗ -intθ(A).

(viii) A is e∗ -θ -open in X iff for each x ∈ A , there exists U ∈ eR(X,x) such that U ⊆ A .

Definition 2.2 A function f ∶X → Y is called e∗ -irresolute [8] if f−1[A] is e∗ -θ -open in X for

every e∗ -θ -open set A of Y .

3. Quasi e∗ -θ -closed Sets

Definition 3.1 A subset A of a space X is called quasi e∗ -θ -closed [2] (briefly, qe∗θ -closed) if

e∗ -clθ(A) ⊆ U whenever A ⊆ U and U is e∗ -θ -open in X . A subset A of a space X is said to be

quasi e∗ -θ -open (briefly, qe∗θ -open) if X/A is qe∗θ -closed. The family of all qe∗θ -closed (resp.

qe∗θ -open) subsets of X is denoted by qe∗θC(X) (resp. qe∗θO(X)).

Theorem 3.2 Every e∗ -θ -closed set is qe∗θ -closed.

Proof Let A ∈ e∗θC(X) , U ∈ e∗θO(X) and A ⊆ U .

A ∈ e∗θC(X)
(U ∈ e∗θO(X))(A ⊆ U) }⇒ e∗-clθ(A) = A ⊆ U.

◻

Remark 3.3 This implication is not reversible as shown in the following example.

Example 3.4 Let X = {1,2,3} , define a topology τ = {∅,X,{1},{2},{1,2}} on X . It is not

difficult to see e∗θC(X) = 2X/{{3}} and the subset {1,2} is qe∗θ -closed but it is not e∗ -θ -closed

(cf. Example 1 in [10]).

Lemma 3.5 A subset A of a topological space X is qe∗θ -open if and only if F ⊆ e∗ -intθ(A)

whenever F is e∗ -θ -closed in X and F ⊆ A .

Proof Necessity. Let F ⊆ A , F ∈ e∗θC(X) and A ∈ qe∗θO(X) .

A ⊇ F ∈ e∗θC(X)⇒ /A ⊆ /F ∈ e∗θO(X)
A ∈ qe∗θO(X)⇒ /A ∈ qe∗θC(X) }

⇒ /e∗-intθ(A) = e∗-clθ(/A) ⊆ /F

⇒ F ⊆ e∗-intθ(A).
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Sufficiency. Let /F ∈ e∗θO(X) and /A ⊆ /F .

(/F ∈ e∗θO(X))(/A ⊆ /F )⇒ (F ∈ e∗θC(X))(F ⊆ A)
Hypothesis }

⇒ F ⊆ e∗-intθ(A)

⇒ e∗-clθ(/A) = /e∗-intθ(A) ⊆ /F

Then, /A ∈ qe∗θC(X) and hence A ∈ qe∗θO(X) . ◻

Definition 3.6 A function f ∶X → Y is said to be approximately e∗θ -open (briefly, ap-e∗θ -open)

if e∗-clθ(B) ⊆ f[A] whenever A ∈ e∗θO(X) , B ∈ qe∗θC(Y ) and B ⊆ f[A] .

Definition 3.7 A function f ∶X → Y is said to be:

(1) e∗θ -closed [3] (resp. pre e∗θ -closed [5]), if the image of each closed (resp. e∗ -θ -closed) set

F of X is e∗ -θ -closed in Y .

(2) e∗θ -open [3] (resp. pre e∗θ -open [5]), if the image of each open (resp. e∗ -θ -open) set U of

X is e∗ -θ -open in Y .

Theorem 3.8 Let f ∶X → Y be a function. If f[A] is e∗ -θ -closed in Y for every A ∈ e∗θO(X) ,

then f is ap-e∗θ -open.

Proof Let B ⊆ f[A] , where A ∈ e∗θO(X) and B ∈ qe∗θC(Y ) .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Y ))(B ⊆ f[A])
Hypothesis }⇒ e∗-clθ(B) ⊆ e∗-clθ(f[A]) = f[A]

⇒ f[A] ∈ e∗θC(Y ).

◻

Theorem 3.9 Every pre e∗θ -open function is ap-e∗θ -open.

Proof Let B ⊆ f[A] , where A ∈ e∗θO(X) and B ∈ qe∗θC(Y ) .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Y ))(B ⊆ f[A])
f is pre e∗θ-open }⇒ (f[A] ∈ e

∗θO(Y ))(B ∈ qe∗θC(Y ))(B ⊆ f[A])

⇒ e∗-clθ(B) ⊆ f[A]. ◻

Remark 3.10 This implication is not reversible as shown in the following example.

Example 3.11 Let X = {a, b, c} and τ = {∅,X,{a},{b},{a, b}} . Define the function f ∶ (X, τ)→

(X, τ) by f = {(a, a), (b, b), (c, b)}. It isn’t difficult to see e∗θO(X) = 2X/{{a, b}} , qe∗θC(X) = 2X
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and hence f is ap-e∗θ -open. However {a, c} is e∗ -θ -open in X , but f[{a, c}] = {a, b} is not

e∗ -θ -open in X . Therefore, f is not pre e∗θ -open.

Theorem 3.12 Let f ∶X → Y be a function. If the e∗ -θ -open and e∗ -θ -closed sets of Y coincide,

then f is ap-e∗θ -open if and only if f[W ] ∈ e∗θC(Y ) for every e∗ -θ -open subset W of X .

Proof Necessity. Let A be an arbitrary subset of Y such that A ⊆ U , where U ∈ e∗θO(Y ) and

let W ∈ e∗θO(X) .

(A ⊆ U)(U ∈ e∗θO(Y ))
e∗θO(Y ) = e∗θC(Y ) }⇒ e∗-clθ(A) ⊆ e∗-clθ(U) = U

Therefore all subset of Y are qe∗θ -closed and hence all are qe∗θ -open.

(W ∈ e∗θO(X))(Y ⊇ f[W ] ∈ qe∗θO(Y ))(f[W ] ⊆ f[W ])
f is ap-e∗θ-open }⇒ e∗-clθ(f[W ]) ⊆ f[W ]

⇒ f[W ] ∈ e∗θC(Y ).

Sufficiency. It is obvious from Theorem 3.8. ◻

Corollary 3.13 Let f ∶ X → Y be a function. If the e∗ -θ -open and e∗ -θ -closed sets of Y

coincide, then f is ap-e∗θ -open if and only if f is pre e∗θ -open.

Definition 3.14 A function f ∶ X → Y is said to be contra pre e∗θ -open (resp. contra pre

e∗θ -closed) if the image of each e∗ -θ -open (resp. e∗ -θ -closed) set U of X is e∗ -θ -closed (resp.

e∗ -θ -open) in Y .

Theorem 3.15 Every contra pre e∗θ -open function is ap-e∗θ -open.

Proof Let B ⊆ f[A] , where A ∈ e∗θO(X) and B ∈ qe∗θC(Y ) .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Y ))(B ⊆ f[A])
f is contra pre e∗θ-open }⇒ e∗-clθ(B) ⊆ e∗-clθ(f[A]) = f[A].

◻

Remark 3.16 This implication is not reversible as shown in the following example.

Example 3.17 Consider the same topology in Example 3.11. Define the identity function f ∶

(X, τ) → (X, τ) . Then, f is ap-e∗θ -open. However {c} is e∗ -θ -open in X , but f[{c}] = {c} is

not e∗ -θ -closed in X . Therefore, f is not contra pre e∗θ -open.
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Remark 3.18 The following examples show that contra pre e∗θ -openness and pre e∗θ -openness

are independent notions.

Example 3.19 Define the same function on the topology in Example 3.11. Since the image of

every e∗ -θ -open set of X is e∗ -θ -closed in X , then f is contra pre e∗θ -open. However, f is not

pre e∗θ -open.

Example 3.20 Consider the same topology in Example 3.11. Define the identity function f ∶

(X, τ) → (X, τ) . Since the image of every e∗ -θ -open set of X is e∗ -θ -open in X , then f is pre

e∗θ -open. However {c} is e∗ -θ -open in X , but f[{c}] = {c} is not e∗ -θ -closed in X . Therefore,

f is not contra pre e∗θ -open.

Remark 3.21 From Definitions 3.6, 3.7, 3.14, we have the relation among ap-e∗θ -open functions,

contra pre e∗θ -open functions and other well-known functions in topological spaces. The converses

of the below implications are not true in general, as shown in the previous examples.

pre e∗θ-open function
↗̸↙̸ ↘↖̸

e∗θ-open function ↓̸↑̸ ap-e∗θ-open function
↘̸↖̸ ↗↙̸

contra pre e∗θ-open function

Theorem 3.22 If f ∶ X → Y is e∗ -irresolute and ap-e∗θ -open surjection, then f−1[B] is qe∗θ -

open in X whenever B is qe∗θ -open subset of Y .

Proof Let B ∈ qe∗θO(Y ) . Suppose that A ⊆ f−1[B] , where A ∈ e∗θC(X) .

(A ∈ e∗θC(X)⇒ /A ∈ e∗θO(X))(B ∈ qe∗θO(Y )⇒ /B ∈ qe∗θC(Y ))

A ⊆ f−1[B]⇒ f−1[/B] ⊆ /A⇒ f[f−1[/B]] f is surj.= /B ⊆ f[/A]
f is ap-e∗θ-open

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇒ /e∗-intθ(B) = e∗-clθ(/B) ⊆ f[/A]

⇒ /f−1[e∗-intθ(B)] ⊆ /A⇒ A ⊆ f−1[e∗-intθ(B)]
f is e∗-irresolute }⇒ f−1[e∗-intθ(B)] ∈ e∗θO(X)

⇒ A ⊆ f−1[e∗-intθ(B)] = e∗-intθ(f−1[e∗-intθ(B)]) ⊆ e∗-intθ(f−1[B]).

This implies that by Lemma 3.5, f−1[B] is qe∗θ -open in X . ◻

Definition 3.23 A function f ∶ X → Y is called quasi e∗θ -irresolute (briefly, qe∗θ -irresolute) if

f−1[A] is qe∗θ -closed in X for every qe∗θ -closed set A of Y .
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Theorem 3.24 Let f ∶X → Y , g ∶ Y → Z be two functions such that g ○ f ∶X → Z . Then:

(i) g ○ f is ap-e∗θ -open if f is pre e∗θ -open and g is ap-e∗θ -open.

(ii) g ○f is ap-e∗θ -open if f is ap-e∗θ -open and g is bijective pre e∗θ -closed and qe∗θ -irresolute.

Proof (i) ∶ Let A ∈ e∗θO(X) and B ∈ qe∗θC(Z) , where B ⊆ (gof)[A] .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Z))(B ⊆ (gof)[A] = g[f[A]])
f is pre e∗θ-open }⇒ f[A] ∈ e∗θO(Y )

!g is ap-e∗θ-open }

⇒ e∗-clθ(B) ⊆ g[f[A]] = (gof)[A].

This implies that g ○ f is ap-e∗θ -open.

(ii) ∶ Let A ∈ e∗θO(X) and B ∈ qe∗θC(Z) , where B ⊆ (gof)[A] .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Z))(B ⊆ (gof)[A] = g[f[A]])
g is qe∗θ-irresolute }

⇒ (A ∈ e∗θO(X))(g−1[B] ∈ qe∗θC(Y ))(g−1[B] ⊆ g−1[g[f[A]]] g is bijective= f[A])
f is ap-e∗θ-open

⎫⎪⎪⎬⎪⎪⎭

⇒ e∗-clθ(g−1[B]) ⊆ f[A]
g is pre e∗θ-closed }

⇒ e∗-clθ(B) ⊆ e∗-clθ(g[g−1[B]]) ⊆ g[e∗-clθ(g−1[B])] ⊆ g[f[A]] = (gof)[A].

This implies that g ○ f is ap-e∗θ -open. ◻

Theorem 3.25 Let f ∶X → Y , g ∶ Y → Z be two functions such that g ○ f ∶X → Z . Then:

(i) g ○ f is contra pre e∗θ -open if f is pre e∗θ -open and g is contra pre e∗θ -open.

(ii) g ○ f is contra pre e∗θ -open if f is contra pre e∗θ -open and g is pre e∗θ -closed.

Proof (i) ∶ Let U ∈ e∗θO(X) .

U ∈ e∗θO(X)
f is pre e∗θ-open } ⇒ f[U] ∈ e∗θO(Y )

g is contra pre e∗θ-open }⇒ g[f[U]] = (gof)[U] ∈ e∗θC(Z).

This implies that g ○ f is contra pre e∗θ -open.

(ii) ∶ Let U ∈ e∗θO(X) .

U ∈ e∗θO(X)
f is contra pre e∗θ-open } ⇒ f[U] ∈ e∗θC(Y )

g is pre e∗θ-closed }⇒ g[f[U]] = (gof)[U] ∈ e∗θC(Z).

This implies that g ○ f is contra pre e∗θ -open. ◻
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Theorem 3.26 Let f ∶ X → Y , g ∶ Y → Z be two functions such that g ○ f ∶ X → Z is contra pre

e∗θ -open. Then:

(i) If f is an e∗ -irresolute surjection, then g is contra pre e∗θ -open.

(ii) If g is an e∗ -irresolute injection, then f is contra pre e∗θ -open.

Proof (i) ∶ Let U ∈ e∗θO(Y ) .

U ∈ e∗θO(Y )
f is e∗-irresolute } ⇒ f−1[U] ∈ e∗θO(X)

g ○ f is contra pre e∗θ-open }

⇒ (gof)[f−1[U]] = g[f[f−1[U]]] f is surj.= g[U] ∈ e∗θC(Z).

This implies that g is contra pre e∗θ -open.

(ii) ∶ Let U ∈ e∗θO(X) .

U ∈ e∗θO(X)
g ○ f is contra pre e∗θ-open }⇒ (gof)[U] = g[f[U]] ∈ e∗θC(Z)

g is e∗-irresolute }

⇒ g−1[g[f[U]]] g is inj.= f[U] ∈ e∗θC(Y ).

This implies that f is contra pre e∗θ -open. ◻

Definition 3.27 Let X and Y be two topological spaces. A function f ∶X → Y has an e∗θ -closed

graph if its G(f) = {(x, f(x))∣x ∈X} is e∗ -θ -closed in the product space X × Y .

Definition 3.28 The product space X =X1× . . .×Xn has property Pe∗θ [5] if Ai is an e∗ -θ -open

set in a topological spaces Xi for i = 1,2, . . . , n , then A1× . . .×An is also e∗ -θ -open in the product

space X =X1 × . . . ×Xn .

Theorem 3.29 If f ∶ X → Y is a contra pre e∗θ -open function with e∗θ -closed fibers which has

the property Pe∗θ , then f has an e∗θ -closed graph.

Proof Let (x, y) ∉ G(f).

(x, y) ∉ G(f)⇒ (x, y) ∈X × Y /G(f)⇒ x ∈ /f−1[{y}]
f−1[{y}] is e∗θ-closed }

⇒ (∃E ∈ e∗θO(X,x))(E ⊆ /f−1[{y}])
f is contra pre e∗θ-open }⇒ A ∶= /f[E] ∈ e∗θO(Y, y)

⇒ (x, y) ∈ E ×A ⊆X × Y /G(f)
X × Y has the property Pe∗θ

}⇒ E ×A ∈ e∗θO(X × Y )
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⇒X × Y /G(f) ∈ e∗θO(X × Y )

⇒ G(f) ∈ e∗θC(X × Y ).

◻

4. Characterizations of e∗θ -T 1
2

Spaces

Definition 4.1 A topological space X is said to be e∗θ -T 1
2

[1] if every qe∗θ -closed set is e∗θ -

closed.

Lemma 4.2 Let X be a topological space and A ⊆ X . If A ∈ qe∗θC(X) , then F ⊈ e∗-clθ(A)/A

where ∅ ≠ F ∈ e∗θC(X) .

Proof Let A ∈ qe∗θC(X) . Suppose that F ⊆ e∗-clθ(A)/A , where ∅ ≠ F ∈ e∗θC(X) .

(∅ ≠ F ∈ e∗θC(X))(F ⊆ e∗-clθ(A)/A)⇒ (/F ∈ e∗θO(X))(A ⊆ /F )
A ∈ qe∗θC(X) }

⇒ e∗-clθ(A) ⊆ /F ⇒ F ⊆ /e∗-clθ(A)
F ⊆ e∗-clθ(A)/A⇒ F ⊆ e∗-clθ(A)

}⇒ F ⊆ (/e∗-clθ(A)) ∩ e∗-clθ(A)⇒ F = ∅.

This is a contradiction and hence e∗-clθ(A)/A does not contain any non-empty e∗-θ -closed set.

◻

Theorem 4.3 For a topological space X , the following statements are equivalent:

(i) X is e∗θ -T 1
2

,

(ii) For each x ∈X , {x} is e∗ -θ -closed or e∗ -θ -open.

Proof (i)⇒ (ii) ∶ Suppose that for any x ∈X , {x} ∉ e∗θC(X).

{x} ∉ e∗θC(X)⇒X/{x} ∈ e∗θO(X)
X/{x} ⊆X ∈ e∗θO(X) }⇒ e∗-clθ(X/{x}) ⊆X

⇒X/{x} ∈ qe∗θC(X)
X is e∗θ-T 1

2

}⇒X/{x} ∈ e∗θC(X).

Thus X/{x} ∈ e∗θC(X) or equivalently {x} ∈ e∗θO(X) .

(ii)⇒ (i) ∶ Let A ∈ qe∗θC(X) and x ∈ e∗-clθ(A).

Case I. If {x} ∈ e∗θC(X) ∶

A ∈ qe∗θC(X) Lemma 4.2⇒ ({x} ∈ e∗θC(X))({x} ⊈ e∗-clθ(A)/A)⇒ x ∈ A.

Case II. If {x} ∈ e∗θO(X) ∶
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{x} ∈ e∗-clθ(A)⇒ ({x} ∈ e∗θO(X,x))({x} ∩A ≠ ∅)⇒ x ∈ A.

As can be seen, in both cases x ∈ A . Thus e∗-clθ(A) ⊆ A . Since there is always A ⊆ e∗-clθ(A) , A

is e∗-θ -closed. ◻

Theorem 4.4 For a topological space Y , the following statements are equivalent:

(i) Y is e∗θ -T 1
2

,

(ii) For every space X , every map f ∶X → Y is ap-e∗θ -open.

Proof (i)⇒ (ii) ∶ Let B ∈ qe∗θC(Y ) and let B ⊆ f[A] , where A ∈ e∗θO(X) .

(A ∈ e∗θO(X))(B ∈ qe∗θC(Y ))(B ⊆ f[A])
Y is e∗θ-T 1

2

}⇒ (A ∈ e∗θO(X))(B ∈ e∗θC(Y ))(B ⊆ f[A])

⇒ e∗-clθ(B) = B ⊆ f[A]

Then, f is ap-e∗θ -open.

(ii)⇒ (i) ∶ Let B ∈ qe∗θC(Y ) . Suppose that B ⊆ f[B] , where B ∈ e∗θO(X) .

(B ∈ qe∗θC(Y ))(B ∈ e∗θO(X))(B ⊆ f[B])
f is ap-e∗θ-open }⇒ e∗-clθ(B) ⊆ f[B] = B ⇒ B ∈ e∗θC(Y ).

Then, Y is e∗θ -T 1
2

. ◻

Theorem 4.5 [2] For a topological space X, the following statements are equivalent:

(i) X is e∗θ -T 1
2

,

(ii) X is e∗θ -T1 .

5. Conclusion
Various forms of closed sets have been worked on by many topologist in recent years. This paper

is concerned with the concept of quasi e∗ -θ -closed sets and which are defined by utilizing the

notion of e∗ -θ -open set. Also, we defined approximately e∗θ -open functions via quasi e∗ -θ -closed

sets and e∗θ -open sets. We demonstrated that newly defined these functions are weaker than

e∗θ -open functions, pre e∗θ -open functions and contra pre e∗θ -open functions (cf. Remark 3.21).

We believe that this study will help researchers to support further studies on continuous functions.
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