

## On Some Functions Related to $e^* - \theta$ -open Sets

**Burcu Sünbül Ayhan** <sup>(b) \*</sup> Turkish-German University, Rectorate, İstanbul, Türkiye

| Received: 01 September 2023 | Accepted: 13 July 2024 |
|-----------------------------|------------------------|

**Abstract:** In this study, we defined the concept of quasi  $e^* - \theta$ -closed sets by means of  $e^* - \theta$ -open sets. Depending on this concept, we introduced approximately  $e^*\theta$ -open functions and investigated some of its basic properties. Also, we defined and studied contra pre  $e^*\theta$ -open functions, which are stronger than the approximately  $e^*\theta$ -open functions. Moreover, we characterized the class of  $e^*\theta$ - $T_{\frac{1}{2}}$  spaces.

**Keywords:**  $e^*\theta$ -open functions, quasi  $e^*-\theta$ -closed sets, approximately  $e^*\theta$ -open functions, contra pre  $e^*\theta$ -open functions,  $e^*\theta$ - $T_{\frac{1}{2}}$  spaces.

### 1. Introduction

In 2015, Farhan and Yang [10] introduced a new class of open sets called  $e^* \cdot \theta$ -open. In the following years, some concepts of open functions in relation to  $e^* \cdot \theta$ -open sets [10] have been investigated. The notion of  $e^*\theta$ -open functions is introduced by Ayhan [3] as follows: A function  $f: X \to Y$  is said to be  $e^*\theta$ -open if the image of each open set U of X is  $e^* \cdot \theta$ -open in Y. In 2018, Ayhan and Özkoç [6] defined a new type of open functions called  $e^*\theta$ -semiopen functions. Again within the same year, Ayhan and Özkoç [5] defined and studied pre  $e^*\theta$ -open functions. In 2022, Ayhan [4] introduced and investigated weakly  $e^*\theta$ -open functions and also obtained some characterizations of its.

Rajesh and Salleh [14] gave the definition of quasi-b- $\theta$ -closed sets via b- $\theta$ -open sets [13] in their work titled "Some more results on b- $\theta$ -open sets". Caldas and Jafari [7] introduced and studied  $g\beta\theta$ -closed sets through  $\beta$ - $\theta$ -openness [12], in 2015.

In this paper, we introduce quasi  $e^* \cdot \theta$ -closed sets [1] defined with the help of  $e^* \cdot \theta$ -open sets. Moreover, we define and study approximately  $e^*\theta$ -open functions and contra pre  $e^*\theta$ -open functions such that these are weaker than  $e^*\theta$ -open functions.

<sup>\*</sup>Correspondence: burcu.ayhan@tau.edu.tr

 $<sup>2020\</sup> AMS\ Mathematics\ Subject\ Classification:\ 54C10,\ 54D10$ 

This Research Article is licensed under a Creative Commons Attribution 4.0 International License. Also, it has been published considering the Research and Publication Ethics.

## 2. Preliminaries

Throughout this paper, X and Y represent topological spaces. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A, respectively. A point  $x \in X$  is called to be  $\delta$ -cluster point [16] of A if  $int(cl(U)) \cap A \neq \emptyset$  for every open neighborhood U of x. The set of all  $\delta$ -cluster points of A is called the  $\delta$ -closure [16] of A and is denoted by  $cl_{\delta}(A)$ . If  $A = cl_{\delta}(A)$ , then A is called  $\delta$ -closed [16] and the complement of a  $\delta$ -closed set is called  $\delta$ -open [16]. The set  $\{x | (\exists U \in O(X, x))(int(cl(U)) \subseteq A)\}$  is called the  $\delta$ -interior of A and is denoted by  $int_{\delta}(A)$ .

A subset A is called  $e^*$ -open [9]  $A \subseteq cl(int(cl_{\delta}(A)))$ . The complement of an  $e^*$ -open set is called  $e^*$ -closed [9]. The intersection of all  $e^*$ -closed sets of X containing A is called the  $e^*$ closure [9] of A and is denoted by  $e^*$ -cl(A). The union of all  $e^*$ -open sets of X containing in A is called the  $e^*$ -interior [9] of A and is denoted by  $e^*$ -int(A). A subset A is said to be  $e^*$ -regular [10] set if it is  $e^*$ -open and  $e^*$ -closed.

A point x of X is called an  $e^* \cdot \theta$ -cluster point of A if  $e^* \cdot cl(U) \cap A \neq \emptyset$  for every  $e^*$ -open set U containing x. The set of all  $e^* \cdot \theta$ -cluster points of A is called the  $e^* \cdot \theta$ -closure [10] of A and is denoted by  $e^* \cdot cl_{\theta}(A)$ . A subset A is said to be  $e^* \cdot \theta$ -closed if  $A = e^* \cdot cl_{\theta}(A)$ . The complement of an  $e^* \cdot \theta$ -closed set is called an  $e^* \cdot \theta$ -open [10] set. A point x of X said to be an  $e^* \cdot \theta$ -interior point [10] of a subset A, denoted by  $e^* \cdot int_{\theta}(A)$ , if there exists an  $e^*$ -open set U of X containing x such that  $e^* \cdot cl(U) \subseteq A$ . Also it is noted in [10] that

$$e^*$$
-regular  $\Rightarrow e^*$ - $\theta$ -open  $\Rightarrow e^*$ -open.

The family of all open (resp. closed,  $e^* - \theta$ -open,  $e^* - \theta$ -closed,  $e^*$ -open,  $e^*$ -closed,  $e^*$ -regular) subsets of X is denoted by O(X) (resp. C(X),  $e^*\theta O(X)$ ,  $e^*\theta C(X)$ ,  $e^*O(X)$ ,  $e^*C(X)$ ,  $e^*R(X)$ ). The family of all open (resp. closed,  $e^* - \theta$ -open,  $e^* - \theta$ -closed,  $e^*$ -open,  $e^*$ -closed,  $e^*$ -regular) sets of X containing a point x of X is denoted by O(X, x) (resp. C(X, x),  $e^*\theta O(X, x)$ ,  $e^*\theta C(X, x)$ ,  $e^*R(X, x)$ ).

We shall use the well-known accepted language almost in the whole of the proofs of the theorems in this article.

**Lemma 2.1** [10, 11] Let X be a topological space and  $A, B \subseteq X$ . Then the following properties are hold:

- (i)  $A \subseteq e^* cl(A) \subseteq e^* cl_{\theta}(A)$ . (ii) If  $A \in e^* \theta O(X)$ , then  $e^* - cl_{\theta}(A) = e^* - cl(A)$ .
- (iii) If  $A \subseteq B$ , then  $e^* cl_{\theta}(A) \subseteq e^* cl_{\theta}(B)$ .
- (iv)  $e^* cl_\theta(A) \in e^*\theta C(X)$  and  $e^* cl_\theta(e^* cl_\theta(A)) = e^* cl_\theta(A)$ .

(v) If  $A_{\alpha} \in e^* \theta O(X)$  for each  $\alpha \in \Lambda$ , then  $\bigcup \{A_{\alpha} | \alpha \in \Lambda\} \in e^* \theta O(X)$ .

(vi)  $e^* - cl_\theta(A) = \bigcap \{F | (A \subseteq F) (F \in e^* \theta C(X)) \}.$ 

(vii)  $e^* - cl_{\theta}(X \setminus A) = X \setminus e^* - int_{\theta}(A).$ 

(viii) A is  $e^* - \theta$ -open in X iff for each  $x \in A$ , there exists  $U \in eR(X, x)$  such that  $U \subseteq A$ .

**Definition 2.2** A function  $f: X \to Y$  is called  $e^*$ -irresolute [8] if  $f^{-1}[A]$  is  $e^* \cdot \theta$ -open in X for every  $e^* \cdot \theta$ -open set A of Y.

#### 3. Quasi $e^*$ - $\theta$ -closed Sets

**Definition 3.1** A subset A of a space X is called quasi  $e^* - \theta$ -closed [2] (briefly,  $qe^*\theta$ -closed) if  $e^* - cl_{\theta}(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $e^* - \theta$ -open in X. A subset A of a space X is said to be quasi  $e^* - \theta$ -open (briefly,  $qe^*\theta$ -open) if X\A is  $qe^*\theta$ -closed. The family of all  $qe^*\theta$ -closed (resp.  $qe^*\theta$ -open) subsets of X is denoted by  $qe^*\theta C(X)$  (resp.  $qe^*\theta O(X)$ ).

**Theorem 3.2** Every  $e^* - \theta$ -closed set is  $qe^*\theta$ -closed.

**Proof** Let  $A \in e^* \theta C(X)$ ,  $U \in e^* \theta O(X)$  and  $A \subseteq U$ .

$$\left. \begin{array}{c} A \in e^* \theta C(X) \\ (U \in e^* \theta O(X)) (A \subseteq U) \end{array} \right\} \Rightarrow e^* - c l_{\theta}(A) = A \subseteq U.$$

Remark 3.3 This implication is not reversible as shown in the following example.

**Example 3.4** Let  $X = \{1, 2, 3\}$ , define a topology  $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$  on X. It is not difficult to see  $e^*\theta C(X) = 2^X \setminus \{\{3\}\}$  and the subset  $\{1, 2\}$  is  $qe^*\theta$ -closed but it is not  $e^* \cdot \theta$ -closed (cf. Example 1 in [10]).

**Lemma 3.5** A subset A of a topological space X is  $qe^*\theta$ -open if and only if  $F \subseteq e^*$ -int<sub> $\theta$ </sub>(A) whenever F is  $e^*$ - $\theta$ -closed in X and  $F \subseteq A$ .

**Proof** Necessity. Let  $F \subseteq A$ ,  $F \in e^* \theta C(X)$  and  $A \in qe^* \theta O(X)$ .

$$A \supseteq F \in e^* \theta C(X) \Rightarrow \backslash A \subseteq \backslash F \in e^* \theta O(X)$$
$$A \in qe^* \theta O(X) \Rightarrow \backslash A \in qe^* \theta C(X)$$
$$\Rightarrow \backslash e^* \text{-}int_{\theta}(A) = e^* \text{-}cl_{\theta}(\backslash A) \subseteq \backslash F$$
$$\Rightarrow F \subseteq e^* \text{-}int_{\theta}(A).$$

74

Sufficiency. Let  $\setminus F \in e^* \theta O(X)$  and  $\setminus A \subseteq \setminus F$ .

$$(\backslash F \in e^* \theta O(X))(\backslash A \subseteq \backslash F) \Rightarrow (F \in e^* \theta C(X))(F \subseteq A)$$
 Hypothesis   
 
$$\Rightarrow F \subseteq e^* \text{-}int_{\theta}(A)$$
 
$$\Rightarrow e^* \text{-}cl_{\theta}(\backslash A) = \backslash e^* \text{-}int_{\theta}(A) \subseteq \backslash F$$

Then,  $A \in qe^* \theta C(X)$  and hence  $A \in qe^* \theta O(X)$ .

**Definition 3.6** A function  $f: X \to Y$  is said to be approximately  $e^*\theta$ -open (briefly,  $ap-e^*\theta$ -open) if  $e^*-cl_{\theta}(B) \subseteq f[A]$  whenever  $A \in e^*\theta O(X)$ ,  $B \in qe^*\theta C(Y)$  and  $B \subseteq f[A]$ .

**Definition 3.7** A function  $f: X \to Y$  is said to be:

(1)  $e^*\theta$ -closed [3] (resp. pre  $e^*\theta$ -closed [5]), if the image of each closed (resp.  $e^*-\theta$ -closed) set F of X is  $e^*-\theta$ -closed in Y.

(2)  $e^*\theta$ -open [3] (resp. pre  $e^*\theta$ -open [5]), if the image of each open (resp.  $e^*$ - $\theta$ -open) set U of X is  $e^*$ - $\theta$ -open in Y.

**Theorem 3.8** Let  $f: X \to Y$  be a function. If f[A] is  $e^* \cdot \theta \cdot closed$  in Y for every  $A \in e^* \theta O(X)$ , then f is ap- $e^* \theta \cdot open$ .

**Proof** Let  $B \subseteq f[A]$ , where  $A \in e^* \theta O(X)$  and  $B \in qe^* \theta C(Y)$ .

$$(A \in e^* \theta O(X))(B \in qe^* \theta C(Y))(B \subseteq f[A]) \\ \text{Hypothesis} \ \ \} \Rightarrow e^* - cl_\theta(B) \subseteq e^* - cl_\theta(f[A]) = f[A] \\ \Rightarrow f[A] \in e^* \theta C(Y).$$

| Theorem 3.9 | Every pre                                                                           | $e^*\theta$ -open | function | is ap-e | $^{*}	heta$ - open.  |
|-------------|-------------------------------------------------------------------------------------|-------------------|----------|---------|----------------------|
|             | $=$ $\cdot$ |                   | <i>J</i> | ···r·   | • • <i>P</i> • • • • |

**Proof** Let  $B \subseteq f[A]$ , where  $A \in e^* \theta O(X)$  and  $B \in qe^* \theta C(Y)$ .  $(A \in e^* \theta O(X))(B \in qe^* \theta C(Y))(B \subseteq f[A])$  f is pre  $e^* \theta$ -open  $\} \Rightarrow (f[A] \in e^* \theta O(Y))(B \in qe^* \theta C(Y))(B \subseteq f[A])$  $\Rightarrow e^* - cl_{\theta}(B) \subseteq f[A].$ 

Remark 3.10 This implication is not reversible as shown in the following example.

**Example 3.11** Let  $X = \{a, b, c\}$  and  $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ . Define the function  $f : (X, \tau) \rightarrow (X, \tau)$  by  $f = \{(a, a), (b, b), (c, b)\}$ . It isn't difficult to see  $e^* \theta O(X) = 2^X \setminus \{\{a, b\}\}$ ,  $qe^* \theta C(X) = 2^X \cup \{\{a, b\}\}$ .

and hence f is  $ap-e^*\theta$ -open. However  $\{a,c\}$  is  $e^*-\theta$ -open in X, but  $f[\{a,c\}] = \{a,b\}$  is not  $e^*-\theta$ -open in X. Therefore, f is not pre  $e^*\theta$ -open.

**Theorem 3.12** Let  $f: X \to Y$  be a function. If the  $e^* \cdot \theta$ -open and  $e^* \cdot \theta$ -closed sets of Y coincide, then f is ap- $e^*\theta$ -open if and only if  $f[W] \in e^*\theta C(Y)$  for every  $e^* \cdot \theta$ -open subset W of X.

**Proof** Necessity. Let A be an arbitrary subset of Y such that  $A \subseteq U$ , where  $U \in e^* \theta O(Y)$  and let  $W \in e^* \theta O(X)$ .

$$\begin{array}{c} (A \subseteq U)(U \in e^* \theta O(Y)) \\ e^* \theta O(Y) = e^* \theta C(Y) \end{array} \right\} \Rightarrow e^* - cl_{\theta}(A) \subseteq e^* - cl_{\theta}(U) = U$$

Therefore all subset of Y are  $qe^*\theta$ -closed and hence all are  $qe^*\theta$ -open.

$$(W \in e^* \theta O(X))(Y \supseteq f[W] \in qe^* \theta O(Y))(f[W] \subseteq f[W]) f \text{ is ap-} e^* \theta \text{-open} } \Rightarrow e^* \text{-} cl_{\theta}(f[W]) \subseteq f[W] \Rightarrow f[W] \in e^* \theta C(Y).$$

Sufficiency. It is obvious from Theorem 3.8.

**Corollary 3.13** Let  $f : X \to Y$  be a function. If the  $e^* - \theta$ -open and  $e^* - \theta$ -closed sets of Y coincide, then f is ap- $e^*\theta$ -open if and only if f is pre  $e^*\theta$ -open.

**Definition 3.14** A function  $f : X \to Y$  is said to be contrapre  $e^*\theta$ -open (resp. contrapre  $e^*\theta$ -closed) if the image of each  $e^* - \theta$ -open (resp.  $e^* - \theta$ -closed) set U of X is  $e^* - \theta$ -closed (resp.  $e^* - \theta$ -open) in Y.

**Theorem 3.15** Every contra pre  $e^*\theta$ -open function is  $ap-e^*\theta$ -open.

**Proof** Let  $B \subseteq f[A]$ , where  $A \in e^* \theta O(X)$  and  $B \in qe^* \theta C(Y)$ .

$$\begin{array}{c} (A \in e^* \theta O(X))(B \in q e^* \theta C(Y))(B \subseteq f[A]) \\ f \text{ is contra pre } e^* \theta \text{-open} \end{array} \right\} \Rightarrow e^* - cl_{\theta}(B) \subseteq e^* - cl_{\theta}(f[A]) = f[A].$$

Remark 3.16 This implication is not reversible as shown in the following example.

**Example 3.17** Consider the same topology in Example 3.11. Define the identity function  $f : (X, \tau) \rightarrow (X, \tau)$ . Then, f is ap-e<sup>\*</sup> $\theta$ -open. However  $\{c\}$  is e<sup>\*</sup>- $\theta$ -open in X, but  $f[\{c\}] = \{c\}$  is not  $e^*$ - $\theta$ -closed in X. Therefore, f is not contrapre  $e^*\theta$ -open.

**Remark 3.18** The following examples show that contra pre  $e^*\theta$ -openness and pre  $e^*\theta$ -openness are independent notions.

**Example 3.19** Define the same function on the topology in Example 3.11. Since the image of every  $e^* - \theta$ -open set of X is  $e^* - \theta$ -closed in X, then f is contra pre  $e^*\theta$ -open. However, f is not pre  $e^*\theta$ -open.

**Example 3.20** Consider the same topology in Example 3.11. Define the identity function  $f : (X, \tau) \rightarrow (X, \tau)$ . Since the image of every  $e^* - \theta$ -open set of X is  $e^* - \theta$ -open in X, then f is pre  $e^*\theta$ -open. However  $\{c\}$  is  $e^* - \theta$ -open in X, but  $f[\{c\}] = \{c\}$  is not  $e^* - \theta$ -closed in X. Therefore, f is not contra pre  $e^*\theta$ -open.

**Remark 3.21** From Definitions 3.6, 3.7, 3.14, we have the relation among  $ap-e^*\theta$ -open functions, contra pre  $e^*\theta$ -open functions and other well-known functions in topological spaces. The converses of the below implications are not true in general, as shown in the previous examples.



**Theorem 3.22** If  $f: X \to Y$  is  $e^*$ -irresolute and ap- $e^*\theta$ -open surjection, then  $f^{-1}[B]$  is  $qe^*\theta$ -open in X whenever B is  $qe^*\theta$ -open subset of Y.

**Proof** Let  $B \in qe^* \theta O(Y)$ . Suppose that  $A \subseteq f^{-1}[B]$ , where  $A \in e^* \theta C(X)$ .

$$\begin{array}{l} (A \in e^*\theta C(X) \Rightarrow \backslash A \in e^*\theta O(X))(B \in qe^*\theta O(Y) \Rightarrow \backslash B \in qe^*\theta C(Y)) \\ A \subseteq f^{-1}[B] \Rightarrow f^{-1}[\backslash B] \subseteq \backslash A \Rightarrow f[f^{-1}[\backslash B]] \stackrel{f \text{ is surj.}}{=} \backslash B \subseteq f[\backslash A] \\ f \text{ is ap-}e^*\theta \text{-open} \end{array} \right\} \\ \Rightarrow \backslash e^* \text{-}int_{\theta}(B) = e^* \text{-}cl_{\theta}(\backslash B) \subseteq f[\backslash A] \\ \Rightarrow \backslash f^{-1}[e^* \text{-}int_{\theta}(B)] \subseteq \backslash A \Rightarrow A \subseteq f^{-1}[e^* \text{-}int_{\theta}(B)] \\ f \text{ is } e^* \text{-}irresolute} \end{array} \right\} \Rightarrow f^{-1}[e^* \text{-}int_{\theta}(B)] \in e^*\theta O(X) \\ \Rightarrow A \subseteq f^{-1}[e^* \text{-}int_{\theta}(B)] = e^* \text{-}int_{\theta}(f^{-1}[e^* \text{-}int_{\theta}(B)]) \subseteq e^* \text{-}int_{\theta}(f^{-1}[B]).$$

This implies that by Lemma 3.5,  $f^{-1}[B]$  is  $qe^*\theta$ -open in X.

**Definition 3.23** A function  $f: X \to Y$  is called quasi  $e^*\theta$ -irresolute (briefly,  $qe^*\theta$ -irresolute) if  $f^{-1}[A]$  is  $qe^*\theta$ -closed in X for every  $qe^*\theta$ -closed set A of Y.

**Theorem 3.24** Let  $f: X \to Y$ ,  $g: Y \to Z$  be two functions such that  $g \circ f: X \to Z$ . Then:

- (i)  $g \circ f$  is  $ap e^*\theta$ -open if f is pre  $e^*\theta$ -open and g is  $ap e^*\theta$ -open.
- (ii)  $g \circ f$  is  $ap e^*\theta$ -open if f is  $ap e^*\theta$ -open and g is bijective pre  $e^*\theta$ -closed and  $qe^*\theta$ -irresolute.

**Proof** (i): Let  $A \in e^* \theta O(X)$  and  $B \in qe^* \theta C(Z)$ , where  $B \subseteq (gof)[A]$ .

$$(A \in e^* \theta O(X))(B \in qe^* \theta C(Z))(B \subseteq (gof)[A] = g[f[A]]) f \text{ is pre } e^* \theta \text{-open}$$
 
$$\Rightarrow f[A] \in e^* \theta O(Y) g \text{ is ap-} e^* \theta \text{-open}$$
 
$$\Rightarrow e^* - cl_{\theta}(B) \subseteq g[f[A]] = (gof)[A].$$

This implies that  $g \circ f$  is ap- $e^*\theta$ -open.

(*ii*): Let  $A \in e^* \theta O(X)$  and  $B \in qe^* \theta C(Z)$ , where  $B \subseteq (gof)[A]$ .

$$(A \in e^* \theta O(X))(B \in qe^* \theta C(Z))(B \subseteq (gof)[A] = g[f[A]])$$
  
g is  $qe^* \theta$ -irresolute

$$\Rightarrow (A \in e^* \theta O(X))(g^{-1}[B] \in qe^* \theta C(Y))(g^{-1}[B] \subseteq g^{-1}[g[f[A]]]) \xrightarrow{\text{g is bijective}}_{=} f[A]) \\f \text{ is ap-} e^* \theta \text{-open} \end{cases}$$
$$\Rightarrow e^* - cl_{\theta}(g^{-1}[B]) \subseteq f[A] \\g \text{ is pre } e^* \theta \text{-closed} \end{cases}$$
$$\Rightarrow e^* - cl_{\theta}(B) \subseteq e^* - cl_{\theta}(g[g^{-1}[B]]) \subseteq g[e^* - cl_{\theta}(g^{-1}[B])] \subseteq g[f[A]] = (gof)[A].$$

This implies that  $g \circ f$  is ap- $e^*\theta$ -open.

**Theorem 3.25** Let  $f: X \to Y$ ,  $g: Y \to Z$  be two functions such that  $g \circ f: X \to Z$ . Then: (i)  $g \circ f$  is contra pre  $e^*\theta$ -open if f is pre  $e^*\theta$ -open and g is contra pre  $e^*\theta$ -open. (ii)  $g \circ f$  is contra pre  $e^*\theta$ -open if f is contra pre  $e^*\theta$ -open and g is pre  $e^*\theta$ -closed.

**Proof** (i): Let  $U \in e^* \theta O(X)$ .

$$\begin{cases} U \in e^* \theta O(X) \\ f \text{ is pre } e^* \theta \text{-open} \end{cases} \xrightarrow[g]{\Rightarrow} f[U] \in e^* \theta O(Y) \\ g \text{ is contra pre } e^* \theta \text{-open} \end{cases} \Rightarrow g[f[U]] = (gof)[U] \in e^* \theta C(Z)$$

This implies that  $g \circ f$  is contra pre  $e^*\theta$ -open.

$$(ii)$$
: Let  $U \in e^* \theta O(X)$ .

$$\begin{cases} U \in e^* \theta O(X) \\ f \text{ is contra pre } e^* \theta \text{-open} \end{cases} \Rightarrow f[U] \in e^* \theta C(Y) \\ g \text{ is pre } e^* \theta \text{-closed} \end{cases} \Rightarrow g[f[U]] = (gof)[U] \in e^* \theta C(Z).$$

This implies that  $g \circ f$  is contra pre  $e^*\theta$ -open.

**Theorem 3.26** Let  $f: X \to Y$ ,  $g: Y \to Z$  be two functions such that  $g \circ f: X \to Z$  is contra pre  $e^*\theta$ -open. Then:

- (i) If f is an  $e^*$ -irresolute surjection, then g is contra pre  $e^*\theta$ -open.
- (ii) If g is an  $e^*$ -irresolute injection, then f is contra pre  $e^*\theta$ -open.

**Proof** (i): Let  $U \in e^* \theta O(Y)$ .

$$\begin{array}{c} U \in e^* \theta O(Y) \\ f \text{ is } e^* \text{-irresolute} \end{array} \right\} \xrightarrow[g \circ f]{} f^{-1}[U] \in e^* \theta O(X) \\ g \circ f \text{ is contra pre } e^* \theta \text{-open} \end{array} \right\} \\ \Rightarrow (gof)[f^{-1}[U]] = g[f[f^{-1}[U]]] \xrightarrow{f \text{ is surj.}}{} g[U] \in e^* \theta C(Z).$$

This implies that g is contrapre  $e^*\theta$ -open.

(*ii*): Let  $U \in e^* \theta O(X)$ .

$$\begin{array}{c} U \in e^* \theta O(X) \\ g \circ f \text{ is contra pre } e^* \theta \text{-open} \end{array} \end{array} \Rightarrow (gof)[U] = g[f[U]] \in e^* \theta C(Z) \\ g \text{ is } e^* \text{-irresolute} \end{array}$$
$$\Rightarrow g^{-1}[g[f[U]]] \overset{g \text{ is inj.}}{=} f[U] \in e^* \theta C(Y).$$

This implies that f is contra pre  $e^*\theta$ -open.

**Definition 3.27** Let X and Y be two topological spaces. A function  $f: X \to Y$  has an  $e^*\theta$ -closed graph if its  $G(f) = \{(x, f(x)) | x \in X\}$  is  $e^* - \theta$ -closed in the product space  $X \times Y$ .

**Definition 3.28** The product space  $X = X_1 \times \ldots \times X_n$  has property  $P_{e^*\theta}$  [5] if  $A_i$  is an  $e^* \cdot \theta$ -open set in a topological spaces  $X_i$  for  $i = 1, 2, \ldots, n$ , then  $A_1 \times \ldots \times A_n$  is also  $e^* \cdot \theta$ -open in the product space  $X = X_1 \times \ldots \times X_n$ .

**Theorem 3.29** If  $f: X \to Y$  is a contra pre  $e^*\theta$ -open function with  $e^*\theta$ -closed fibers which has the property  $P_{e^*\theta}$ , then f has an  $e^*\theta$ -closed graph.

**Proof** Let  $(x, y) \notin G(f)$ .

$$\begin{aligned} (x,y) \notin G(f) \Rightarrow (x,y) \in X \times Y \setminus G(f) \Rightarrow x \in \backslash f^{-1}[\{y\}] \\ f^{-1}[\{y\}] \text{ is } e^*\theta \text{-closed } \end{aligned}$$
$$\Rightarrow (\exists E \in e^*\theta O(X,x))(E \subseteq \backslash f^{-1}[\{y\}]) \\ f \text{ is contra pre } e^*\theta \text{-open } \end{aligned} \Rightarrow A \coloneqq \backslash f[E] \in e^*\theta O(Y,y)$$
$$\Rightarrow (x,y) \in E \times A \subseteq X \times Y \setminus G(f) \\ X \times Y \text{ has the property } P_{e^*\theta} \end{aligned} \Rightarrow E \times A \in e^*\theta O(X \times Y)$$

79

$$\Rightarrow X \times Y \setminus G(f) \in e^* \theta O(X \times Y)$$
$$\Rightarrow G(f) \in e^* \theta C(X \times Y).$$

|   | _ | _ |  |
|---|---|---|--|
| г |   | 7 |  |
| L |   |   |  |
| L |   |   |  |

# 4. Characterizations of $e^*\theta$ - $T_{\frac{1}{2}}$ Spaces

**Definition 4.1** A topological space X is said to be  $e^*\theta - T_{\frac{1}{2}}$  [1] if every  $qe^*\theta$ -closed set is  $e^*\theta$ closed.

**Lemma 4.2** Let X be a topological space and  $A \subseteq X$ . If  $A \in qe^*\theta C(X)$ , then  $F \notin e^* - cl_{\theta}(A) \setminus A$ where  $\emptyset \neq F \in e^*\theta C(X)$ .

**Proof** Let  $A \in qe^* \theta C(X)$ . Suppose that  $F \subseteq e^* - cl_{\theta}(A) \setminus A$ , where  $\emptyset \neq F \in e^* \theta C(X)$ .

$$\begin{array}{l} (\varnothing \neq F \in e^* \theta C(X))(F \subseteq e^* - cl_{\theta}(A) \backslash A) \Rightarrow (\backslash F \in e^* \theta O(X))(A \subseteq \backslash F) \\ A \in qe^* \theta C(X) \end{array} \\ \\ \Rightarrow e^* - cl_{\theta}(A) \subseteq \backslash F \Rightarrow F \subseteq \backslash e^* - cl_{\theta}(A) \\ F \subseteq e^* - cl_{\theta}(A) \backslash A \Rightarrow F \subseteq e^* - cl_{\theta}(A) \end{array} \right\} \Rightarrow F \subseteq (\backslash e^* - cl_{\theta}(A)) \cap e^* - cl_{\theta}(A) \Rightarrow F = \varnothing.$$

This is a contradiction and hence  $e^*-cl_\theta(A)\setminus A$  does not contain any non-empty  $e^*-\theta$ -closed set.

**Theorem 4.3** For a topological space X, the following statements are equivalent: (i) X is  $e^*\theta \cdot T_{\frac{1}{2}}$ ,

(ii) For each  $x \in X$ ,  $\{x\}$  is  $e^* \cdot \theta$ -closed or  $e^* \cdot \theta$ -open.

**Proof**  $(i) \Rightarrow (ii)$ : Suppose that for any  $x \in X$ ,  $\{x\} \notin e^* \theta C(X)$ .

$$\begin{cases} x \} \notin e^* \theta C(X) \Rightarrow X \setminus \{x\} \in e^* \theta O(X) \\ X \setminus \{x\} \subseteq X \in e^* \theta O(X) \end{cases} \Rightarrow e^* - cl_{\theta}(X \setminus \{x\}) \subseteq X$$
$$\Rightarrow X \setminus \{x\} \in qe^* \theta C(X) \\ X \text{ is } e^* \theta - T_{\frac{1}{2}} \end{cases} \Rightarrow X \setminus \{x\} \in e^* \theta C(X).$$

Thus  $X \setminus \{x\} \in e^* \theta C(X)$  or equivalently  $\{x\} \in e^* \theta O(X)$ .  $(ii) \Rightarrow (i)$ : Let  $A \in qe^* \theta C(X)$  and  $x \in e^* - cl_{\theta}(A)$ . Case I. If  $\{x\} \in e^* \theta C(X)$ :

$$A \in qe^* \theta C(X) \stackrel{\text{Lemma 4.2}}{\Rightarrow} (\{x\} \in e^* \theta C(X))(\{x\} \notin e^* - cl_{\theta}(A) \setminus A) \Rightarrow x \in A.$$

Case II. If  $\{x\} \in e^* \theta O(X)$ :

$$\{x\} \in e^* - cl_\theta(A) \Rightarrow (\{x\} \in e^* \theta O(X, x))(\{x\} \cap A \neq \emptyset) \Rightarrow x \in A$$

As can be seen, in both cases  $x \in A$ . Thus  $e^*-cl_\theta(A) \subseteq A$ . Since there is always  $A \subseteq e^*-cl_\theta(A)$ , A is  $e^*-\theta$ -closed.

# **Theorem 4.4** For a topological space Y, the following statements are equivalent:

- (*i*) *Y* is  $e^*\theta T_{\frac{1}{2}}$ ,
- (ii) For every space X, every map  $f: X \to Y$  is  $ap-e^*\theta$ -open.

**Proof**  $(i) \Rightarrow (ii)$ : Let  $B \in qe^* \theta C(Y)$  and let  $B \subseteq f[A]$ , where  $A \in e^* \theta O(X)$ .

$$(A \in e^* \theta O(X))(B \in qe^* \theta C(Y))(B \subseteq f[A]) Y \text{ is } e^* \theta - T_{\frac{1}{2}} \} \Rightarrow (A \in e^* \theta O(X))(B \in e^* \theta C(Y))(B \subseteq f[A]) \Rightarrow e^* - cl_{\theta}(B) = B \subseteq f[A]$$

Then, f is ap- $e^*\theta$ -open.

 $(ii) \Rightarrow (i)$ : Let  $B \in qe^* \theta C(Y)$ . Suppose that  $B \subseteq f[B]$ , where  $B \in e^* \theta O(X)$ .

$$(B \in qe^*\theta C(Y))(B \in e^*\theta O(X))(B \subseteq f[B]) f \text{ is ap-}e^*\theta \text{-open}$$
  $\Rightarrow e^*-cl_{\theta}(B) \subseteq f[B] = B \Rightarrow B \in e^*\theta C(Y).$ 

Then, Y is  $e^*\theta - T_{\frac{1}{2}}$ .

**Theorem 4.5** [2] For a topological space X, the following statements are equivalent:

- (i) X is  $e^*\theta T_{\frac{1}{2}}$ ,
- (ii) X is  $e^*\theta T_1$ .

### 5. Conclusion

Various forms of closed sets have been worked on by many topologist in recent years. This paper is concerned with the concept of quasi  $e^* - \theta$ -closed sets and which are defined by utilizing the notion of  $e^* - \theta$ -open set. Also, we defined approximately  $e^*\theta$ -open functions via quasi  $e^* - \theta$ -closed sets and  $e^*\theta$ -open sets. We demonstrated that newly defined these functions are weaker than  $e^*\theta$ -open functions, pre  $e^*\theta$ -open functions and contra pre  $e^*\theta$ -open functions (cf. Remark 3.21). We believe that this study will help researchers to support further studies on continuous functions.

## **Declaration of Ethical Standards**

The author declares that the materials and methods used in her study do not require ethical committee and/or legal special permission.

### **Conflicts of Interest**

The author declares no conflict of interest.

### References

- Akalın D., Some Results on e-θ-Open and e<sup>\*</sup>-θ-Open Sets, M. Sc. Thesis, Muğla Sıtkı Koçman University, Muğla, Türkiye, 2023.
- [2] Akalın D., Özkoç M., On  $e^* \theta D$ -sets and related topics, arXiv:2403.01604 [math.GN], 2024.
- [3] Ayhan B.S., On  $e^*\theta$ -regular and  $e^*\theta$ -normal spaces, arXiv:2407.07927 [math.GM], 2024.
- [4] Ayhan B.S., On weakly e<sup>\*</sup>θ-open functions and their characterizations, Turkish Journal of Mathematics and Computer Science, 14(1), 56-65, 2022.
- [5] Ayhan B.S., Özkoç M., On almost contra e<sup>\*</sup>-continuous functions, Jordan Journal of Mathematics and Statistics, 11(4), 383-408, 2018.
- [6] Ayhan B.S., Özkoç M., On contra e<sup>\*</sup>θ-continuous functions, Divulgaciones Matematicás, 19(2), 1-13, 2018.
- [7] Caldas M., Jafari S., On some maps concerning gβθ-open sets, Proyectiones: Journal of Mathematics, 34(1), 15-24, 2015.
- [8] Ekici E., New forms of contra continuity, Carpathian Journal of Mathematics, 24(1), 37-45, 2008.
- [9] Ekici E., On  $e^*$ -open sets and  $(\mathcal{D}, \mathcal{S})^*$ -sets, Mathematica Moravica, 13(1), 29-36, 2009.
- [10] Farhan A.M., Yang X.S., New types of strongly continuous functions in topological spaces via  $\delta \beta$ -open sets, European Journal of Pure and Applied Mathematics, 8(2), 185-200, 2015.
- [11] Jumaili A.M.F.A., Abed M.M., Sharqi F.G.A., Other new types of mappings with strongly closed graphs in topological spaces via e-θ and δ-β-θ-open sets, The 1st International Scientific Conference on Pure Science, 1-10, 2019.
- [12] Noiri T., Weak and strong forms of β-irresolute functions, Acta Mathematica Hungarica, 99, 315-328, 2003.
- [13] Park J.H., Strongly  $\theta$ -b-continuous functions, Acta Mathematica Hungarica, 110(4), 347-359, 2006.
- [14] Rajesh N., Salleh Z., Some more results on b-θ-open sets, Buletinul Academiei de Stiinte a Republicii Moldova Matematica, 3(61), 70-80, 2009.
- [15] Stone M.H., Applications of the theory of Boolean rings to general topology, Transactions of the American Mathematical Society, 41, 375-381, 1937.
- [16] Veličko N.V., *H*-closed topological spaces, American Mathematical Society Translations, 78(2), 103-118, 1968.