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1. Introduction
The Cauchy numbers, defined firstly by Comtet [7], occur in many contexts like combi-

natorics, mathematical analysis, and number theory. They share a particular relationship
with the Stirling numbers of the first kind, so they are related to combinatorics. The
Laplace summation formula, which is an analogue of the Euler-Maclaurin summation for-
mula that involves the Cauchy numbers and the difference operator instead of the Bernoulli
numbers and differentiation, is used to approximate integrals, so the Cauchy numbers are
related to mathematical analysis as well. The Cauchy numbers further appear in connec-
tion with the Bernoulli numbers of both kinds, the Nörlund numbers, the Euler-Mascheroni
constant, and harmonic numbers, and hence they have been subjected to number theoretic
studies.

Their appearance in such different and wide areas has led to the detailed investigations
of Cauchy numbers (see, for example, [21]). Some of those studies cover several general-
izations (c.f. [6,15,17–20,23]). Their extensions in terms of degenerate number sequences
were first studied by Carlitz [3,4]. He defined the degenerate Cauchy polynomials cn (x|λ)
by means of the generating function

λt

(1 + t)λ − 1
(1 + t)λ−x =

∞∑
n=0

cn (x|λ) tn

n!
. (1.1)
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When x = λ → 0, we have cn = lim
λ→0

cn (λ|λ) are the classical Cauchy numbers, defined by
[7, 21]

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
. (1.2)

The polynomial in (1.1) appears together with another polynomial βn (x|λ) defined also
by Carlitz [4] (also see [5] and [24])

t

(1 + λt)1/λ − 1
(1 + λt)x/λ =

∞∑
n=0

βn (x|λ) tn

n!
. (1.3)

When λ → 0, we have Bn (x) = lim
λ→0

βn (x|λ) are the classical Bernoulli polynomials (see
Section 2). βn (x|λ) are then called as the degenerate Bernoulli polynomials. Extensions
of the degenerate Cauchy and Bernoulli polynomials and relationships with other number
sequences are initially studied by Carlitz [4] and Howard [9].

It seems that the type (1.1) of the degenerate Cauchy polynomials has not been well
studied but forgotten. Our goal in the present paper is to study arithmetical properties
of the degenerate Cauchy polynomials and numbers. Particularly, we obtain some con-
gruences, which, according to the authors’ knowledge, seem to be new and reveal several
interesting divisibility properties.

2. Degenerate Cauchy polynomials
We start with some basic properties of the degenerate Cauchy polynomials.

Theorem 2.1. We have

cn(x|λ) =
n∑

m=0

(
n

m

)
(−x + λ)n−mcm(λ) ,

where (x)n = x(x − 1) · · · (x − n + 1) is the falling factorial for n ≥ 1 with (x)0 = 1.

Proof. From (1.1), we have

∞∑
n=0

cn(x|λ) tn

n!
= λt

(1 + t)λ − 1
(1 + t)−x+λ =

∞∑
n=0

cn(λ) tn

n!

∞∑
j=0

(
−x + λ

j

)
tj

=
∞∑

n=0
cn(λ) tn

n!

∞∑
j=0

(−x + λ)j
tj

j!

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
(−x + λ)n−mcm(λ)

)
tn

n!
.

Comparing the coefficients of tn/n! on both sides gives the result. □

The next result furnishes a formula for the derivative of the degenerate Cauchy poly-
nomial with respect to its argument.

Theorem 2.2. For n ≥ 1, we have

d

dx
cn(x|λ) =

n−1∑
m=0

(−1)n−m

(
n

m

)
cm(x|λ)(n − m − 1)! .
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Proof. We have

∞∑
n=0

d

dx
cn(x|λ) tn

n!
= d

dx

λt(
(1 + t)λ − 1

)
(1 + t)x−λ

= λt(
(1 + t)λ − 1

)
(1 + t)x−λ

(
− log(1 + t)

)
=

∞∑
n=0

cn(x|λ) tn

n!

∞∑
j=1

(−1)j tj

j
=

∞∑
n=0

(
n−1∑
m=0

cm(x|λ)
m!

(−1)n−m

n − m

)
tn .

Comparing the coefficients of both sides, we get the desired result. □

A difference formula can be stated as follows.

Theorem 2.3. For n ≥ 1, we have

cn(x + λ|λ) − cn(x|λ) = λ(−1)nn(x)(n−1) ,

where (x)(n) = x(x + 1) · · · (x + n − 1) for n ≥ 1 is the rising factorial with (x)(0) = 1.

Proof. We have

∞∑
n=0

(
cn(x + λ|λ) − cn(x|λ)

) tn

n!
= λt(

(1 + t)λ − 1
)
(1 + t)x−λ

( 1
(1 + t)λ

− 1
)

= −λt
1

(1 + t)x
= −λt

∞∑
n=0

(
−x

n

)
tn

= −λ
∞∑

n=0
(−x)n

tn+1

n!
= λ

∞∑
n=1

(−1)nn(x)(n−1) tn

n!
.

Comparing the coefficients gives the result. □

Replacing x by x + λ, x + 2λ, . . . , x + (k − 1)λ in Theorem 2.3 and adding the resulting
equations, we reach at a more general result that resembles sums of powers of integers and
their generalizations (c.f. [14] and [16]).

Corollary 2.4. For n ≥ 0 and k ≥ 1, we have

cn+1(x + kλ|λ) − cn+1(x|λ)
n + 1

= (−1)nλ
k−1∑
j=0

(x + jλ)(n) .

The next result points out a multiplication theorem on λ.

Theorem 2.5. For n ≥ 0 and k ≥ 1, we have

kcn (x|λ) =
k−1∑
m=0

cn (x + λm|kλ) .
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Proof. We have

∞∑
n=0

(
k−1∑
m=0

cn

(
x + λm

k
|λ
))

tn

n!
=

k−1∑
m=0

( ∞∑
n=0

cn

(
x + λm

k
|λ
)

tn

n!

)

=
k−1∑
m=0

λt(
(1 + t)λ − 1

)
(1 + t)x−λ+λm/k

= λt(
(1 + t)λ − 1

)
(1 + t)x−λ

k−1∑
m=0

(
(1 + t)−λ/k)m

= λt(
(1 + t)λ − 1

)
(1 + t)x−λ

1 − (1 + t)−λ

1 − (1 + t)−λ/k

= k
(λ/k)t(

(1 + t)λ/k − 1
)
(1 + t)x−λ/k

= k
∞∑

n=0
cn

(
x|λ

k

)
tn

n!
.

Comparing the coefficients and replacing λ by kλ give the result. □

Certain numbers and polynomials are found to be of special importance in connection
with the study of the degenerate Cauchy polynomials. The Bernoulli polynomials Bn(x)
are monic polynomials defined by means of the generating function (c.f. [2])

text

et − 1
=

∞∑
n=0

Bn (x) tn

n!
.

When x = 0, Bn (0) = Bn are the Bernoulli numbers, which are rational numbers with
B0 = 1, B1 = −1

2 , B2 = 1
6 , B3 = 0, and B2k+1 = 0 for integers k ≥ 1. The Stirling

numbers of the second kind S (n, m) are defined by means of the generating function (c.f.
[7]) (

et − 1
)m

m!
=

∞∑
n=m

S (n, m) tn

n!
.

Theorem 2.6. For n ≥ 1, we have

n∑
m=0

cm(x|λ)S(n, m) =
n∑

m=0

(
n

m

)
λn−m

m + 1
Bn−m

(
1 − x

λ

)
.

Proof. Replacing t by etλ − 1 in (1.1), the right-hand side turns into

λ(et/λ − 1)
et(x/λ−1)(et − 1)

= et(1−x/λ)

et − 1
λ(et/λ − 1) = 1

t

tet(1−x/λ)

et − 1
λ

∞∑
j=1

tj

λjj!

= 1
t

( ∞∑
n=0

Bn

(
1 − x

λ

)
tn

n!

)
t

∞∑
j=0

1
λj(j + 1)

tj

j!

=
∞∑

n=0
Bn

(
1 − x

λ

)
tn

n!

∞∑
j=0

1
λj(j + 1)

tj

j!

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
1

λm(m + 1)
Bn−m

(
1 − x

λ

))
tn

n!
.
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On the other hand, the left-hand side is
∞∑

n=0
cn(x|λ)(et/λ − 1)m

m!
=

∞∑
n=0

cn(x|λ)
∞∑

n=m

S(n, m) tn

λnn!

=
∞∑

n=0

(
cm(x|λ)S(n, m)λ−n) tn

n!
,

so comparing the coefficients on both sides yields to the desired result. □

We round out the picture by introducing an expression between the degenerate Cauchy
polynomials and degenerate Nörlund numbers β

(n)
n (λ), which are generalizations of Nör-

lund’s numbers (see [12] and [22]), defined by Howard [10] as

λt(
(1 + t)λ − 1

)
(1 + t)1−λ

=
∞∑

n=0
β(n)

n (λ) tn

n!
.

Theorem 2.7. For n ≥ 1, we have

cn(x|λ) =
n∑

m=0

(
n

m

)
β(m)

m (λ)(−x + 1)n−m .

Proof. From (1.1), we find that
∞∑

n=0
cn(x|λ) tn

n!
= λt(

(1 + t)λ − 1
)
(1 + t)1−λ

(1 + t)−x+1

=
∞∑

n=0
β(n)

n (λ) tn

n!

∞∑
j=0

(−x + 1)j
tj

j!

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
β(m)

m (λ)(−x + 1)n−m

)
tn

n!
.

Comparing the coefficients of tn/n! on both sides yields the result. □

3. Coefficients of degenerate Cauchy polynomials
Howard [13, Theorem 3.1] determined all the coefficients of the degenerate Bernoulli

numbers βn(λ) := β(0|λ) as

βn(λ) = cnλn +
n∑

k=1

n

k
(−1)n−ks (n − 1, k − 1) Bkλn−k (n ≥ 1), (3.1)

where s (n, k) is the Stirling number of the first kind defined by means of the generating
function (c.f. [7])

(log (1 + t))k

k!
=

∞∑
n=k

(−1)n−k s (n, k) tn

n!
. (3.2)

In particular, the leading coefficient in (3.1) is the classical Cauchy numbers cn and the
constant term is the classical Bernoulli numbers Bn.

In [19, Theorem 1] the coefficients of cn(λ) are also determined. In fact, the coefficients
appear in the reverse order of those of βn(λ) as

cn(λ) = cn +
n∑

k=1
(−1)n−k n

k
s (n − 1, k − 1) Bkλk . (3.3)

We can determine the coefficients of cn(x|λ) as the polynomial of λ.
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Theorem 3.1. For n ≥ 1, we have

cn (x|λ) = cn +
n∑

k=1
(−1)n−k n

k
s (n − 1, k − 1) λkBk

(
1 − x

λ

)
(3.4)

= cn +
n∑

k=1
(−1)n n

k
s (n − 1, k − 1) xk

+
n∑

j=1

n∑
k=j

j∑
ℓ=0

(−1)n−j n

k
s (n − 1, k − 1)

(
k

j

)(
j

ℓ

)
Bℓx

k−jλj .

Proof. Let f = λ log(1 + t). Then (1 + t)λ = ef and

fk

k!
= λk

∞∑
n=k

(−1)n−ks (n, k) tn

n!

by (3.2). Thus
∞∑

n=0
cn(x|λ) = λt

f

f

ef − 1
ef(1− x

λ
) = λt

f
+ λt

f

∞∑
k=1

Bk

(
1 − x

λ

)
fk

k!

= t

log(1 + t)
+

∞∑
k=1

∞∑
n=k

n

k
Bk

(
1 − x

λ

)
λk(−1)n−ks (n − 1, k − 1) tn

n!

=
∞∑

n=0
cn

tn

n!
+

∞∑
n=0

∞∑
k=1

n

k
Bk

(
1 − x

λ

)
λk(−1)n−ks (n − 1, k − 1) tn

n!
,

where in the last line we use (1.2). Comparing the coefficients on both sides, we get (3.4).
Now, using the expression for Bernoulli polynomials in terms of Bernoulli numbers

Bn (x) =
k∑

l=0

(
k

l

)
Blx

k−l

and the binomial expansion, we write (3.4) as

cn (x|λ) = cn +
n∑

k=1
(−1)n−k n

k
s (n − 1, k − 1)

k∑
ℓ=0

(
k

ℓ

)
Bℓ

k−ℓ∑
m=0

(
k − ℓ

m

)
(−x)mλk−m.

After separating the terms of j = ℓ = 0 and changing the order of summations with
k − m = j, we have

n∑
k=1

(−1)n−k n

k
s (n − 1, k − 1)

k∑
ℓ=0

(
k

ℓ

)
Bℓ

k−ℓ∑
m=0

(
k − ℓ

m

)
(−x)mλk−m

=
n∑

k=1
(−1)n n

k
s (n − 1, k − 1) xk

+
n∑

j=1

n∑
k=j

j∑
ℓ=0

(−1)n−j n

k
s (n − 1, k − 1)

(
k

ℓ

)(
k − ℓ

k − j

)
Bℓx

k−jλj

=
n∑

k=1
(−1)n n

k
s (n − 1, k − 1) xk

+
n∑

j=1

n∑
k=j

j∑
ℓ=0

(−1)n−j n

k
s (n − 1, k − 1)

(
k

j

)(
j

ℓ

)
Bℓx

k−jλj ,

which completes the proof. □
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Remark. When x = λ in Theorem 3.1, we get the result in (3.3). The first several cases
are given as follows.

c0(x|λ) = 1 ,

c1(x|λ) = 1 − 2x

2
+ λ

2
,

c2(x|λ) = −1 + 6x2

6
− xλ + λ2

6
,

c3(x|λ) = 1 − 6x2 − 4x3

4
+ 3x(1 + x)

2
λ − 1 + 2x

4
λ2 ,

c4(x|λ) = −19 + 120x2 + 120x3 + 30x4

30
− 2x(2 + 3x + x2)λ + 2 + 6x + 3x2

3
λ2 − λ4

30
,

c5(x|λ) = 27 − 180x2 − 220x3 − 90x4 − 12x5

12
+ 5x(6 + 11x + 6x2 + x3)

2
λ

+ 5(3 + 11x + 9x2 + 2x3)
6

λ2 + 3 + 2x

12
λ4 .

As a generalization of (3.1), we can also determine the coefficients of βn (x|λ).

Theorem 3.2. For n ≥ 1, we have

βn (x|λ) = cnλn +
n∑

k=1
(−1)n−k n

k
s (n − 1, k − 1) Bk (x) λn−k .

Proof. Let f = log(1 + λt)/λ. Then 1 + λt = efλ and

fk

k!
=

∞∑
n=k

(−1)n−ks (n, k) λn−k tn

n!

by (3.2). Thus
∞∑

n=0
βn (x|λ) = t (1 + λt)x/λ

(1 + λt)1/λ − 1
= t

f
+ t

∞∑
k=1

Bk (x) fk−1

k!

= λt

log(1 + λt)
+

∞∑
k=1

∞∑
n=k

n

k
(−1)n−ks (n − 1, k − 1) Bk (x) λn−k tn

n!

=
∞∑

n=0
cnλn tn

n!
+

∞∑
n=0

∞∑
k=1

n

k
(−1)n−ks (n − 1, k − 1) Bk (x) λn−k tn

n!
.

Comparing the coefficients, the result follows. □

4. Convolutions
In this section we introduce some convolution identities for the degenerate Cauchy

numbers. We start by noting the identity

1
Xu − 1

1
Xv − 1

= 1
Xu+v − 1

(
1 + 1

Xu − 1
+ 1

Xv − 1

)
(uv(u + v) ̸= 0) (4.1)

due to Agoh [1, Theorem 1 (a)].
Put X = (1 + t)λ in (4.1). Then,

1
(1 + t)λu − 1

1
(1 + t)λv − 1

= 1
(1 + t)λ(u+v) − 1

(
1 + 1

(1 + t)λu − 1
+ 1

(1 + t)λv − 1

)
.
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Multiplying both sides by uvλ2t2 and expanding, we have
uλt

(1 + t)λu − 1
vλt

(1 + t)λv − 1
= uvλt

u + v

λ(u + v)t
(1 + t)λ(u+v) − 1

+ v

u + v

λut

(1 + t)λu − 1
λ(u + v)t

(1 + t)λ(u+v) − 1

+ u

u + v

λvt

(1 + t)λv − 1
λ(u + v)t

(1 + t)λ(u+v) − 1
.

Hence,( ∞∑
n=0

cn(λu) tn

n!

)( ∞∑
n=0

cn(λv) tn

n!

)

= uv

u + v
λt

( ∞∑
n=0

cn(λ(u + v)) tn

n!

)
+ v

u + v

( ∞∑
n=0

cn(λu) tn

n!

)( ∞∑
n=0

cn(λ(u + v)) tn

n!

)

+ u

u + v

( ∞∑
n=0

cn(λv) tn

n!

)( ∞∑
n=0

cn(λ(u + v)) tn

n!

)
. (4.2)

The right-hand side of (4.2) is equal to

uv

u + v
λ

∞∑
n=0

ncn−1(λ(u + v)) tn

n!
+ v

u + v

∞∑
n=0

(
n∑

m=0

(
n

m

)
cm(λu)cn−m(λ(u + v))

)
tn

n!

+ u

u + v

∞∑
n=0

(
n∑

m=0

(
n

m

)
cm(λv)cn−m(λ(u + v))

)
tn

n!
.

On the other hand, the left-hand side of (4.2) is
∞∑

n=0

(
n∑

m=0

(
n

m

)
cm(λu)cn−m(λv)

)
tn

n!
.

Comparing the coefficients of tn/n! on both sides, we obtain the following convolution
identity.

Theorem 4.1. For n ≥ 0,
n∑

m=0

(
n

m

)
cm(λu)cn−m(λv) = v

u + v

n∑
m=0

(
n

m

)
cm(λu)cn−m(λ(u + v))

+ u

u + v

n∑
m=0

(
n

m

)
cm(λv)cn−m(λ(u + v)) + uv

u + v
λncn−1(λ(u + v)) .

Some special cases of Theorem 4.1 are of particular interest. For instance, when u =
v = 1, we obtain

n∑
m=0

(
n

m

)
cm(λ)cn−m(λ) −

n∑
m=0

(
n

m

)
cm(λ)cn−m(2λ) = λn

2
cn−1(2λ) .

We next consider an Euler-type convolution formula for the degenerate Cauchy numbers.
For such an identity we utilize the higher-order generalization of the degenerate Cauchy
polynomials defined by Howard [9] as(

λt

(1 + t)λ − 1

)k

(1 + t)λ−x =
∞∑

n=0
c(k)

n (x|λ) tn

n!
. (4.3)
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If we differentiate both sides of (4.3) with respect to t and compare the coefficients of tn,
we find that

kc(k+1)
n (x|λ) = (k − n) c(k)

n (x|λ) + n (k − kλ − n + 1 − λ − x) c
(k)
n−1 (x|λ) .

In particular, letting k = 1 and replacing x by x + y, we have

c(2)
n (x + y|λ) = (1 − n) cn (x + y|λ) + n (2 − n − x − y) cn−1 (x + y|λ) . (4.4)

On the other hand, (4.3) gives
∞∑

n=0
c(2)

n (x + y|λ) tn

n!
= (1 + t)−x− λ

2 +λ λt

(1 + t)λ − 1
(1 + t)−y− λ

2 +λ λt

(1 + t)λ − 1

=
( ∞∑

n=0
cn

(
x + λ

2
|λ
)

tn

n!

)( ∞∑
n=0

cn

(
y + λ

2
|λ
)

tn

n!

)

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
cm

(
x + λ

2
|λ
)

cn−m

(
y + λ

2
|λ
))

tn

n!
,

from which we conclude that

c(2)
n (x + y|λ) =

n∑
m=0

(
n

m

)
cm

(
x + λ

2
|λ
)

cn−m

(
y + λ

2
|λ
)

. (4.5)

Equating (4.4) and (4.5), we arrive at the following.

Theorem 4.2. We have
n∑

m=0

(
n

m

)
cm

(
x + λ

2
|λ
)

cn−m

(
y + λ

2
|λ
)

= (1 − n) cn (x + y|λ) + n (2 − n − x − y) cn−1 (x + y|λ) .

If we let x = y = λ
2 , we obtain

n∑
m=0

(
n

m

)
cm (λ) cn−m (λ) = (1 − n) cn (λ) + n (2 − n − λ) cn−1 (λ) ,

an Euler-type convolution identity for the degenerate Cauchy numbers.

5. Congruences
In this section we present several congruences satisfied by the degenerate Cauchy polyno-

mials and numbers modulo an odd prime. Although some congruences for the degenerate
poly-Cauchy polynomials and numbers have been established (c.f. [6]), to the authors’
knowledge, congruences for the degenerate Cauchy polynomials and numbers have not
been investigated. The motivation rises from Theorem 2.6 and Theorem 2.7, where the
degenerate Cauchy polynomials are represented in terms of the ordinary Bernoulli poly-
nomials and degenerate Nörlund numbers, respectively.

Throughout we denote an odd prime number by p and assume that λ is a rational
number λ = a/b such that b is not divisible by p, that is, λ is an integer modulo p.

First, we consider congruences for the degenerate Cauchy polynomials when λ ≡ 0
(mod p).

Theorem 5.1. For λ ≡ 0 (mod p), we have

cp (x|λ) ≡ 1 − x + (1 − x)p (mod p)

and
pcp−1 (x|λ) ≡ 1 (mod p) .
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Proof. We set n = p in Theorem 2.7 to obtain

cp (x|λ) =
p∑

m=0

(
p

m

)
β(m)

m (λ) (−x + 1)p−m

= (1 − x)p + β(p)
p (λ) (1 − x)0 + pβ

(p−1)
p−1 (λ) (1 − x)1

+
p−2∑
m=1

(
p

m

)
β(m)

m (λ) (1 − x)p−m

= (1 − x)p + β(p)
p (λ) + pβ

(p−1)
p−1 (λ) (1 − x)

+
p−2∑
m=1

1
m

(
p − 1
m − 1

)
pβ(m)

m (λ) (1 − x)p−m

since (1 − x)0 = 1 and (1 − x)1 = 1 − x. Some congruences for the degenerate Nörlund
numbers has been given by Howard in [10]. Particularly, we note that

pβ(m)
m (λ) ≡ 0 (mod p) for m = 1, 2, . . . , p − 2 ,

pβ
(p−1)
p−1 (λ) ≡ 1 (mod p) ,

β(p)
p (λ) ≡ 0 (mod p) ,

for λ ≡ 0 (mod p). Using these results above, we obtain the first congruence.
For the second congruence, we note that

pcp−1 (x|λ) =
p−1∑
m=0

(
p − 1

m

)
pβ(m)

m (λ) (1 − x)p−1−m

= p (1 − x)p−1 + pβ
(p−1)
p−1 (λ) +

p−2∑
m=1

(
p − 1

m

)
pβ(m)

m (λ) (1 − x)p−1−m ,

from which the result follows. □
When x = λ in Theorem 5.1, we have congruence relations for the degenerate Cauchy

numbers when λ ≡ 0 (mod p).

Corollary 5.2. For λ ≡ 0 (mod p), we have
cp (λ) ≡ 1 − λ + (1 − λ)p (mod p)

and
pcp−1 (λ) ≡ 1 (mod p) .

Next, we consider congruences for the degenerate Cauchy numbers when λ ̸≡ 0 (mod p).
We first set x = λ in Theorem 2.6 to obtain

n∑
m=0

cm(λ)S(n, m) =
n∑

m=0

(
n

m

)
λn−m

m + 1
Bn−m .

The inversion formula for the Stirling numbers, namely,

fn =
n∑

m=0
(−1)n+m s (n, m) gm ⇔ gn =

n∑
m=0

S (n, m) fm ,

which follows from the orthogonality relations of the Stirling numbers ([8, p.264]), yields
to

cn (λ) =
n∑

m=0
(−1)n+m s (n, m)

m∑
k=0

(
m

k

)
λm−k

k + 1
Bm−k (5.1)

with fm = cm (λ).
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The Stirling numbers of the first kind satisfy the recurrence

s (n, m) = (n − 1) s (n − 1, m) + s (n − 1, m − 1)

together with the special values

s (n, 0) = 0 if n > 0 ,

s (n, n) = 1 ,

s (n, 1) = (n − 1)! if n > 0 ,

s (n, n − 1) =
(

n

2

)
if n > 1 ,

s (n, m) = 0 if m > n or m < 0.

We note that (c.f. [11])

s (p, m) ≡ 0 (mod p) for m = 2, 3, . . . , p − 1 (5.2)

and
s (p − 1, m) ≡ 1 (mod p) for m = 1, 2, . . . , p − 1 . (5.3)

Divisibility properties of the Bernoulli numbers are mainly determined by the celebrated
von Staudt-Clausen theorem, which can be stated as (see [2])

pBn ≡
{

0 (mod p), if (p − 1) ∤ n ,
−1 (mod p), if (p − 1) | n .

Theorem 5.3. For λ ̸≡ 0 (mod p), we have

cp (λ) ≡ 0 (mod p) .

Proof. For n = p, (5.1) can be written as

cp (λ) = (p − 1)!
(

−λ

2
+ 1

2

)
+

p∑
k=0

(
p

k

)
λp−k

k + 1
Bp−k

+
p−1∑
m=2

(−1)m+1 s (p, m)
m∑

k=0

(
m

k

)
λm−k

k + 1
Bm−k

separating out the terms with m = 1 and m = p, and using s (p, 1) = (p − 1)!, s (p, p) = 1,
B0 = 1, and B1 = −1

2 . We next separate out the terms with k = 0, k = 1, k = p − 1, and
k = p in the first summation, and the terms with m = p − 1 and k = 0, k = p − 1 in the
second summation, and note that Bp = 0 and s (p, p − 1) = p(p−1)

2 . We then obtain

cp (λ) = (p − 1)!1 − λ

2
+ pBp−1

λp−1

2
+ 1

p + 1
− λ

2
− (p − 1) pBp−1

λp−1

2
− p − 1

2

+ 1
p

p−2∑
k=2

(
p

k

)
λp−k

k + 1
pBp−k − p − 1

2

p−2∑
k=1

(
p − 1

k

)
λp−1−k

k + 1
pBp−1−k

+ 1
p

p−2∑
m=2

(−1)m+1 s (p, m)
m∑

k=0

(
m

k

)
λm−k

k + 1
pBm−k.

Now,
(p

k

)
≡ 0 (mod p) and pBp−k ≡ 0 (mod p) for k = 2, 3, . . . , p − 2, so the first sum

vanishes modulo p. Similarly, second sum vanishes modulo p since pBp−1−k ≡ 0 (mod p)
for k = 1, 2, . . . , p − 2. Finally, by (5.2) and pBm−k ≡ 0 (mod p) for m = 2, 3, . . . , p − 2
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and k = 0, 1, . . . , m, the last sum is zero modulo p. Hence

cp (λ) ≡ (p − 1)!1 − λ

2
+ pBp−1

λp−1

2
+ 1

p + 1
− λ

2
− (p − 1) pBp−1

λp−1

2
− p − 1

2

≡ −1 + 1
p + 1

= − p

p + 1
≡ 0 (mod p)

since pBp−1 ≡ −1 (mod p) and λ ̸≡ 0 (mod p). □

Theorem 5.4. For λ ̸≡ 0 (mod p), we have
pcp−1 (λ) ≡ 0 (mod p) .

Proof. (5.1) and (5.3) give

cp−1 (λ) =
p−1∑
m=0

(−1)p−1+m s (p − 1, m)
m∑

k=0

(
m

k

)
λm−k

k + 1
Bm−k

≡
p−1∑
m=1

(−1)m
m∑

k=0

(
m

k

)
λm−k

k + 1
Bm−k (mod p).

Arranging the right-hand side as

λp−1Bp−1 + 1
p

+
p−2∑
k=1

(
p − 1

k

)
λp−1−k

k + 1
Bp−1−k +

p−2∑
m=1

(−1)m
m∑

k=0

(
m

k

)
λm−k

k + 1
Bm−k ,

we obtain

pcp−1 (λ) ≡ λp−1pBp−1 + 1 +
p−2∑
k=1

(
p − 1

k

)
λp−1−k

k + 1
pBp−1−k

+
p−2∑
m=1

(−1)m
m∑

k=0

(
m

k

)
λm−k

k + 1
pBm−k (mod p) ,

which yields the result by the von Staudt-Clausen and Fermat’s theorems. □
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