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Abstract
Acceptance sampling plans with censoring schemes are crucial for improving quality control by
efficiently managing incomplete information. This approach improves cost and time effective-
ness compared to traditional methods, providing a more accurate assessment of product quality.
In this study, a variable acceptance sampling plan under Type-I hybrid censoring is designed
for a lot of independent and identical units with exponential lifetimes using Bayesian estimation
of the mean life. This novel approach diverges from conventional methods in acceptance sam-
pling plans, which rely on maximum likelihood estimation and the minimization of Bayes risk.
Bayesian estimation is obtained using both squared error loss and Linex loss functions. Under
each method, a nonlinear optimization problem is solved to minimize the testing cost, and the
optimal values of the plan parameters are determined. The proposed plans are illustrated us-
ing various numerical examples, with each plan presented in tables. The acceptance sampling
plan using the squared error loss function proves to be more cost-effective than the plan using
the Linex loss function. A comparative analysis of the proposed plans with existing work in
the literature demonstrates that our cost is much lower than the cost of existing plans using
maximum likelihood estimation. Additionally, a real-life case study is conducted to validate the
approach.
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1. Introduction
In the world of manufacturing and quality control, ensuring the consistent quality of products

is of paramount importance. However, inspecting every item produced can be impractical, time-
consuming, and costly. This is where acceptance sampling plans (ASPs) come into play. An
acceptance sampling plan (ASP) is a statistical technique used to make informed decisions about
accepting or rejecting a batch or lot of items based on the inspection of a sample.

Understanding and implementing a well-designed ASP is crucial for manufacturers seeking to
maintain consistent product quality, optimize resources, and meet customer expectations. By
employing statistically sound sampling techniques, organizations can make reliable decisions re-
garding batch acceptance, leading to improved efficiency, reduced costs, and enhanced customer
satisfaction.
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Censoring schemes play a crucial role in ASP and are designed to optimize the efficiency
and effectiveness of the sampling process. Type-I and Type-II censoring schemes are widely
used in statistical analysis, particularly in reliability testing and acceptance sampling. In a
Type-I censoring scheme, the time of the experiment is predetermined, but the total number of
failures that occurred becomes a random variable. Conversely, in a Type-II censoring scheme,
the testing time is a random variable since the number of observed failures is fixed. When a
combination of both Type-I and Type-II censoring schemes is employed, it is referred to as a
hybrid censoring scheme (HCS).

Here, we consider an experiment where a sample of n units is subjected to testing. Also,
assume that the sample units’ lifespans are independent random variables and identically
follow an exponential distribution. The sample units ordered lifetimes are represented as
X1,n, X2,n, ..., Xn,n. The test is concluded either when a predetermined number, γ (where
γ < n), of the n items, has failed or when a predetermined time, T, has been reached. In other
words, the life test ends at a random time T∗, which is the minimum of either the ordered
lifetime (Xγ,n) or the predetermined time T. Moreover, a widely accepted assumption is that
the failed units in the experiment are not substituted or replaced.

The Type-I HCS, proposed by [14], has found extensive application in reliability acceptance
testing, such as in MIL-STD-781-C† [25]. Since its introduction, extensive research has been
conducted on hybrid censoring and its various variations. Epstein initially introduced the Type-I
HCS and discussed estimation methods for the exponential distribution. Additionally, a two-
sided confidence interval was put forth without a mathematical proof of how it was obtained.

Subsequent researchers, such as Fairbanks et al. [15], Chen and Bhattacharyya [9], Barlow
et al. [5] and Bartholomew [6] made slight modifications to Epstein’s proposition and worked
on the derivation of the conditional moment generating function approach to derive the exact
distribution of the conditional maximum likelihood estimator (MLE) of the mean life parameter.
Childs et al. [12] obtained a simplified but equivalent form of the exact distribution of the MLE
as derived by [9]. Draper and Guttman [13] investigated the Bayesian inference within the
Type-I HCS and obtained Bayesian estimates and two-sided credible intervals using an inverted
gamma prior.

Various studies have investigated the application of ASPs with hybrid censoring. With the
Type-I generalized HCS, Chakrabarty et al. [7] developed an optimal reliability ASP for non-
repairable products sold under the general rebate warranty for products having Weibull dis-
tributed lifetimes. Later, in their work [8], Chakrabarty et al. employed an accelerated life
test setting and introduced a decision model to obtain an optimal sampling plan for products
covered under warranty using the Type-I HCS.

In [19], Kumar and Ramyamol designed a cost-efficient ASP for exponentially distributed
lifetime data under Type-I censoring based on MLE of the mean life. Most of the work in ASPs
is centered on the MLE of the parameter for deciding the acceptance and rejection of a lot, even
though the Bayesian estimator is more reliable than MLE.

Bayesian ASPs have gained considerable attention due to their ability to incorporate prior
information and make informed decisions based on observed data. However, existing Bayesian
sampling plans focus on minimizing Bayes risk, while consideration of testing cost optimization
remains limited. Lam [34], Lam and Choy [35], Lin et al. [23], and Huang and Lin [16, 17]
focused on conventional Type-I, Type-II, and random censored samples.

Recently, Chen et al. [11] constructed a curtailed Bayesian sampling plan using Type-I hy-
brid censored samples, demonstrating reduced risk compared to traditional Bayesian sampling
plans. Prajapati et al. [29] proposed a decision-theoretic method for analyzing the exponential
distribution under a generalized Type-I HCS. Furthermore, in [30], they expanded this method
to include the generalized Type-II HCS, employing an effective loss function. Prajapat et al.
[28] derived an optimal Bayesian ASP for the two-parameter exponential distribution under a
Type-I HCS based on a four-parameter conjugate prior. In [32], Sharma introduced multiple

†MIL-STD-781-C is a military standard that provides guidelines for reliability testing, and quality control of
electronic and electrical equipment to ensure they meet required performance and reliability standards.



1180 A.M. Mathai, M. Kumar

deferred state repetitive group sampling plans for generalized Gamma distribution under hy-
brid censoring. These studies collectively highlight the potential benefit of hybrid censoring in
Bayesian ASPs.

Researchers like Chen et al. [10], Lin et al. [22], and Prajapati et al. [31] have specifically
addressed Bayesian sampling plans for exponential distributions by reducing Bayes risk utilizing
Type-I hybrid censored samples. However, these plans are not based on the Bayesian estimator
of the mean life parameter, which is better than MLE [21].

In this work, we develop an ASP for a batch of units where we assume that the failure time
follows an exponential distribution with mean ϑ. Further, it is assumed that the lifetime data
are independent and identically distributed. Our aim is to design an optimal Bayesian ASP
under Type-I HCS by using a Bayesian estimator of the mean life parameter, ϑ, as the decision
function. Our plan stands out from all other existing Bayesian sampling plans by centering the
decision of acceptance or rejection of a lot based upon the value of the Bayesian estimator of
the mean lifetime parameter. As a novel approach, we have considered the minimization of the
testing cost subject to the requirements of Type I and Type II error constraints. This departure
from traditional Bayes risk-oriented approaches allows us to focus explicitly on the optimization
of testing costs, a critical consideration in practical industrial problems.

Our plan has significant applications in fields like reliability engineering and survival analysis.
In reliability engineering, the plan helps to estimate failure rates of components and systems
(electronics or machinery), incorporating prior knowledge and updating predictions with new
data, even when tests are terminated early due to time constraints or limited failures. This
improves the precision of product lifetime predictions and maintenance schedules. In survival
analysis, in medical studies, Bayesian estimation with Type-I hybrid censoring estimates the
time until events such as death or relapse occur. This methodology allows for continuous
updating of survival probabilities as new patient data becomes available, resulting in better-
informed treatment plans and more accurate prognostic models, even in cases where data is
limited due to early termination of follow-up.

The rest of the paper is organized as follows: Section 2 provides detailed information about
Bayesian inference of exponentially distributed lifetime data under Type-I HCS. The Bayesian
estimator of the mean life parameter, ϑ, is considered using both the squared error loss (SEL)
function and the Linex loss function. Section 3 presents the formulation and optimization
framework of the proposed ASP. Here, the plan parameters (n, t1, t2) are obtained by minimizing
the expected testing cost (ETC) subject to required probability conditions using both the loss
functions, namely, the SEL and Linex loss functions. The distribution of the Bayesian estimator
of ϑ under Type-I HCS for both loss functions is derived using the delta method. In Section 4,
we present the results of numerical computations of the proposed ASP and a comparison with
existing work in [19]. A real-life case study is done to illustrate the performance of the sampling
plan presented here. Finally, Section 5 concludes the paper with a summary of the contributions
and future research directions.

2. Bayesian estimation for Type-I hybrid censoring scheme
Consider a lot of units, all of which experience failures over time following an exponential

distribution. The probability density function (PDF) that characterizes the failure time of each
unit is given by:

f(x, ϑ) = 1
ϑ

exp

{
−−x

ϑ

}
x ≥ 0, ϑ > 0 (2.1)

Here we conduct Type-I hybrid censored life testing, and we obtain one of the following two
forms of observations as our observed data:

Data type I : {X1,n < X2,n < · · · < Xγ,n} if T∗ = Xγ ,

Data type II :
{
X1,n < X2,n < · · · < XD,n

}
if T∗ = T, (2.2)

where D denotes the number of failures observed before time T∗. Thus, D = γ when T∗ = Xγ .
This section discusses the method of obtaining a Bayesian estimator of the unknown pa-

rameter ϑ under the SEL and Linex loss functions and their corresponding distributions. The
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Bayesian estimator of the parameter ϑ is used to design the ASP in the next sections, and this
idea is new in ASPs.

Under Type-I HCS, the likelihood function is obtained as (see [9])

L(x, ϑ) = n!
(n − D)!

1
ϑD

exp

{
− 1

ϑ

D∑
i=1

xi,n − (n − D)
ϑ

T∗
}

, (2.3)

and log-likelihood function as

L(ϑ, x) = log
[

n!
(n − D)!

]
− D log ϑ − 1

ϑ

D∑
i=1

xi,n − (n − D)
ϑ

T∗,

where T∗ = Min{T, Xγ,n} and D = Number of units failed before T∗.
Hence, by referring to the observed sample, the MLE of ϑ can be determined as follows (see

[9]):

ϑ̂MLE =


1
D

[
D∑

i=1
xi,n + (n − D)T

]
if 1 ≤ D ≤ γ − 1

1
γ

[ γ∑
i=1

xi,n + (n − γ)Xγ,n

]
if D = γ

nT if D = 0.

(2.4)

It is evident that ϑ̂MLE is a conditioned MLE of ϑ, with the condition that at least one
observed failure is present.

Here Bayesian inference is done by using two kinds of loss functions, namely, SEL and Linex
loss function. SEL is a symmetric function and its symmetric nature is demonstrated as (see
[27])

l1(η, η̂) = (η̂ − η)2 (2.5)
where η̂ is the estimate of the unknown parameter η.

The Bayesian estimation of any function g = g(ϑ) under the SEL in (2.5), is obtained by

ĝs = E(g | Data) =
∫

ϑ g(ϑ)L(x, ϑ)ρ(ϑ)dϑ∫
ϑ L(x, ϑ)ρ(ϑ)dϑ

. (2.6)

where ϑ follows the prior distribution with PDF ρ(ϑ).

Using Type-I HCS, Draper and Guttman [13] investigated the application of Bayesian infer-
ence to estimate the unknown parameter ϑ under SEL function. They assumed in the study
that ϑ follows an inverted gamma prior distribution, with the PDF given below

ρ(ϑ) = ab

Γ(b)
ϑ−(b+1)e−a/ϑ, ϑ > 0, a > 0, and b > 0. (2.7)

The prior in (2.7) becomes non-informative prior when the hyper-parameters a = b = 0.
The posterior density function of ϑ, based on the knowledge from the observed data and the

inverted gamma prior given by (2.7), becomes (see [4])

h(ϑ | Data) =

(
D ϑ̂MLE + a

)(D+b)

Γ(D + b)
ϑ−(D+b+1) exp

{
−

(
D ϑ̂MLE + a

)
/ϑ

}
(2.8)

Considering that (D ϑ̂MLE+a)
ϑ is distributed as χ2

2(b+a)/2 a posteriori, the posterior mean serves
as the Bayesian estimate of ϑ under the SEL function. If D + b > 1, this estimator is simply
produced as (see [4])

ϑ̂s = D ϑ̂MLE + a

D + b − 1
. (2.9)

When a = b = 0, that is, when the prior becomes non-informative, it is evident that the MLE
of ϑ provided by (2.4) agrees with the Bayesian estimator in (2.9).
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The second is the Linex loss function, which is referred to as an asymmetric function and is
represented by the following formula (see [27]):

l2(η, η̂) ∝ ec(η̂−η) − c(η̂ − η) − 1, c ̸= 0. (2.10)
The direction and magnitude of asymmetry are both determined by the parameter c’s value.

Bayesian estimation tends to overestimate when c < 0, but it favors underestimating when
c > 0. The Linex loss value resembles the SEL when c approaches 0, leading to an almost
symmetric behavior. Applying the Linex loss function, we can derive the Bayesian estimation
of g(ϑ) as ([27])

ĝl = −1
c

ln E
(
e−cg | Data

)
, (2.11)

where

E
(
e−cg | Data

)
=

∫
ϑ e−cg(ϑ)L(x, ϑ)ρ(ϑ)dϑ∫

ϑ L(x, ϑ)ρ(ϑ)dϑ
. (2.12)

But in most cases, the ratio of integrals in (2.6) and (2.12) is not possible to derive an analytical
expression for it. As a result, Lindley [24] developed approximate procedures for determining
the ratio of two integrals, such as (2.6) and (2.12). Several researchers have used this to derive
approximate Bayesian estimates [20].

Thus, based on Linux loss functions, we get the Bayesian estimator of g(ϑ) = ϑ as

ϑ̂l = −1
c

ln E
(
e−cϑ | Data

)
. (2.13)

By applying Lindley’s approximate method in (2.13) for solving the ratio of integrals without
a closed form, we get the Bayesian estimate of ϑ as follows:

ϑ̂l = ϑ̂MLE − 1
c

ln
[
1 + c

2D

(
cϑ̂2

MLE − 2a + 2ϑ̂MLE(b − 1)
)]

. (2.14)

3. Acceptance sampling plans under Type-I hybrid censoring scheme
In this section, we design ASPs for a lot of units having exponential failure time with PDF

given by (2.1). For that, a sample comprising n elements is taken from the lot and is tested
under Type-I HCS.

Let ϑA be the acceptable quality level (AQL) and ϑU be the unacceptable quality level (UQL)
of a unit item in the lot. The acceptance and rejection of the lot depend on the probability
conditions given by:

P (Lot is rejected | ϑ = ϑA) ≤ α,

P (Lot is accepted | ϑ = ϑU ) ≤ β, (3.1)
where β is the consumer’s risk, α is the producer’s risk, and 0 < α, β < 1.

3.1. Normal approximation of the Bayesian estimators of ϑ using delta method
Here, the Bayesian estimator of the unknown parameter ϑ is used to design the ASP. In order

to proceed, it is necessary to derive the distribution of the Bayesian estimator. Recall that both
the Bayesian estimators are derived in terms of ϑ̂MLE , the MLE of ϑ. In [12], Childs et al.
derived the exact distribution for the conditional MLE of ϑ, ϑ̂MLE for D ≥ 1 with PDF as

f
ϑ̂MLE

(x) = (1 − vn)−1

γ−1∑
D=1

D∑
k=0

Ak,D q

(
x − Tk,D; D

ϑ
,D

)
+ q

(
x; γ

ϑ
, γ

)

+ γ

(
n
γ

) γ∑
k=1

(−1)kvn−γ+k

n − γ + k

(
γ − 1
k − 1

)
q

(
x − Tk,γ ; γ

ϑ
, γ

)]
, 0 < x < nT (3.2)

where
v = exp

{
−T

ϑ

}
, Tk,D = (n − D + k)T

D
,
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Ak,D = (−1)k
(

n
D

) (
D

k

)
un−D+k,

and

q(x; p, t) =
{

pt

Γ(t)xt−1e−px, x > 0
0, otherwise.

From (3.2), the expectation of ϑ̂MLE and E(ϑ̂2
MLE) are obtained respectively as

E(ϑ̂MLE) = (1 − vn)−1

γ−1∑
D=1

D∑
k=0

Ak,D

(
ϑ + Tk,D

)
+ ϑ

+γ

(
n
γ

) γ∑
k=1

(−1)kvn−γ+k

n − γ + k

(
γ − 1
k − 1

)
(ϑ + Tk,γ)

]
, (3.3)

and

E
(
ϑ̂2

MLE

)
= (1 − vn)−1

γ−1∑
D=1

D∑
k=0

Ak,D

{
ϑ2

D
(1 + D) + 2Tk,Dϑ +

(
Tk,D

)2
}

+ ϑ2

γ
(1 + γ) + γ

(
n
γ

)
·

γ∑
k=1

(−1)kvn−γ+k

n − γ + k

(
γ − 1
k − 1

) {
ϑ2

γ
(1 + γ) + 2Tk,γϑ + (Tk,γ)2

}]
. (3.4)

It is important to note that the variance of ϑ̂MLE , denoted as σ2
(
ϑ̂MLE

)
, can be obtained by

applying equations (3.3) and (3.4).

Define the Bayesian estimator of ϑ using SEL, ϑ̂s = U1
(
ϑ̂MLE

)
then by delta method (as in

[3]), ϑ̂s follows Normal distribution with mean,

E
(
ϑ̂s

)
= U1

(
E

(
ϑ̂MLE

))
=

D E
(
ϑ̂MLE

)
+ a

D + b − 1
, (3.5)

and variance,

V
(
ϑ̂s

)
=

(
U ′

1

(
E

(
ϑ̂MLE

)))2
σ2

(
ϑ̂MLE

)
=

(
D

D + b − 1

)2
σ2

(
ϑ̂MLE

)
. (3.6)

Similarly, from (2.14), we can define the Bayesian estimator of ϑ using Linex loss function, ϑ̂l

as U2
(
ϑ̂MLE

)
. Then by delta method, ϑ̂l follows Normal distribution with mean,

E
(
ϑ̂l

)
= U2

(
E

(
ϑ̂MLE

))
= E

(
ϑ̂MLE

)
− 1

c
ln

[
1 + c

2D

(
cE

(
ϑ̂MLE

)2
− 2a + 2E

(
ϑ̂MLE

)
(b − 1)

)]
, (3.7)

and variance,

V
(
ϑ̂l

)
=

(
U ′

2

(
E

(
ϑ̂MLE

)))2
σ2

(
ϑ̂MLE

)

=

1 −
2cE

(
ϑ̂MLE

)
+ 2b − 2

2D + c

(
cE

(
ϑ̂MLE

)2
− 2a + 2E

(
ϑ̂MLE

)
(b − 1)

)


2

σ2
(
ϑ̂MLE

)
. (3.8)



1184 A.M. Mathai, M. Kumar

3.2. ASP with Bayesian estimator of ϑ using SEL
For this ASP, a sample consisting of n items is taken from the lot and examined using Type-I

hybrid censoring. The probability requirements stated in (3.1) are used to determine whether
to accept or reject a lot. In this case, our ASP is as follows:

Step 1: A random sample of size n is taken from the lot and is tested up to time
T∗ = Min{T, Xγ} where T is the pre-fixed time and γ < n is the pre-fixed number
of failures.The number of failures that happened before the time T∗ with associated
lifetimes provided by (2.2), i.e, either data type I or type II, is denoted by D. Also, fix
the values of AQL, UQL, producer’s risk (α), and consumer’s risk (β).
Step 2: Calculate the Bayesian estimate of ϑ using SEL (ϑ̂s), which is given by

ϑ̂s = D ϑ̂MLE + a

D + b − 1
.

Step 3: Continue the testing process, by repeating Steps 1, and 2 if t1 ≤ ϑ̂s < t2. If not,
go to Step 4.
Step 4: Accept the lot if ϑ̂s ≥ t2 and reject the lot if ϑ̂s < t1.

The proposed plan is also illustrated using the flowchart in Figure 1. The key objective is to
minimize the total testing cost subject to the constraints given in (3.1) in order to obtain the
optimal values of n, t1 and t2. The total testing cost is the product of the testing cost of an
item for unit time and the total testing time. Based on the sampling plan described above, the
total testing time is the product of the time taken to reach a decision for each sample, ϑ̂s, by
the number of samples tested. But, ϑ̂s and number of samples are random variables. So, here,
the expected testing cost is obtained.

Consider pc, pa, and pr as the probabilities of continuation of testing, accepting the lot, and
rejecting the lot, respectively. Then, the corresponding long-run probabilities of acceptance and
rejection are given by Pa = pa

1−pc
and Pr = pr

1−pc
, and the expected number of items that failed

is given by 1
1−pc

(see [33]). Thus, the expected testing cost for the ASP is obtained as

ETC =
C E

(
ϑ̂s

)
1 − pc

,

where C is the testing cost of an item for unit time.
From equations (3.5) and (3.6), we get that, ϑ̂s follows normal distribution with mean,

E
(
ϑ̂s

)
=

D E
(
ϑ̂MLE

)
+ a

D + b − 1
,

and variance,

V
(
ϑ̂s

)
=

(
D

D + b − 1

)2
σ2

(
ϑ̂MLE

)
.

Then, the required probabilities are given by:

pa = P
(
ϑ̂s ≥ t2

)
= P

Z ≥
t2 − E

(
ϑ̂s

)
√

V
(
ϑ̂s

)
 , (3.9)

pr = P
(
ϑ̂s < t1

)
= P

Z <
t1 − E

(
ϑ̂s

)
√

V
(
ϑ̂s

)
 , (3.10)

pc = P
(
t1 ≤ ϑ̂s < t2

)
= P

 t1 − E
(
ϑ̂s

)
√

V
(
ϑ̂s

) ≤ Z <
t2 − E

(
ϑ̂s

)
√

V
(
ϑ̂s

)
 . (3.11)



Variable ASP for exponential distribution using Bayesian estimate 1185

Start

Select a random
sample of size n

Fix testing time, T and
no. of failures, γ < n

Test up to
T∗ = Min{T, Xγ}

Calculate the Bayesian
estimate of ϑ, say ϑ̂

ϑ̂ ≥ t2 ϑ̂ < t1 t1 ≤ ϑ̂ < t2

Accept the lot Reject the lot

Stop

Figure 1. Flowchart of the ASP.

As the expected testing cost is a function of the unknown parameter ϑ, here we consider the
expected testing cost at ϑA as the objective of the optimization problem. Thus, the required
optimization problem, P1 (n, t1, t2), is obtained by minimising the expected testing cost at ϑA,
subject to the probability conditions in (3.1).

P1(n, t1, t2) : Min
(n,t1,t2)

C E
(
ϑ̂s

)
1 − pc

 at ϑA

subject to P (Reject the lot | ϑ = ϑA) ≤ α,

P (Accept the lot | ϑ = ϑU ) ≤ β.
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where t1, t2 > 0 and t2 > t1. That is,

Min
(n,t1,t2)

C E
(
ϑ̂s

)
1 − pc

 at ϑA

subject to (Pr | ϑ = ϑA) ≤ α,

(Pa | ϑ = ϑU ) ≤ β, (3.12)

where t1, t2 > 0 and t2 > t1. Thus, we get,

Min
(n,t1,t2)

C E
(
ϑ̂s

)
1 − pc

 at ϑA

subject to
(

pr

1 − pc
| ϑ = ϑA

)
≤ α,(

pa

1 − pc
| ϑ = ϑU

)
≤ β, (3.13)

where t1, t2 > 0 and t2 > t1. Thus, by substituting the expressions of pa, pr and pc from
equations (3.9), (3.10) and (3.11), the non-linear optimization problem, P1(n, t1, t2), becomes:

P1(n, t1, t2) : Min
(n,t1,t2)


C E

(
ϑ̂s

)
1 − P

 t1−E
(

ϑ̂s

)√
V

(
ϑ̂s

) ≤ Z <
t2−E

(
ϑ̂s

)√
V

(
ϑ̂s

)


 at ϑA

subject to


P

Z <
t1−E

(
ϑ̂s

)√
V

(
ϑ̂s

)


1 − P

 t1−E
(

ϑ̂s

)√
V

(
ϑ̂s

) ≤ Z <
t2−E

(
ϑ̂s

)√
V

(
ϑ̂s

)
 | ϑ = ϑA

 ≤ α,


P

Z ≥ t2−E
(

ϑ̂s

)√
V

(
ϑ̂s

)


1 − P

 t1−E
(

ϑ̂s

)√
V

(
ϑ̂s

) ≤ Z <
t2−E

(
ϑ̂s

)√
V

(
ϑ̂s

)
 | ϑ = ϑU

 ≤ β, (3.14)

where t1, t2 > 0 and t2 > t1.
For n, t1, and t2, this non-linear optimization problem P1 can be solved by the following steps:

(1) Compute the minimum value of γ which satisfies the constraints of the problem P1.
(2) Utilising the obtained value of γ, from Step 1, solve P1 for the optimal values of n, t1,

and t2.

The optimal values of n, t1, and t2 are obtained by solving the above non-linear optimization
problem using the Genetic Algorithm (GA) solver in MATLAB. The GA solver in MATLAB
employs an iterative process that emulates natural selection to obtain an optimal solution
to the stated optimization problem. It evolves a population of potential solutions through
selection, crossover, and mutation operations to identify the most optimal solution satisfying
the constraints. It is particularly effective for nonlinear, non-convex, and high-dimensional
optimization problems. Some examples are presented in Table 1.
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3.3. ASP with Bayesian estimator of ϑ using Linex loss function
In this section, the Bayesian estimate of ϑ using the Linex loss function is applied in the ASP.

For that, a sample of size n is taken from the lot. The testing is terminated at time T∗ and the
observed lifetime data will be as given in (2.2). Here, we define an ASP as follows:

Step 1: Take a random sample of size n from the lot. Fix the time T, failure number,
γ < n, AQL, UQL, producer’s risk (α), and consumer’s risk (β). Testing is stopped at
time, T∗ = Min{T, Xγ}.
Step 2: Calculate the Bayesian estimate of ϑ using the Linex loss function (ϑ̂l), given
by

ϑ̂l = ϑ̂MLE − 1
c

ln
[
1 + c

2D

(
cϑ̂2

MLE − 2a + 2ϑ̂MLE(b − 1)
)]

.

Step 3: Continue the test, if t1 ≤ ϑ̂l < t2 and repeat Steps 1 and 2 .
Else, go to Step 4.
Step 4: Accept the lot, if ϑ̂l ≥ t2 and reject the lot, if ϑ̂l < t1.

The flow chart shown in Figure 1 demonstrates the proposed plan. The main problem here
is determining the optimal values of n, t1, and t2 while minimizing the testing cost under
probability constraints as mentioned in (3.1). Total testing cost is a product of the testing cost
of a unit item in unit time and total testing time. Total testing time is obtained by multiplying
the overall number of samples tested with decision-making time while testing a sample, given
by ϑ̂l. But they are both random variables. Thus, the total testing time becomes a random
quantity with expectation, 1

1−pc
E

(
ϑ̂l

)
. As a result, here we use the expected testing cost as

the objective function and it is given by

ETC =
C E

(
ϑ̂l

)
1 − pc

,

where C is the testing cost of an item for unit time.
From equations (3.7) and (3.8), we get that, ϑ̂l follows Normal distribution with mean,

E
(
ϑ̂l

)
= E

(
ϑ̂MLE

)
− 1

c
ln

[
1 + c

2D

(
cE

(
ϑ̂MLE

)2
− 2a + 2E

(
ϑ̂MLE

)
(b − 1)

)]
,

and variance,

V
(
ϑ̂l

)
=

1 −
2cE

(
ϑ̂MLE

)
+ 2b − 2

2D + c

(
cE

(
ϑ̂MLE

)2
− 2a + 2E

(
ϑ̂MLE

)
(b − 1)

)


2

σ2
(
ϑ̂MLE

)
.

Using this information, we can evaluate the required probabilities as

pa = P
(
ϑ̂l ≥ t2

)
= P

Z ≥
t2 − E

(
ϑ̂l

)
√

V
(
ϑ̂l

)
 , (3.15)

pr = P
(
ϑ̂l < t1

)
= P

Z <
t1 − E

(
ϑ̂l

)
√

V
(
ϑ̂l

)
 , (3.16)

pc = P
(
t1 ≤ ϑ̂l < t2

)
= P

 t1 − E
(
ϑ̂l

)
√

V
(
ϑ̂l

) ≤ Z <
t2 − E

(
ϑ̂l

)
√

V
(
ϑ̂l

)
 . (3.17)
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Here, we evaluate the objective function of the optimization problem at ϑA since the overall
testing cost includes the unknown parameter ϑ. Thus, the expected testing cost at ϑA is min-
imized by satisfying the probability conditions given in (3.1). Hence, the required non-linear
optimization problem is formulated as

P2(n, t1, t2) : Min
(n,t1,t2)

C E
(
ϑ̂l

)
1 − pc

 at ϑA

subject to P (Reject the lot | ϑ = ϑA) ≤ α,

P (Accept the lot | ϑ = ϑU ) ≤ β,

where t1, t2 > 0 and t2 > t1. This implies,

P2(n, t1, t2) : Min
(n,t1,t2)

C E
(
ϑ̂l

)
1 − pc

 at ϑA

subject to (Pr | ϑ = ϑA) ≤ α,

(Pa | ϑ = ϑU ) ≤ β,

(3.18)
where t1, t2 > 0 and t2 > t1. That is,

Min
(n,t1,t2)

C E
(
ϑ̂l

)
1 − pc

 at ϑA

subject to
(

pr

1 − pc
| ϑ = ϑA

)
≤ α,(

pa

1 − pc
| ϑ = ϑU

)
≤ β, (3.19)

where t1, t2 > 0 and t2 > t1. The non-linear optimization problem, P2(n, t1, t2), is modified by
substituting the expressions for pa, pr, and pc from equations (3.15), (3.16), and (3.17) as

P2(n, t1, t2) : Min
(n,t1,t2)


C E

(
ϑ̂l

)
1 − P

 t1−E
(

ϑ̂l

)√
V

(
ϑ̂l

) ≤ Z <
t2−E

(
ϑ̂l

)√
V

(
ϑ̂l

)


 at ϑA

subject to


P

Z <
t1−E

(
ϑ̂l

)√
V

(
ϑ̂l

)


1 − P

 t1−E
(

ϑ̂l

)√
V

(
ϑ̂l

) ≤ Z <
t2−E

(
ϑ̂l

)√
V

(
ϑ̂l

)
 | ϑ = ϑA

 ≤ α,


P

Z ≥ t2−E
(

ϑ̂l

)√
V

(
ϑ̂l

)


1 − P

 t1−E
(

ϑ̂l

)√
V

(
ϑ̂l

) ≤ Z <
t2−E

(
ϑ̂l

)√
V

(
ϑ̂l

)
 | ϑ = ϑU

 ≤ β, (3.20)

where t1, t2 > 0 and t2 > t1.
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The following steps are used to resolve the above-mentioned nonlinear optimization problem P2
for (n, t1, t2):

(1) First, determine the least value of γ subjected to the constrains of the problem P2.
(2) Then solve P2, using the value of γ obtained in Step 1.

Similarly, as in Subsection 3.2, the non-linear optimization problem is solved using the GA
solver in MATLAB and the obtained optimal values of n, t1, and t2 are tabulated in Table 2
and Table 3 for c = 0.5 and c = −0.5, respectively.

4. Computational results, comparisons, and real data case study
Numerical computations of all the above sections are discussed in this section and are dis-

played in Table 1 to 3. The hyper-parameters, a = 1.25 and b = 2.5 are used to compute the
Bayesian estimator throughout this work since they give more approximate Bayesian estimate
for ϑ (see [22] and [34]). ETC of the ASP under Type I hybrid censoring using Bayesian es-
timate of ϑ subject to Linex loss function for both c = 0.5 and c = −0.5 is computed and is
shown in Table 2 and Table 3, respectively. From that, we can observe that the ETC is less
for c = 0.5 than that of c = −0.5. For example, with C = 1, ϑA = 200, ϑU = 100, T = 100,
α = 0.05 and β = 0.05, the ETC is 127.2029 for c = 0.5 and ETC is increased to 228.1767 for
c = −0.5. A comparison of testing costs obtained from ASPs under Type-I hybrid censoring
using a Bayesian estimate of the parameter ϑ using the SEL and Linex loss functions is also done
using the results in Tables 1, 2 and 3. Consider the following example for the set of parameters:
C = 1, ϑA = 500, ϑU = 200, T = 50, α = 0.05 and β = 0.05, the ETC obtained for ASP
with SEL and Linex loss functions are 475.5810, 557.9282 (c = 0.5) and 627.7466 (c = −0.5),
respectively. These comparisons show that the ASP has the lowest test cost when the Bayesian
estimate of ϑ is computed using the SEL function.

Table 4 presents the comparison of ETC computed for the ASP under Type-I hybrid censoring
with Bayesian estimate of ϑ using SEL function and Linex loss function with c = 0.5 against the
ASP under Type-I censoring scheme designed using MLE of ϑ in [19]. Thus, one can observe
that the cost of our plan is less than the one described in [19].

Furthermore, a sensitivity analysis is conducted to analyze how changes in producer’s risk
(α) and consumer’s risk (β) affect the ETCs of proposed ASPs. Figure 2 depicts the impact
of varying α while maintaining β constant, revealing a decrease in the ETC for both ASPs as
α increases. Similarly, Figure 3 shows that as β increases, with α held constant, the ETCs of
both ASPs also decrease. Figure 4 illustrates a consistent trend of ETC when both α and β are
varied simultaneously. Additionally, the proposed ASPs are applied to real-life data.

Table 1. ASP under Type-I HCS using SEL function for C=1.

ϑA ϑU T α β γ t1 t2 n ETC
200 100 100 0.05 0.05 26 162.3926 162.3957 31 123.4077

0.01 0.05 20 74.7316 74.7322 31 124.7417
0.01 0.01 25 146.3421 146.3394 36 125.6045

500 200 50 0.05 0.05 21 313.5638 313.5638 26 475.5810
0.01 0.05 22 310.5940 310.5948 27 480.9310
0.01 0.01 30 225.7734 225.7735 32 563.9248

500 200 100 0.05 0.05 26 313.3180 313.3188 37 509.9392
0.01 0.05 14 311.1179 311.1179 37 513.4323
0.01 0.01 24 390.4518 390.4526 38 566.6305

3000 1500 1000 0.05 0.05 16 2005.3416 2005.3425 62 2675.7067
0.01 0.05 10 2000.6681 2000.6682 92 2680.1320
0.01 0.01 15 2022.5679 2022.568 98 2684.0441
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Table 2. ASP under Type-I HCS using Linex loss for c = 0.5 and C=1.

ϑA ϑU T α β γ t1 t2 n ETC
200 100 100 0.05 0.05 21 63.1133 63.1134 35 127.2029

0.01 0.05 19 56.3674 56.3675 38 136.7482
0.01 0.01 28 140.9731 140.9733 40 143.1099

500 200 50 0.05 0.05 21 367.4209 367.421 34 557.9282
0.01 0.05 26 361.9554 361.9555 34 558.9578
0.01 0.01 28 371.9294 371.9295 36 595.2252

500 200 100 0.05 0.05 22 367.4918 367.4918 39 521.9267
0.01 0.05 27 354.8226 354.8229 39 523.5307
0.01 0.01 25 364.1113 364.1115 42 524.21

3000 1500 1000 0.05 0.05 15 2473.6173 2473.6174 24 3379.9555
0.01 0.05 11 2437.8132 2437.8133 33 3461.2578
0.01 0.01 6 2428.6943 2428.6944 34 3705.1855

Table 3. ASP under Type-I HCS using Linex loss for c = −0.5 and C=1.

ϑA ϑU T α β γ t1 t2 n ETC
200 100 100 0.05 0.05 28 186.2786 186.2793 34 228.1767

0.01 0.05 26 178.3335 178.3342 35 232.5816
0.01 0.01 23 177.5453 177.5455 45 250.3530

500 200 50 0.05 0.05 12 400.025 400.0248 25 627.7466
0.01 0.05 15 396.9158 396.9158 26 635.9504
0.01 0.01 14 405.41 405.4198 26 636.7619

500 200 100 0.05 0.05 18 423.5114 423.5116 37 600.3209
0.01 0.05 22 405.5332 405.5335 38 620.4932
0.01 0.01 24 411.5643 411.5644 43 623.4914

3000 1500 1000 0.05 0.05 19 3783.5928 3783.5929 29 3449.2903
0.01 0.05 11 2507.4709 2507.471 30 3449.8618
0.01 0.01 9 2557.26 2557.2699 30 3450.2116

Table 4. Comparison of ETCs for ASP using two different loss functions
and testing costs under Type-I censoring.

ϑA ϑU T α β A B C
200 100 100 0.05 0.25 123.4077 151.0479 156.53
3000 1500 1500 0.05 0.1 1423.5748 2256.9985 2290.35
ETCs are calculated using the SEL function (column A), Linex loss with c =

0.5 (column B), and ASP under Type-I censoring (column C).

4.1. Case study
In this section, the ASPs presented in this work are demonstrated using a real-world example

from [26]. The failure rates for 36 appliances that underwent an automated life test are listed
below; the lifetime shown here refers to the number of cycles of use that the appliances
can withstand before failing.

11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451,

2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329,

6367, 6976, 7846, 13403.

The above data follows an exponential distribution. For the application of the proposed sam-
pling plans in Sections 3 and 4, we take our plan parameters as ϑA = 3000, ϑU = 600, T = 2000,
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Figure 2. Changes in the ETC of ASPs based on SEL and Linex loss function for fixed
β = 0.05 and varying values of α with ϑA = 500, ϑU = 200, T = 100 and C = 1.

Figure 3. Changes in the ETC of ASPs based on SEL and Linex loss function for fixed
α = 0.01 and varying values of β with ϑA = 500, ϑU = 200, T = 50 and C = 1.

α = 0.1 and β = 0.2 as in [19]. Now, we can solve the nonlinear optimization problems P1 and
P2 to obtain the optimal values of plan parameters t1 and t2. Note that, t1 and t2 are real
numbers but for the application of our ASPs we need them to be integers. So we first solve P1
and P2, if we get integer values for t1 and t2, then we can look for the acceptance and rejection
of the lot with appropriate conditions. If t1 and t2 are non-integers then we restrict them to be
integers. Hence our optimization problems P1 and P2 become non-linear integer programming
problems with integer solutions.
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Figure 4. Sensitivity of the ETC of ASPs, based on SEL and Linex loss function to
changes in α and β for fixed ϑA = 3000, ϑU = 1500, T = 1000 and C = 1.

For the above-mentioned data, the different sampling plans proposed in our work yield the
following outcomes:

(1) ASP under Type-I HCS using SEL function gives the parameters as γ = 9, t1 = 2064,
t2 = 2065, and n = 31. Next, we consider the first 31 samples from the above data.
The samples are tested upto time T∗ = Min{T, X9} = 1062 since X9 = 1062. Now
we compute the Bayesian estimate of ϑ with SEL function as ϑ̂s = 2577.9286 and it is
greater than t2 = 2065. So, we can accept the lot with ETC = 2405.

(2) Based on ASP under Type-I HCS using Linex loss function for c = 0.5, we get the
optimal values for test parameters as γ = 11, t1 = 2156, t2 = 2157, and n = 27.
Then, the first 27 samples are taken from the data and the testing is stopped at T∗ =
Min{T, X11} = 1594 as X11 = 1594. Next, we calculate the Bayesian estimate of ϑ using
Linex loss function and get ϑ̂l = 2883.2339. Hence, we accept the lot as ϑ̂l > t2 and the
ETC = 2909.

In [19], Kumar et al. utilized the same real-life data to illustrate their ASP under Type-I
censoring for the exponential distribution. With the same parameter values, they accepted
the lot with an ETC of 2918, based on 11 samples. This comparison demonstrates that the
proposed ASPs in our work result in lower costs, indicating an improvement over the existing
ASP presented in [19].

5. Conclusion
In conclusion, using Bayesian inference, a novel approach for Type-I hybrid censoring in ASPs

is proposed here. Unlike conventional methods that rely on MLE of ϑ and minimizing Bayes
risk, this study considered the Bayesian estimators of ϑ, for designing the ASP and incorporating
the ETC. The SEL and linex loss were employed to compute the Bayesian estimators of ϑ.

The aim of all ASPs was to compute the optimal values of n, t1, and t2 by solving nonlinear
optimization problems of minimizing ETC. A comparative study of ETC involved in ASPs
using SEL and Linex loss functions is illustrated here using Table 1 to 3 for different values
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of AQL (ϑA), UQL (ϑU ), producer’s risk (α), consumer’s risk (β), T and γ. The lower ETC
for SEL compared to Linex loss functions signifies that SEL provides a more cost-effective
approach for our plan. This insight can have substantial implications for resource allocation,
budget optimization, and overall project efficiency. ETC obtained for ASP using the Linex loss
function is computed for both c = 0.5 and c = −0.5 and is tabulated in Table 2 and Table 3,
respectively. From that, we get the ETC for c = −0.5 is more than the ETC obtained for
c = 0.5. This is mainly because the Bayesian estimator of ϑ is overestimated for c = −0.5 using
the Linex loss function (see [27]).

Table 4 shows the comparison of expected costs for our plan using Bayesian inference and the
ASP under Type-I censoring in [19] which uses MLE of ϑ. The comparison results have revealed
the importance of utilizing Bayesian inference to minimize costs, as the ETC involved in ASP
under Type-I censoring in [19] is more than the ASPs discussed in this work. Thus, by adopting
Bayesian inference and incorporating SEL as the loss function, we can better manage costs and
improve the overall performance of our plan. In addition, the sensitivity analysis performed
for the ASPs based on SEL and Linex loss functions, as shown in Figures 2, 3, and 4, reveals
that the ETC decreases as α and β increase. This behavior is similar for both the proposed
ASPs. Moreover, a real-life case study is conducted to explain the practical application of the
various ASPs discussed here. However, our proposed plans have some limitations, that they will
not be effective if the lifetime data are coming from an uncertain environment, such as the one
considered by authors in papers [1,2,18]. Hence, our work can be extended using neutrosophic
statistics, which can be a future scope for research.
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