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Assume we have a prime ring denoted as 𝑅𝑅, with a characteristic distinct from two. The concept of a 
homoderivation refers to an additive map Η of a ring R that satisfies the property Η(𝑟𝑟1𝑟𝑟2) = Η(𝑟𝑟1)𝑟𝑟2 +
𝑟𝑟1Η(𝑟𝑟2) + Η(𝑟𝑟1)Η(𝑟𝑟2),∀𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅. This article aims to obtain results for prime rings, ideals, and Lie ideals 
by utilizing the concept of homoderivation in conjunction with the established theory of derivations. 
Keywords: Prime ring, Homoderivation, Lie ideal, Jordan ideal. 
 

 
 

Let 𝑅𝑅 be a ring, with 𝑍𝑍(𝑅𝑅) denoting its center. The commutator of 𝑟𝑟1 and 𝑟𝑟2 in 𝑅𝑅 is denoted by [𝑟𝑟1, 𝑟𝑟2], 
while the anti-commutator is denoted by 𝑟𝑟1 ∘ 𝑟𝑟2 = (𝑟𝑟1, 𝑟𝑟2). A nontrivial additive subset 𝑈𝑈 within the ring 𝑅𝑅 
is referred to as a Lie ideal if it satisfies the condition [𝑈𝑈,𝑅𝑅] ⊂ 𝑈𝑈. A well-known result due to Bergen et al. 
(1981) is that if 𝑈𝑈 is a Lie ideal of R such that 𝑈𝑈 ⊈ 𝑍𝑍(𝑅𝑅), then there exists an ideal 𝐼𝐼 in 𝑅𝑅 satisfying [𝐼𝐼,𝑅𝑅] ⊂
𝑈𝑈 but [𝐼𝐼,𝑅𝑅] ⊈ 𝑍𝑍(𝑅𝑅). Furthermore, in accordance with Sofy (2000), for any subset , a function  is 

considered to preserve  if , and it is termed zero-power valued on  if it meets the 
criteria of preserving , with the additional requirement that for each , there exists a positive integer 

  such that . 
In the ring theory, derivations are additive mappings that satisfy the condition 

𝐷𝐷(𝑟𝑟1𝑟𝑟2) = 𝐷𝐷(𝑟𝑟1)𝑟𝑟2 + 𝑟𝑟1𝐷𝐷(𝑟𝑟2) 
for all 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅.  
The concept of a generalized derivation was introduced by Brēsar ([18]) in the following manner: An 
additive mapping  is referred to as a generalized derivation if there is a derivation 𝜕𝜕 such that 
 

𝐺𝐺(𝑟𝑟1𝑟𝑟2) = 𝐺𝐺(𝑟𝑟1)𝑟𝑟2 + 𝑟𝑟1𝜕𝜕(𝑟𝑟2) 
for all 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅. 
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Throughout the last three decades, numerous authors have contributed to the establishment of the 
most fundamental theorems in ring theory by incorporating automorphisms or derivatives and proving 
commutation theorems for prime rings, semiprime rings, or suitable subsets. As the definition of derivation 
evolved, the field of study expanded to include generalized derivations, (𝛼𝛼,𝛽𝛽)-derivations, and semi-
derivations. Recently, El Sofy proposed a new definition of homoderivations, which includes derivations 
as a special case [8]. By this definition, 
  

ℎ(𝑟𝑟1𝑟𝑟2) = ℎ(𝑟𝑟1)ℎ(𝑟𝑟2) + ℎ(𝑟𝑟1)𝑟𝑟2 + 𝑟𝑟1ℎ(𝑟𝑟2) 
 
is a homoderivation on R as additive mapping ℎ:𝑅𝑅 → 𝑅𝑅 for all 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅. An example of a homoderivation 
is ℎ(𝑟𝑟) = 𝜌𝜌(𝑟𝑟)− 𝑟𝑟 for all 𝑟𝑟 ∈ 𝑅𝑅, where 𝜌𝜌 is an endomorphism on R. A recent study by Sofy showed that if 
ℎ(𝑟𝑟)ℎ(𝑠𝑠) = 0 for all 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅, then ℎ = 0, and Rehman et al. extended this result to 𝐼𝐼 ideals of 𝑅𝑅 [16]. 
 

In recent years, researchers have been exploring various generalizations of homoderivations on rings. 
One such generalization is the notion of generalized homoderivations, which extend the classical concept 
of homoderivations to noncommutative rings [1, 6, 14, 16]. As time progresses, one observes that 
generalizations of this derivative type are also beginning to be introduced [3, 7]. This paper explores 
implications for homoderivations of Lie ideals that have not been previously examined in the literature. 
Additionally, we have included some of the results obtained for ideals. Our work is motivated by several 
fundamental theorems in ring theory that involve automorphisms or derivatives and establish commutation 
theorems for prime rings, semiprime rings, or suitable subsets. Some notable inspirations for our work 
include ([15, 11, 12, 4]). We hope that our findings will contribute to the ongoing generalizations of the 
concept of homoderivations and their applications in ring theory.  
 

 
 
In this section, we examine some basic properties using homoderivations under the conditions we assume 
for the ideals of the ring, and in particular for the Lie ideals. 
 
Lemma 2.1. [5] A group cannot be represented as the union of two of its proper subgroups. 
 
Lemma2.2. [13] Let 𝑏𝑏 and 𝑎𝑎𝑏𝑏 be in the center of a prime ring 𝑅𝑅. If 𝑏𝑏 is not zero, then 𝑎𝑎 is in 𝑍𝑍(𝑅𝑅). 
 
Lemma2.3. [8] Let ℎ:𝑅𝑅 → 𝑅𝑅 be a homoderivation. If ℎ2(𝑅𝑅) = 0 then ℎ = 0. 
 
Lemma2.4. Let ℎ1 and ℎ2 be two nonzero homoderivations on R. If ℎ1ℎ2(𝑅𝑅) = 0 then ℎ1 = 0 or ℎ2 = 0. 
 
Proof.   Let 

ℎ1ℎ2(𝑟𝑟𝑠𝑠) = 0 
  
for all 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅. 0 = ℎ1�ℎ2(𝑟𝑟𝑠𝑠)� = ℎ1�ℎ2(𝑟𝑟)𝑠𝑠 + 𝑟𝑟ℎ2(𝑠𝑠) + ℎ2(𝑟𝑟)ℎ2(𝑠𝑠)� = ℎ2(𝑟𝑟)ℎ1(𝑠𝑠) + ℎ1(𝑟𝑟)ℎ2(𝑠𝑠). 
Hence, replacing ℎ2(𝑟𝑟) by 𝑟𝑟, 

ℎ22(𝑟𝑟)ℎ1(𝑠𝑠) = 0                                                                          (1) 
 
for all 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅. By putting 𝑠𝑠𝑠𝑠 instead of 𝑠𝑠, we have ℎ22(𝑟𝑟)𝑠𝑠ℎ1(𝑠𝑠) = 0 for all 𝑟𝑟, 𝑠𝑠, 𝑠𝑠 ∈ 𝑅𝑅. Thus, 

ℎ22(𝑅𝑅)𝑅𝑅ℎ1(𝑅𝑅) = 0 

2. RESULTS  
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Since 𝑅𝑅 is a prime ring and from Lemma 2.3 it becomes ℎ1 = 0 or ℎ2 = 0. 
 
Lemma 2.5. [8] Let ℎ be a homoderivation of 𝑅𝑅. If [ℎ(𝑅𝑅),𝑎𝑎] = 0 then ℎ = 0 or 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅). 
 

Here are two apparent corollaries stemming from this lemma: 
 
Corollary 2.6. Let ℎ be a homoderivation of 𝑅𝑅. If ℎ(𝑅𝑅) ⊂ 𝑍𝑍(𝑅𝑅) then ℎ = 0 or 𝑅𝑅 is commutative. 
 
Corollary 2.7. Let ℎ be a homoderivation and U be a Lie ideal of 𝑅𝑅. If [ℎ(𝑅𝑅),𝑈𝑈] = 0 then ℎ = 0 or 𝑈𝑈 ⊂
𝑍𝑍(𝑅𝑅). 
 
Lemma 2.8. [8] Assume R is a prime ring with a non-trivial two-sided ideal 𝐼𝐼 ≠ (0). If 𝑅𝑅 contains a nonzero 
homo derivation ℎ that both commutes and exhibits zero power valuation on 𝐼𝐼, then 𝑅𝑅 must be commutative. 
 
Theorem 2.9. Let 𝐼𝐼 and 𝐿𝐿 be nonzero ideals of 𝑅𝑅. If ℎ is a zero-power valued nonzero homoderivation on 
𝐼𝐼 and 𝐿𝐿 such that ℎ(𝐼𝐼) ⊂ 𝑍𝑍(𝐿𝐿) then 𝑅𝑅 is commutative. 
 
Proof.   Let ℎ(𝐼𝐼) ⊂ 𝑍𝑍(𝐿𝐿). According to this hypothesis  [ℎ(𝑥𝑥𝑟𝑟), 𝑠𝑠] = 0, 𝑥𝑥 ∈ 𝐼𝐼, 𝑠𝑠, 𝑟𝑟 ∈ 𝐿𝐿. Thus 

0 = [ℎ(𝑥𝑥)ℎ(𝑟𝑟) + ℎ(𝑥𝑥)𝑟𝑟 + 𝑥𝑥ℎ(𝑟𝑟), 𝑠𝑠] = ℎ(𝑥𝑥)[ℎ(𝑟𝑟), 𝑠𝑠] + ℎ(𝑥𝑥)[𝑟𝑟, 𝑠𝑠] + 𝑥𝑥[ℎ(𝑟𝑟), 𝑠𝑠] + [𝑥𝑥, 𝑠𝑠]ℎ(𝑟𝑟)        (2) 
  
 In equation (2) replace 𝑟𝑟 by 𝑠𝑠 to get 

0 = ℎ(𝑥𝑥)[ℎ(𝑠𝑠), 𝑠𝑠] + 𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] + [𝑥𝑥, 𝑠𝑠]ℎ(𝑠𝑠)                                             (3) 
 
  
Now, if we take 𝑟𝑟𝑥𝑥 instead of 𝑥𝑥 in the Equation (3) equation, we find 0 = ℎ(𝑟𝑟𝑥𝑥)[ℎ(𝑠𝑠), 𝑠𝑠] + 𝑟𝑟𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] +
[𝑟𝑟𝑥𝑥, 𝑠𝑠]ℎ(𝑠𝑠) = ℎ(𝑟𝑟)𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] + 𝑟𝑟ℎ(𝑥𝑥)[ℎ(𝑠𝑠), 𝑠𝑠] +  ℎ(𝑟𝑟)ℎ(𝑥𝑥)[ℎ(𝑠𝑠), 𝑠𝑠] + 𝑟𝑟𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] + 𝑟𝑟[𝑥𝑥, 𝑠𝑠]ℎ(𝑠𝑠) +
[𝑟𝑟, 𝑠𝑠]𝑥𝑥ℎ(𝑠𝑠) = ℎ(𝑟𝑟)𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] + ℎ(𝑟𝑟)ℎ(𝑥𝑥)[ℎ(𝑠𝑠), 𝑠𝑠] + [𝑟𝑟, 𝑠𝑠]𝑥𝑥ℎ(𝑠𝑠). If we choose to use 𝑠𝑠 instead of 𝑟𝑟 in this 
last equation 

ℎ(𝑠𝑠)�𝑥𝑥 + ℎ(𝑥𝑥)�[ℎ(𝑠𝑠), 𝑠𝑠] = 0                                                               (4) 
 
Since ℎ is zero-power valued on 𝐼𝐼, there exists an integer 𝑛𝑛(𝑥𝑥) > 1  such that ℎ𝑛𝑛(𝑥𝑥) = 0, for all 𝑥𝑥 ∈ 𝐼𝐼. 
Replacing 𝑥𝑥 by 𝑥𝑥 − ℎ(𝑥𝑥) + ℎ2(𝑥𝑥) + ⋯… . . +(−1)𝑛𝑛(𝑥𝑥)−1ℎ𝑛𝑛(𝑥𝑥)−1 in Equation (4), for all 𝑥𝑥 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐿𝐿 

ℎ(𝑠𝑠)𝑥𝑥[ℎ(𝑠𝑠), 𝑠𝑠] = 0 
 

We put 𝐾𝐾1 = {𝑠𝑠 ∈ 𝐿𝐿|ℎ(𝑠𝑠) = 0} and 𝐾𝐾2 = {𝑠𝑠 ∈ 𝐿𝐿|[ℎ(𝑠𝑠), 𝑠𝑠] = 0}. 𝐾𝐾1 and 𝐾𝐾2 both are additive 
subgroups of 𝐿𝐿. Through the Lemma 2.1 we arrive at 𝐾𝐾1 = 𝐿𝐿 or 𝐾𝐾2 = 𝐿𝐿. It is clear that if 𝐾𝐾1 = 𝐿𝐿 then 
ℎ(𝐿𝐿) = 0. Since ℎ is a nonzero homoderivation [ℎ(𝑠𝑠), 𝑠𝑠] = 0 for all 𝑠𝑠 ∈ 𝐿𝐿 we see from Lemma 2.8 𝑅𝑅 is 
commutative. 
 
Lemma 2.10. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation, 𝑎𝑎 be a fixed element of 𝑅𝑅 and ℎ(𝑅𝑅 ∘ 𝑎𝑎) = 0. 
Then ℎ(𝑎𝑎) = 0 or 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅) 
 
Proof. Let ℎ(𝑅𝑅 ∘ 𝑎𝑎) = 0. Hence 
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0 = ℎ(𝑟𝑟𝑠𝑠 ∘ 𝑎𝑎) = ℎ(𝑟𝑟(𝑠𝑠 ∘ 𝑎𝑎)− [𝑟𝑟, 𝑎𝑎]𝑠𝑠) 
 
for all 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅. Replacing 𝑟𝑟 by 𝑎𝑎 we have ℎ(𝑎𝑎)(𝑠𝑠 ∘ 𝑎𝑎) = 0. Replacing 𝑠𝑠 by 𝑠𝑠𝑥𝑥 then 0 = ℎ(𝑎𝑎)(𝑠𝑠𝑥𝑥 ∘ 𝑎𝑎) =
ℎ(𝑎𝑎)𝑠𝑠[𝑥𝑥, 𝑎𝑎] for all 𝑥𝑥, 𝑠𝑠 ∈ 𝑅𝑅. We obtain ℎ(𝑎𝑎) = 0 or 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅). 
 
Lemma 2.11. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation and 𝐼𝐼 be a nonzero ideal of 𝑅𝑅. If 𝑎𝑎 and 𝑏𝑏 are fixed 
elements of 𝑅𝑅 such that 𝑏𝑏ℎ(𝐼𝐼 ∘ 𝑎𝑎) = 0 then ℎ(𝑎𝑎) = 0  or 𝑏𝑏[𝑏𝑏,𝑎𝑎]=0. 
 
Proof. If 𝑏𝑏ℎ(𝐼𝐼 ∘ 𝑎𝑎) = 0 then 0 = 𝑏𝑏ℎ�(𝑥𝑥𝑎𝑎, 𝑎𝑎)� = 𝑏𝑏ℎ�(𝑥𝑥, 𝑎𝑎)𝑎𝑎� = 𝑏𝑏(𝑥𝑥, 𝑎𝑎)ℎ(𝑎𝑎). From [10] ℎ(𝑎𝑎) = 0  or 
𝑏𝑏[𝑏𝑏,𝑎𝑎]=0. 
 
Lemma 2.12. Let ℎ be a nonzero homoderivation, 𝐼𝐼 be a nonzero ideal of 𝑅𝑅 and 𝜇𝜇 be an automorphism of 
𝑅𝑅. If 𝑎𝑎 is a fixed element of 𝑅𝑅 such that ℎ𝜇𝜇(𝐼𝐼,𝑎𝑎) = 0 then 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅) or ℎ𝜇𝜇(𝑎𝑎) = 0. 
 
Proof. For all 𝑥𝑥 ∈ 𝐼𝐼, ℎ𝜇𝜇(𝑥𝑥𝑎𝑎, 𝑎𝑎) = ℎ𝜇𝜇�(𝑥𝑥,𝑎𝑎)𝑎𝑎� = ℎ�𝜇𝜇(𝑥𝑥, 𝑎𝑎)𝜇𝜇(𝑎𝑎)� = ℎ�𝜇𝜇(𝑥𝑥,𝑎𝑎)�ℎ𝜇𝜇(𝑎𝑎) +
ℎ�𝜇𝜇(𝑥𝑥,𝑎𝑎)�𝜇𝜇(𝑎𝑎) + 𝜇𝜇(𝑥𝑥, 𝑎𝑎)ℎ𝜇𝜇(𝑎𝑎). So, we have 𝜇𝜇(𝐼𝐼, 𝑎𝑎)ℎ𝜇𝜇(𝑎𝑎) = 0. From [10], 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅) or ℎ𝜇𝜇(𝑎𝑎) = 0. 
 
Lemma 2.13. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a homoderivation and a be a fixed element of 𝑅𝑅. If ℎ([𝑅𝑅,𝑎𝑎]) = 0 then ℎ =
0 or 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅). 
 
Proof. If ℎ([𝑅𝑅, 𝑎𝑎]) = 0, for all 𝑟𝑟 ∈ 𝑅𝑅, ℎ([𝑎𝑎𝑟𝑟, 𝑎𝑎]) = ℎ(𝑎𝑎)[𝑟𝑟,𝑎𝑎] = 0. If we replace 𝑟𝑟 with 𝑟𝑟𝑥𝑥, 𝑥𝑥 ∈ 𝑅𝑅 

ℎ(𝑎𝑎)𝑅𝑅[𝑅𝑅,𝑎𝑎] = 0 

Since 𝑅𝑅 is prime, we find that 𝑎𝑎 ∈ 𝑍𝑍(𝑅𝑅) or ℎ(𝑎𝑎) = 0. If ℎ(𝑎𝑎) = 0 then 0 = ℎ([𝑟𝑟, 𝑎𝑎]) = [ℎ(𝑟𝑟),𝑎𝑎], for all 
𝑟𝑟 ∈ 𝑅𝑅. Thus [ℎ(𝑅𝑅),𝑎𝑎] = 0. We obtain by Lemma 2.5 ℎ = 0. 
 
Corollary 2.14. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a homoderivation and let U be a Lie ideal of 𝑅𝑅. If ℎ([𝑅𝑅,𝑈𝑈]) = 0 then ℎ =
0 or 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Proof. Applying Lemma 2.13 and Corollary 2.7 sequentially makes the proof evident. 
 
Lemma 2.15. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a homoderivation. If 𝐼𝐼 is a nonzero right ideal of 𝑅𝑅 and for all 𝑥𝑥 ∈ 𝐼𝐼, if 
ℎ(𝑥𝑥) = 𝑥𝑥, then ℎ(𝑠𝑠) = 0 for all 𝑠𝑠 ∈ 𝑅𝑅. 
 
Proof. By the hypothesis that for any 𝑥𝑥 ∈ 𝐼𝐼, 𝑠𝑠, 𝑠𝑠 ∈ 𝑅𝑅, ℎ(𝑥𝑥𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑠𝑠𝑠𝑠, on the other hand, if we apply ℎ 
homoderivation in this expression ℎ(𝑥𝑥𝑠𝑠𝑠𝑠) = ℎ(𝑥𝑥𝑠𝑠)𝑠𝑠 + ℎ(𝑥𝑥𝑠𝑠)ℎ(𝑠𝑠) + 𝑥𝑥𝑠𝑠ℎ(𝑠𝑠) = 𝑥𝑥𝑠𝑠𝑠𝑠. Again, from our 
hypothesis we get ℎ(𝑥𝑥𝑠𝑠)ℎ(𝑠𝑠) + 𝑥𝑥𝑠𝑠ℎ(𝑠𝑠) = 0 and hence 2𝑥𝑥𝑠𝑠ℎ(𝑠𝑠) = 0. 
Since  𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑅𝑅 ≠ 2, 𝑥𝑥𝑠𝑠ℎ(𝑠𝑠) = 0. 𝐼𝐼 is a nonzero ideal from hypothesis then ℎ(𝑠𝑠) = 0 for all 𝑠𝑠 ∈ 𝑅𝑅. 
 
Lemma 2.16. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation and let U be a Lie ideal on 𝑅𝑅. If ℎ(𝑢𝑢) = 𝑢𝑢 for all 
𝑢𝑢 ∈ 𝑈𝑈, then 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Proof. By the hypothesis that ℎ(𝑢𝑢) = 𝑢𝑢 for all 𝑢𝑢 ∈ 𝑈𝑈 we have ℎ([𝑢𝑢, 𝑟𝑟]) = [𝑢𝑢, 𝑟𝑟] for all 𝑟𝑟 ∈ 𝑅𝑅, 𝑢𝑢 ∈ 𝑈𝑈. Hence 
ℎ([𝑢𝑢, 𝑟𝑟]) = [ℎ(𝑢𝑢), 𝑟𝑟] + [𝑢𝑢, ℎ(𝑟𝑟)] + [ℎ(𝑢𝑢),ℎ(𝑟𝑟)] = [𝑢𝑢, 𝑟𝑟]. Now we get for all 𝑟𝑟 ∈ 𝑅𝑅, 𝑢𝑢 ∈ 𝑈𝑈 

2[𝑢𝑢,ℎ(𝑟𝑟)] = 0. 



 Natural & Applied Sciences Journal Vol. 6 (2) 2023 45 

Since 𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑅𝑅 ≠ 2we have [𝑈𝑈,ℎ(𝑅𝑅)] = 0. Hence from Corollary 2.7, 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Lemma 2.17. [9] Let 𝑈𝑈 be a Lie ideal of 𝑅𝑅. If ℎ(𝑈𝑈) = 0 then ℎ = 0 or 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Lemma 2.18. Let ℎ be a nonzero homo derivation on 𝑅𝑅, 𝑎𝑎 be a fixed element of 𝑅𝑅 and 𝜃𝜃 be an automorphism 
on R. If 𝑎𝑎ℎ𝜃𝜃(𝐼𝐼) = 0, then 𝑎𝑎 = 0. 
 
Proof. If 𝑎𝑎ℎ𝜃𝜃(𝐼𝐼) = 0  then 0 = 𝑎𝑎ℎ𝜃𝜃(𝑥𝑥𝑟𝑟) = 𝑎𝑎𝜃𝜃(𝑥𝑥)ℎ𝜃𝜃(𝑟𝑟). Thus 𝑎𝑎𝜃𝜃(𝐼𝐼)ℎ𝜃𝜃(𝑅𝑅) = 0. Since 𝜃𝜃(𝐼𝐼) is a nonzero 
ideal of 𝑅𝑅, we obtain 𝑎𝑎 = 0. 
 
Theorem 2.19. Let ℎ be a nonzero homoderivation 𝑎𝑎 be a fixed element of 𝑅𝑅 and let 𝑈𝑈 be a noncentral Lie 
ideal on 𝑅𝑅. If 𝑎𝑎ℎ(𝑈𝑈) = 0 (ℎ(𝑈𝑈)𝑎𝑎 = 0) then 𝑎𝑎 = 0. 

Proof. In our hypothesis, we assumed that 𝑈𝑈 is a noncentral Lie ideal. Under this assumption, there exists 
an 𝐼𝐼 ≠ 0 ideal in  𝑅𝑅 such that [𝐼𝐼,𝑅𝑅] ⊂ 𝑈𝑈 but [𝐼𝐼,𝑅𝑅] ⊈ 𝑍𝑍(𝑅𝑅) as stated in [4]. Thus, for all 𝑥𝑥 ∈ 𝑅𝑅,𝑚𝑚 ∈ 𝐼𝐼, the 
relation [𝑥𝑥𝑚𝑚,𝑚𝑚] = [𝑥𝑥,𝑚𝑚]𝑚𝑚 ∈ 𝑈𝑈 holds true due to [𝑅𝑅, 𝐼𝐼] ⊂ 𝑈𝑈. Consequently, based on our hypothesis, we 
can conclude that 

0 = 𝑎𝑎ℎ([𝑥𝑥,𝑚𝑚]𝑚𝑚) = 𝑎𝑎[𝑥𝑥,𝑚𝑚]ℎ(𝑚𝑚) = 𝑎𝑎ℎ([𝑥𝑥,𝑚𝑚])ℎ(𝑚𝑚) = 𝑎𝑎[𝑥𝑥,𝑚𝑚]ℎ(𝑚𝑚) 

𝑎𝑎[𝑥𝑥,𝑚𝑚]ℎ(𝑚𝑚) = 0.                                                                          (5) 
 
Taking here ℎ(𝑢𝑢)𝑥𝑥 for 𝑥𝑥 in Equation (5), we have 
 

0 = 𝑎𝑎[ℎ(𝑢𝑢)𝑥𝑥,𝑚𝑚]ℎ(𝑚𝑚) = 𝑎𝑎ℎ(𝑢𝑢)[𝑥𝑥,𝑚𝑚]ℎ(𝑚𝑚) + 𝑎𝑎[ℎ(𝑢𝑢),𝑚𝑚]𝑥𝑥ℎ(𝑚𝑚) 
 
for all 𝑢𝑢 ∈ 𝑈𝑈, thus 

𝑎𝑎[ℎ(𝑈𝑈),𝑚𝑚]𝑅𝑅ℎ(𝑚𝑚) = 0. 
 
for all 𝑚𝑚 ∈ 𝐼𝐼. Let 𝑆𝑆1 = {𝑚𝑚 ∈ 𝐼𝐼|𝑎𝑎[ℎ(𝑢𝑢),𝑚𝑚] = 0} and 𝑆𝑆2 = {𝑚𝑚 ∈ 𝐼𝐼|ℎ(𝑚𝑚) = 0}. Utilizing Lemma 2.1, we 
see either ℎ(𝐼𝐼) = 0 or 𝑎𝑎[ℎ(𝑈𝑈), 𝐼𝐼] = 0. But ℎ is a nonzero homoderivation of 𝑅𝑅 we obtain 
 

𝑎𝑎[ℎ(𝑈𝑈), 𝐼𝐼] = 0 

We have for all 𝑚𝑚 ∈ 𝐼𝐼, 𝑢𝑢 ∈ 𝑈𝑈, 𝑎𝑎[ℎ(𝑢𝑢),𝑚𝑚] = 0. Hence, we arrive at 𝑎𝑎 = 0 or ℎ(𝑢𝑢) = 0. By Lemma 2.17 
𝑎𝑎 = 0  or 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). Since 𝑈𝑈 ⊈ 𝑍𝑍(𝑅𝑅), we obtain 𝑎𝑎 = 0. 

(If the method described above is used it can also be easily shown that the same result will be obtained 
when ℎ(𝑈𝑈)𝑎𝑎 = 0.) 
 
Theorem 2.20. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation and 𝑈𝑈 be a noncentral Lie ideal on 𝑅𝑅. If ℎ(𝑈𝑈) ⊂
𝑍𝑍(𝑅𝑅), then 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Proof. By Lemma 2.17 ℎ(𝑈𝑈) ≠ 0. Let 𝑟𝑟 = [𝑢𝑢, 𝑥𝑥] ∈ 𝑈𝑈 for all 𝑢𝑢 ∈ 𝑈𝑈, 𝑥𝑥 ∈ 𝑅𝑅. then, 𝑢𝑢[𝑢𝑢,𝑥𝑥] = 𝑢𝑢𝑟𝑟 ∈ 𝑈𝑈. Thus 

0 = [ℎ(𝑢𝑢𝑟𝑟),𝑦𝑦] = ℎ(𝑢𝑢)[𝑟𝑟, 𝑦𝑦] + [𝑢𝑢, 𝑦𝑦]ℎ(𝑟𝑟) 

ℎ(𝑢𝑢)[𝑟𝑟, 𝑦𝑦] + [𝑢𝑢, 𝑦𝑦]ℎ(𝑟𝑟) = 0                                                               (6) 
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for all 𝑢𝑢 ∈ 𝑈𝑈, 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.  We substitute 𝑦𝑦𝑢𝑢 for 𝑦𝑦 in this equation to obtain 

ℎ(𝑢𝑢)[𝑟𝑟,𝑦𝑦𝑢𝑢] + [𝑢𝑢,𝑦𝑦𝑢𝑢]ℎ(𝑟𝑟) = ℎ(𝑢𝑢)𝑦𝑦[𝑟𝑟, 𝑢𝑢] + +ℎ(𝑢𝑢)[𝑟𝑟, 𝑦𝑦]𝑢𝑢 + [𝑢𝑢, 𝑦𝑦]𝑢𝑢ℎ(𝑟𝑟) = 0 
 
for all 𝑢𝑢 ∈ 𝑈𝑈, 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅. Since ℎ(𝑟𝑟) ∈ 𝑍𝑍(𝑅𝑅) using the relation Equation (6) we obtain ℎ(𝑢𝑢)𝑦𝑦[𝑟𝑟, 𝑢𝑢] = 0. 
Hence 

ℎ(𝑢𝑢)𝑅𝑅[𝑟𝑟, 𝑢𝑢] = 0 
 
for all 𝑢𝑢 ∈ 𝑈𝑈, 𝑥𝑥 ∈ 𝑅𝑅 (𝑟𝑟 = [𝑢𝑢,𝑥𝑥]). Let 𝑇𝑇1 = {𝑢𝑢 ∈ 𝑈𝑈|[𝑢𝑢, 𝑥𝑥]𝑢𝑢 = 0} and 𝑇𝑇2 = {𝑢𝑢 ∈ 𝑈𝑈|ℎ(𝑢𝑢) = 0}. Through the 
𝑇𝑇1 and 𝑇𝑇2 additive subgroups of 𝑅𝑅, from Lemma 2.1 and ℎ(𝑈𝑈) ≠ 0, we arrive at 
 

�[𝑢𝑢, 𝑥𝑥],𝑢𝑢� = 0 
 
for all 𝑢𝑢 ∈ 𝑈𝑈. If 𝑈𝑈 ⊈ 𝑍𝑍(𝑅𝑅) then 𝑢𝑢 ∉ 𝑍𝑍(𝑅𝑅) for at least one 𝑢𝑢 ∈ 𝑈𝑈. Let define a nonzero inner derivation 
𝑑𝑑𝑢𝑢:𝑅𝑅 → 𝑅𝑅 induced by 𝑢𝑢. Hence 

𝑑𝑑𝑢𝑢�𝑑𝑑𝑢𝑢(𝑥𝑥)� = �𝑢𝑢, [𝑢𝑢, 𝑥𝑥]� = 0 
 
for all 𝑥𝑥 ∈ 𝑅𝑅. That is 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅) by [17]. 
 

Example. Let 𝑅𝑅 = ��𝑘𝑘1 𝑘𝑘2
0 𝑘𝑘3

� |𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3 ∈ ℐ, 𝑠𝑠ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑠𝑠 𝑜𝑜𝑜𝑜 𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟𝑠𝑠� be a ring, on this case 𝑈𝑈 = �𝑘𝑘1 𝑘𝑘2
0 𝑘𝑘1

� is 

a Lie ideal on 𝑅𝑅.  

Let 𝑎𝑎 = �0 1
0 0� ∈ 𝑅𝑅. Defining ℎ is follows: 

ℎ �𝑘𝑘1 𝑘𝑘2
0 𝑘𝑘3

� = �0 𝑘𝑘3 − 𝑘𝑘1
0 0

� 

It can be seen that ℎ is a homoderivation. However, the condition of the above theorem is not satisfied. It 
is important that the ring is a prime. 
 
Theorem 2.21. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation and 𝑈𝑈 be a Lie ideal on 𝑅𝑅. If ℎ preserves 𝑈𝑈 and 
ℎ2(𝑈𝑈) = 0 then 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Proof.  Assume that 𝑈𝑈 is a noncentral Lie ideal on the ring 𝑅𝑅. By [4],  𝑆𝑆 = [𝑈𝑈,𝑈𝑈] is a noncentral Lie İdeal 
of 𝑅𝑅. If we show that 𝑆𝑆 ⊂ 𝑍𝑍(𝑅𝑅), we have what we want. From [4], there exists a nonzero ideal 𝐼𝐼 ideal in 𝑅𝑅 
which satisfies the condition [𝐼𝐼,𝑅𝑅] ⊂ 𝑈𝑈 but at the same time [𝐼𝐼,𝑅𝑅] ⊈ 𝑍𝑍(𝑅𝑅). For 𝑚𝑚 ∈ [𝐼𝐼,𝑅𝑅] ⊂ 𝑈𝑈 ∩ 𝐼𝐼 and 
𝑢𝑢 ∈ 𝑆𝑆 we get 𝜔𝜔 = ℎ(𝑢𝑢) ∈ ℎ(𝑆𝑆) ⊂ 𝑈𝑈. By the hypothesis ℎ(𝜔𝜔) = 0. Thus, 

0 = ℎ2([𝑚𝑚𝜔𝜔,𝑦𝑦]) = ℎ2(𝑚𝑚[𝜔𝜔, 𝑦𝑦] + [𝑚𝑚,𝑦𝑦]𝜔𝜔) 

= ℎ{ℎ(𝑚𝑚)[𝜔𝜔, 𝑦𝑦] + 𝑚𝑚ℎ[𝜔𝜔, 𝑦𝑦] + ℎ(𝑚𝑚)ℎ[𝜔𝜔,𝑦𝑦] + ℎ[𝑚𝑚, 𝑦𝑦]𝜔𝜔 + [𝑚𝑚, 𝑦𝑦]ℎ(𝜔𝜔) + ℎ[𝑚𝑚, 𝑦𝑦]ℎ(𝜔𝜔)}
= 2ℎ(𝑚𝑚)ℎ[𝜔𝜔, 𝑦𝑦] 

for all 𝑦𝑦 ∈ 𝑅𝑅. Since 𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑅𝑅 ≠ 2, for all 𝑚𝑚 ∈ [𝐼𝐼,𝑅𝑅] gives ℎ(𝑚𝑚)ℎ[𝜔𝜔,𝑦𝑦] = 0. 
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ℎ([𝐼𝐼,𝑅𝑅])ℎ[𝜔𝜔,𝑦𝑦] = 0 
 
for all 𝑦𝑦 ∈ 𝑅𝑅. Since [𝐼𝐼,𝑅𝑅] is a noncentral Lie ideal of 𝑅𝑅, by Lemma 2.19, we get 

ℎ[𝜔𝜔,𝑦𝑦] = ℎ[ℎ(𝑢𝑢),𝑦𝑦] = 0 
 
for all 𝑢𝑢 ∈ 𝑆𝑆, 𝑦𝑦 ∈ 𝑅𝑅. 

0 = ℎ[ℎ(𝑢𝑢),𝑦𝑦] = [ℎ2(𝑢𝑢),𝑦𝑦] + [ℎ(𝑢𝑢),ℎ(𝑦𝑦)] + [ℎ2(𝑢𝑢),ℎ(𝑦𝑦)] = [ℎ(𝑢𝑢),ℎ(𝑦𝑦)] 
 
and that is 

[ℎ(𝑢𝑢),ℎ(𝑦𝑦)] = 0 
 
for all 𝑢𝑢 ∈ 𝑆𝑆, 𝑦𝑦 ∈ 𝑅𝑅. By Lemma 2.5 we have ℎ(𝑢𝑢) ∈ 𝑍𝑍(𝑅𝑅), for all 𝑢𝑢 ∈ 𝑆𝑆 = [𝑈𝑈,𝑈𝑈]. That is 𝑆𝑆 = [𝑈𝑈,𝑈𝑈] ⊂
𝑍𝑍(𝑅𝑅). Let's remember our acceptance 𝑈𝑈 ⊈ 𝑍𝑍(𝑅𝑅). Then there exist elements 𝑎𝑎 and 𝑏𝑏 in 𝑈𝑈 such that neither 
of them belongs to the center of 𝑅𝑅  (Z(𝑅𝑅)). Now let's define two mappings 𝑑𝑑𝑎𝑎(𝑥𝑥) = [𝑎𝑎, 𝑥𝑥] and 𝑑𝑑𝑏𝑏(𝑥𝑥) =
[𝑏𝑏,𝑥𝑥] in 𝑅𝑅. Since [𝑎𝑎, 𝑥𝑥] ∈ 𝑈𝑈 �[𝑎𝑎,𝑥𝑥],𝑏𝑏� ∈ 𝑍𝑍(𝑅𝑅). �[𝑎𝑎,𝑥𝑥],𝑏𝑏 = �𝑎𝑎, [𝑥𝑥,𝑏𝑏]� + �[𝑎𝑎,𝑏𝑏],𝑥𝑥� = �𝑎𝑎, [𝑥𝑥,𝑏𝑏]� ∈ 𝑍𝑍(𝑅𝑅) ∈

𝑍𝑍(𝑅𝑅)� ∈ 𝑍𝑍(𝑅𝑅) and so, we have 𝑑𝑑𝑎𝑎𝑑𝑑𝑏𝑏(𝑅𝑅) ⊂ 𝑍𝑍(𝑅𝑅).  By Lee and Lee [9], we see that 𝑅𝑅 is commutative. This 
result contradicts of 𝑈𝑈 ⊈ 𝑍𝑍(𝑅𝑅). Therefore, 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Theorem 2.22. Let ℎ:𝑅𝑅 → 𝑅𝑅 be a nonzero homoderivation and 𝑈𝑈 be a Lie ideal of 𝑅𝑅. If [𝑈𝑈, ℎ(𝑈𝑈)] ⊂ 𝑍𝑍(𝑅𝑅), 
then 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 
Proof:  Let 𝑣𝑣 be an element of 𝑈𝑈. For all 𝑢𝑢 ∈ 𝑈𝑈 we have [𝑢𝑢, ℎ(𝑣𝑣)] ∈ 𝑍𝑍(𝑅𝑅). Thus 

0 = �[𝑢𝑢, ℎ(𝑣𝑣)], 𝑟𝑟� = �𝑢𝑢, [ℎ(𝑣𝑣), 𝑟𝑟]� + �[𝑢𝑢, 𝑟𝑟],ℎ(𝑣𝑣)� ∈ 𝑍𝑍(𝑅𝑅) 
 
for all 𝑟𝑟 ∈ 𝑅𝑅. Hence �𝑢𝑢, [ℎ(𝑣𝑣), 𝑟𝑟]� ∈ 𝑍𝑍(𝑅𝑅). For two inner derivations 𝑑𝑑1(𝑥𝑥) = [𝑢𝑢,𝑥𝑥]  and 𝑑𝑑2(𝑥𝑥) = [ℎ(𝑣𝑣), 𝑥𝑥]  
by 𝑢𝑢 and ℎ(𝑣𝑣) of 𝑅𝑅, we have 𝑑𝑑1𝑑𝑑2(𝑥𝑥) = [𝑢𝑢, [ℎ(𝑣𝑣), 𝑥𝑥]] ∈ 𝑍𝑍(𝑅𝑅) for all 𝑥𝑥 ∈ 𝑅𝑅. That is by [2] 𝑑𝑑1 = 0 or 𝑑𝑑2 =
0. Hence Theorem 2.20 yields that 𝑈𝑈 ⊂ 𝑍𝑍(𝑅𝑅). 
 

 
 

In this article, algebraic identities are obtained, including homoderivations on prime rings. We also 
examine algebraic identities involving homoderivations for an ideal of the prime ring or the Lie ideal. We 
establish that the Lie ideal, conforming to the identities elaborated upon in this section, resides within the 
core of the prime ring. In future studies, the hypotheses in this study can be examined using homoderivations 
of the prime ring and Jordan ideals. 
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