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Abstract. Pooling is a non-linear operation that aggregates the results of a
given region to a single value. This method effectively removes extraneous de-

tails in feature maps while keeping the overall information. As a result, the size

of feature maps is reduced, which decreases computing costs and prevents over-
fitting by eliminating irrelevant data. In CNN models, the max pooling and

average pooling methods are commonly utilized. The max pooling selects the
highest value within the pooling area and aids in preserving essential features

of the image. However, it ignores the other values inside the pooling region,

resulting in a significant loss of information. The average pooling computes
the average values within the pooling area, which reduces data loss. How-

ever, by failing to emphasize critical pixels in the image, it may result in the

loss of significant features. To examine the performance of pooling methods,
this study comprised the experimental analysis of multiple models, i.e. shallow

and deep, datasets, i.e. Cifar10, Cifar100, and SVHN, and pool sizes, e.g. 2x2,

3x3, 10x10. Furthermore, the study investigated the effectiveness of combin-
ing two approaches, namely Concat (Max, Avg), to minimize information loss.

The findings of this work provide an important guideline for selecting pooling

methods in the design of CNNs. The experimental results demonstrate that
pooling methods have a considerable impact on model performance. Moreover,

there are variances based on the model and pool size.

1. Introduction

Deep learning has achieved remarkable results in a variety of tasks [1–3]. There
are various successful architectures in this field [4–6], and convolutional neural
networks (CNNs) are widely utilized, particularly in image classification and object
recognition. CNN architectures typically consist of convolutional, pooling, and fully
connected layers. Convolutional layers perform calculations by sliding learnable
filters over the data to extract diverse features. Each filter is adjusted to recognize
a specific feature and is applied to the entire dataset, allowing feature maps to be
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created. Pooling layers reduce the size of feature maps by performing subsampling
in the relevant region, thereby diminishing the network’s computational cost. Fully-
connected layers are used to generate the network’s output. The feature maps
acquired from the convolution layers are vectorized and then passed through one
or more fully-connected layers to yield the network output.

Pooling layers are crucial in CNN architecture. These layers reduce the dimen-
sionality of a feature map by obtaining a summary of a given region, but it results
in information loss. As a result, selecting the proper method for pooling is critical
for model performance. In CNNs, max pooling and average pooling methods are
extensively utilized, each having its advantages and disadvantages. The max pool-
ing takes the maximum activation to represent the pooling region of interest. This
approach eliminates other features by focusing on the most important elements, re-
sulting in a more specific feature map. It is very sensitive to the direction, size, and
position of items in a given feature map. The average pooling, on the other hand,
uses the average of all features to represent the region of interest in the feature
map, allowing for the creation of a more generic feature map.

It is unclear which pooling method performs best under different conditions. In
this study, different model architectures, i.e. shallow and deeper, different pooling
sizes, e.g. 2x2, 3x3, ..., 10x10, and different datasets, i.e. Cifar10 [7], Cifar100 [7],
SVHN [8], were compared to evaluate the performance of the methods. Further-
more, the effect of concatenating these approaches to capture both significant fea-
tures in images and overall patterns in data was experimentally studied.

The rest of the article is organized as follows. Section 2 is a brief review of
previous research on pooling layers. Section 3 discusses the materials and processes
in detail. Section 4 describes experimental studies and results. The article concludes
with future directions.

2. Related Works

In general, two common pooling methods are utilized for reducing the size of feature
maps: local pooling and global pooling. In local pooling, to minimize the dimen-
sionality of the feature map, inferences are drawn from small neighboring regions
within the feature map, e.g., 3x3. In contrast, global pooling generates a single
scalar value that represents the entire feature map. This research focuses on local
pooling methods. Numerous studies have been conducted in this area since local
pooling methods have a substantial impact on the success of CNNs. The studies
can be categorized into four primary categories: value-based, probability-based,
rank-based, and transformed-based methods [9].

In value-based pooling methods [10–12, 14–16], a value selection is determined
based on a criterion among the pooling region’s values. Mixed pooling [10] adds a
parameter to choose between maximum and average pooling. Detail preservation
pooling [12] is an adaptive pooling method that uses an inverse bilateral filter to
amplify local spatial changes while retaining key structural details. It includes a
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learnable parameter for controlling the feature map’s downsampling. Spatial pyra-
mid pooling [13] creates fixed-length outputs regardless of input size and reduces
information loss due to cropping. LEAP pooling [14] employs a shared linear filter
for each feature channel to combine features in the pooling region, resulting in a
reduction in the number of parameters and training errors. Dynamic correlation
pooling [15] introduces a correlation pooling technique that relies on the Maha-
lanobis distance between adjacent pixels in an image. The output is dynamically
determined by assessing the relationship between the Mahalanobis distance and a
predefined threshold distance. The avg-topk pooling [16] method takes the aver-
age of the top-k activations in the pooling area, assisting in the preservation of
significant features and addressing the problem caused by outliers and noises.

Probability-based pooling methods [17–21] calculate the probability of trading
off between max and average pooling, thereby reducing error rates and preventing
overfitting. Lp pooling [17] determines the pooling type based on a probability
value P . P = 1 corresponds to Gaussian mean, while P = ∞ corresponds to maxi-
mum pooling. Stochastic pooling [18] substitutes a stochastic procedure for deter-
ministic pooling operations. Within this approach, activations within the pooling
region undergo normalization and are randomly selected through the utilization of a
multinomial distribution. The max pooling dropout [19] combines max pooling and
dropout techniques, and it has been experimentally shown to outperform maximum
and scaled maximum probabilities. Song et al. (2018) [20] propose a sparsity-based
stochastic pooling method that balances the advantages of max and average pooling
by utilizing the sparsity level and control function of activations to obtain a feature
representation. Hybrid pooling [21] combines both the max and average pooling
methods by calculating maximum and average pooling values for the given pooling
region. This combination is performed using a predefined probability.

Rank-based pooling methods [22–24] rank the activations within a specified pool-
ing region and produce a pooled output based on weighted activation sums. During
training, the weights are often learned via the back-propagation approach. This
strategy overcomes the scale issues encountered by value-based pooling methods,
allowing the model to capture critical activations and perform better. These meth-
ods are categorized into three groups based on weighting mechanisms: rank-based
average pooling (RAP), rank-based weighted pooling (RWP), and rank-based sto-
chastic pooling (RSP). The RAP approach considers the greatest activations in the
pooling region, ignoring the rest, and then computes the average of these activa-
tions. RAP has a superior discriminative ability and provides a balanced approach
between maximum and average pooling. The RWP strategy recognizes that each
region is not equally significant. It takes the weighted average of each activation
in the specified pooling region multiplied by a suitable coefficient. In RWP, rea-
sonable weights are ascribed to activations based on their magnitudes, with the
largest activation receiving the highest weight and the smallest activation receiv-
ing the least weight. The RSP strategy substitutes traditional pooling operations
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with a stochastic procedure in which activations are chosen based on probabilities
derived from a multinomial distribution. RSP, as opposed to value-based stochas-
tic pooling, computes probability based on activation order rather than activation
value. The principal advantage of this strategy is the high degree of randomness in
activation selection.

Domain-based pooling methods [25–27] use different domains to reduce spectral
variance in feature maps, such as time, space, frequency, and wavelet domains.
These studies often concentrate on the frequency domain and aim to filter out
higher frequencies by removing low-frequency components. This transformation
is achieved using various transformations such as Discrete Fourier Transform, Fast
Fourier Transform, Hartley Transform, and Discrete Cosine Transform. These pool-
ing methods can be sensitive to noise and perform filtering, but the computational
cost can be high.

When various pooling approaches are compared across categories, it is clear
that popular CNN models, e.g., VGG16 [28], ResNet [29], and EfficientNet [30],
prefer the usage of max and average pooling methods due to their computational
efficiency and lack of additional parameters. Therefore, in this study, the effects of
these methods on multiple datasets, CNN models, pool sizes, and the combination
of these methods have been investigated through experimental studies.

3. Material and Methods

3.1. Pooling Methods. In popular CNN models, average and max pooling meth-
ods are frequently utilized. In the average pooling, feature maps are divided into
discrete rectangular regions, and sampling is performed by calculating the average
activation value of each region. Mathematically, the expression for average pooling
is as follows [31]:

faverage =
1

N

N∑
i=1

xi (1)

Where xi represents each activation value in the pooling area, and N denotes
the number of activation values in that area. In max pooling, the activation within
a pooling region with the highest value is chosen. This method is extensively used
in CNN architectures and is reported to perform better in sparser encoding and
simpler linear classifiers. As a consequence, its prominence has increased over the
past few years. Mathematically, the expression for max pooling is as follows [34]:

fmax(x) = maxi(xi) (2)

Figure 1 depicts the (b) maximum pooling, (c) average pooling, and (d) Con-
cat(Avg, Max) pooling outputs for a 4x4 feature map (a) with a pool size of 2x2.

Examining the efficacy of concatenating the two methods, i.e. ConCat (Avg,
Max), is one of the primary contributions of this study. Extensive experimental



WHICH POOLING METHOD IS BETTER: MAX, AVG, OR CONCAT (MAX, AVG) 99

3652

72 25

4262

29 34

7416

42 46

8119

38 54

46 41

44 48

(a) (b) (c)

72 62

74 81
(d)

Figure 1. Illustration of (b) max/, (c) average pooling, and (d) Concat(Avg, Max)
with a pooling area of size 2x2 and stride of 2.

studies have been performed in this context to determine whether this method is
required for small pooling sizes and whether it prevents information loss for large
pooling sizes.

3.2. Datasets. Experimental studies were conducted using three benchmark datasets,
namely CIFAR10, CIFAR100, and SVHN, to evaluate the performance of pooling
methods. These datasets are commonly used to compare CNNs in the literature [9].
The CIFAR-10 dataset [7] is comprised of a total of 60, 000 RGB images with a
resolution of 32x32 and ten categories of labeling. The dataset consists of 60, 000
images divided into two sets: 50, 000 images for training and 10, 000 images for
testing. Each class in the dataset has an equal number of examples, resulting in
6, 000 images per class. There exists a complete distinction between the classes.
This particular dataset is frequently cited in the scientific literature for proposing
new methodological approaches. The CIFAR100 dataset, which was introduced by
Krizhevsky et al. (2014) [7], consists of 100 classes with 600 images in each class,
totaling 60, 000 images. The images per class are separated into 500 training im-
ages and 100 test images. The resolution of the image is identical to CIFAR10, i.e.,
32x32. The dataset also has 20 superclasses in addition to the 100 classes. Conse-
quently, each image has a ”fine” label that corresponds to its class and a ”coarse”
label that corresponds to its superclass. The Street View House Numbers (SVHN)
dataset [8] is a real-world image dataset commonly used to develop deep learning
algorithms with minimal preprocessing and formatting requirements. It contains
600, 000 32x32 RGB images of printed numbers ranging from 0 to 9, serving as
a number classification benchmark dataset. It is similar to MNIST, e.g., images
composed of small cropped digits, but includes additional labeled data and tackles
the more difficult, unsolved real-world problem of recognizing numbers and digits
in images of natural scenes. The cropped images contain the digit of interest as well
as adjacent digits and other distracting objects. Figure 2 depicted some examples
taken from these datasets.
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CIFAR10 CIFAR100 SVHN

Figure 2. Random samples and classes from CIFAR10 (left), CIFAR100 (center), and
SVHN (right).

3.3. Models. To assess the performance of pooling methods, two distinct models
were utilized. Firstly, a shallow model based on the LeNet-5 [31] architecture was
constructed to compare pooling methods. The architecture in question comprises
a pair of convolutional layers, followed by two pooling layers, and finally, three
fully connected (FC) layers. To accelerate convergence, the ReLU [32] activation
function was used as opposed to the tanh activation function in the original LeNet-
5. The first convolutional layer employed six learnable filters, while the second
convolutional layer employed sixteen filters, both with a filter size of 5x5. To
preserve the resolution of the feature maps, a padding value of 2 was utilized in
the convolutional layers. The stride value in the pooling layers was set equal to the
kernel size to avoid overlapping. Figure 3 illustrates the LeNet-5-based architecture.
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Figure 3. LeNet-5 based model.

For every method of pooling, the models were trained from scratch for 30 epochs.
In other words, pre-trained weights were not used. As the loss function, cross-
entropy was used, and stochastic gradient descent was employed as the optimization
algorithm. [33]. The learning rate was set to 1e− 3, momentum was set to 0.9, and
the batch size to 16.

Secondly, to compare pooling methods in a different and deeper model, a model
based on ResNet-9 [29] was used. The model in question comprises eight con-
volutional layers, followed by four pooling layers, and finally, one FC layer. All
convolutional layers utilized 3x3 filters. After the convolutional layers, batch nor-
malization layers were included to avoid the common vanishing gradient issue in
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deep learning models. ReLU activation layers were applied after the respective
layers. Two residual networks were utilized to facilitate the training of the deep
model. A residual network is defined as a kind of neural network that includes
skipping connections, which perform identity mappings and integrate layer out-
puts with the input via element-wise addition. Figure 4 depicts the specifics of
the model developed based on ResNet-9. During the training phase, the LeNet-5
model’s hyperparameters were utilized.
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Figure 4. ResNet-9 based model.

3.4. Metrics. In this study, classification-based models were created and the per-
formance of pooling methods was compared. A set of metrics known as the confu-
sion matrix is utilized to assess the efficacy of classification models. The confusion
matrix comprises four different concepts: True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN). A confusion matrix is typically rep-
resented in a table format as follows:

Table 1. Confusion matrix. TP: The number of in which the true class is positive and
the model predicts it to be positive, FP: The number of in which the true class is negative
but the model predicts it to be positive. TN: The number of instances in which the true
class is negative and the model predicts it to be negative. FN: The number of instances
in which the true class is positive but the model predicts it to be negative.

Actually PositiveActually Negative
Predicted Positive TN FP
Predicted Negative FN TP

To compare the performance of methods using the confusion matrix, 4 metrics
were used: accuracy, precision, recall, and F1 score. The accuracy metric quantifies
the proportion of instances correctly predicted by a model. This metric is used to
evaluate a classification model’s overall efficacy.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)
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The precision metric indicates how many of the values predicted as positive
by a model are actually positive. This metric limits the number of false positive
predictions made by a classification model.

Precision =
TP

(TP + FP )
(4)

The recall metric indicates how many values that should be classified as positive
are predicted as positive by a model. This metric is used to limit a classification
model’s number of false negative predictions.

Recall =
TP

(TP + FN)
(5)

The F1 score metric is the harmonic mean of the metrics for precision and
recall. This metric takes false positive and false negative predictions made by a
classification model into account.

F1score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(6)

4. Experiment and Results

In this section, the performance of pooling methods was compared for different
models (Lenet-5 and Resnet-9), different datasets (Cifar10, Cifar100, and SVHN),
and different pool sizes (2x2, 3x3, ..., 10x10). In this context, firstly, the perfor-
mance of methods for different pool sizes was examined using the Lenet-5 model
and the Cifar10 dataset. For each pooling method, the Lenet-5 model was trained
from scratch for 30 epochs. Figure 5 shows the training accuracy achieved for 4
different pool sizes, i.e., 2x2, 5x5, 7x7, and 10x10. Analyzing the graphs reveals
that the average pooling begins with low accuracy for all pool sizes. In later epochs,
it is observed that the average pooling achieves higher accuracy values for small
pool sizes, e.g. 2x2 and 5x5, but falls behind other methods for larger pool sizes,
such as 7x7 and 10x10.

Table 2 compares pooling methods quantitatively using the Lenet-5 model and
the Cifar10 dataset. Examining Table 2 reveals that the average pooling method
is more effective for small pool sizes, such as 2x2, and 3x3. Due to the fact that
the stride value is equal to the kernel size, there is no overlap. In other words,
as the size of the pool increases, there is an expected increase in information loss,
resulting in a decrease in the accuracy of all models. As the pool size increases,
it can be observed that the efficacy of the average pooling degrades more rapidly
than other methods. Depending on the pool size, the max pooling outperforms the
average pooling after a certain point, such as 6x6. Within the scope of this study,
the proposed Concat(Avg, Max) method demonstrated superiority over the other
two methods as the pool size increased.
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Pool size: 10x10

Pool size: 2x2 Pool size: 5x5

Pool size: 7x7

Figure 5. Training graphs of pooling methods for 2x2, 5x5, 7x7, and 10x10 pool sizes
using the Lenet-5 model and the Cifar10 dataset.

In Figure 6, the performance of the aforementioned pooling methods for different
pool sizes is presented graphically using the F1 score metric. As observed, the
average pooling has a significant advantage over the other methods for a 2x2 pool
size. Interestingly, for a 5x5 pool, all methods yield virtually identical results. It
is evident that the Concat(Avg, Max) method is more successful for large pools
(≥ 6x6). Since the average pooling takes the average of values in the pooling area,
the influence of high activations diminishes as the pool size increases, resulting in
a general performance decline.

Figure 6. F1 score performances of pooling methods for varying pool sizes using the
Lenet-5 model and the Cifar10 dataset.

Secondly, experimental studies were conducted to evaluate the performance of
the methods on a more challenging dataset. In this context, the Lenet-5 model
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Table 2. Compare pooling methods for Model: LeNet-5 Dataset: Cifar10

Pool size Method AccuracyPrecision Recall F1 score

2x2
Avg pooling 0.6695 0.6763 0.6695 0.6707
Max pooling 0.6221 0.6304 0.6221 0.6230

Concat (Avg-Max) 0.6205 0.6298 0.6205 0.6225

3x3
Avg pooling 0.6454 0.6495 0.6454 0.6447
Max pooling 0.6087 0.6168 0.6087 0.6030

Concat (Avg-Max) 0.6218 0.6366 0.6218 0.6250

4x4
Avg pooling 0.6224 0.6382 0.6224 0.6267
Max pooling 0.5781 0.5874 0.5781 0.5705

Concat (Avg-Max) 0.6151 0.6171 0.6151 0.6098

5x5
Avg pooling 0.5773 0.5749 0.5773 0.5710
Max pooling 0.5743 0.5966 0.5743 0.5694

Concat (Avg-Max) 0.5731 0.5983 0.5731 0.5715

6x6
Avg pooling 0.5600 0.5546 0.5600 0.5506
Max pooling 0.5664 0.5857 0.5664 0.5594

Concat (Avg-Max) 0.5862 0.6065 0.5862 0.5848

7x7
Avg pooling 0.5370 0.5360 0.5370 0.5254
Max pooling 0.5614 0.5774 0.5614 0.5573

Concat (Avg-Max) 0.5786 0.5956 0.5786 0.5766

8x8
Avg pooling 0.5160 0.5129 0.5160 0.5069
Max pooling 0.5484 0.5670 0.5484 0.5409

Concat (Avg-Max) 0.5655 0.5814 0.5655 0.5615

9x9
Avg pooling 0.5111 0.5063 0.5111 0.5023
Max pooling 0.5360 0.5483 0.5360 0.5240

Concat (Avg-Max) 0.5495 0.5754 0.5495 0.5453

10x10
Avg pooling 0.4979 0.4919 0.4979 0.4880
Max pooling 0.5356 0.5446 0.5356 0.5281

Concat (Avg-Max) 0.5441 0.5732 0.5441 0.5409

and the Cifar100 dataset were used to evaluate various pool sizes. Figure 7 shows
the training accuracy achieved by the methods for 2x2, 5x5, 7x7, and 10x10 pool
sizes. Similar to the Cifar10 dataset, it can be observed that the average pooling
has lower initial accuracy than other methods for all pool sizes during the initial
epochs. In later epochs, the average pooling performs better than other methods for
small pool sizes, but it lags for large pool sizes. In contrast to the Cifar10 dataset,
the methods in this dataset attain a high accuracy value for the 2x2 pool size at
the 5th epoch and then decline. This observation indicates that it is preferable to
use the model from the epoch with the highest accuracy rather than the model
obtained after the training process.
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Pool size: 2x2 Pool size: 5x5

Pool size: 10x10
Pool size: 7x7

Figure 7. Training graphs of pooling methods for 2x2, 5x5, 7x7, and 10x10 pool sizes
using the Lenet-5 model and the Cifar100 dataset.

Using the LeNet-5 model and the Cifar100 dataset, Table 3 illustrates quantita-
tively the efficacy of various pooling methods. Similar to the Cifar10 dataset, it is
observed that the average pooling performs better for smaller pool sizes. Specifi-
cally, for a 2x2 pool size, the closest performing method, i.e., max pooling, exhibits
a 3.41% increase in performance. As the pool size increases, the efficacy of the av-
erage pooling diminishes relative to that of other methods. The Concat(Avg, Max)
method has a 6.28% higher success rate than the average pooling when evaluating
the 10x10 pool size.

In Figure 8, the performance of different pooling methods for various pool sizes
is graphically presented using the LeNet-5 model and the Cifar100 dataset. It can
be observed that the average pooling yields the highest performance for a 3x3 pool.
In the Cifar10 dataset, the highest score was obtained for a 2x2 pool size. This
suggests that the performance of a model can vary based on the size of the data
pool, even when using the same model and different datasets. Similar to the Cifar10
dataset, when the average pooling method is used and the pool size is increased,
the model’s success significantly decreases. Concat(Avg, Max) obtains the highest
performance for larger pool sizes, while max pooling also achieves relatively close
scores.

Cifar10 and Cifar100 datasets are partially similar datasets. In the continu-
ation of the study, experimental work was conducted using the SVHN dataset,
which contains more diverse images, and a Lenet-5-based model. Table 4 provides
quantitative performance results for varied pool sizes. Similar to other datasets,
the average pooling exhibited higher performance for smaller pool sizes. As the
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Table 3. Compare pooling methods for Model: Lenet Dataset: Cifar100

Pool size Method AccuracyPrecisionRecallF1 score

2x2
Avg pooling 0.2926 0.2957 0.2926 0.2878
Max pooling 0.2536 0.2676 0.2536 0.2522

Concat (Avg-Max) 0.2551 0.2676 0.2551 0.2537

3x3
Avg pooling 0.3314 0.3355 0.3314 0.3228
Max pooling 0.2703 0.2804 0.2703 0.2588

Concat (Avg-Max) 0.3026 0.3382 0.3026 0.2935

4x4
Avg pooling 0.2949 0.3052 0.2949 0.2817
Max pooling 0.2594 0.2717 0.2594 0.2451

Concat (Avg-Max) 0.2930 0.3154 0.2930 0.2762

5x5
Avg pooling 0.2264 0.2235 0.2264 0.2048
Max pooling 0.2130 0.2188 0.2130 0.1903

Concat (Avg-Max) 0.2352 0.2670 0.2352 0.2167

6x6
Avg pooling 0.2122 0.2040 0.2122 0.1901
Max pooling 0.2065 0.2134 0.2065 0.1853

Concat (Avg-Max) 0.2380 0.2702 0.2380 0.2170

7x7
Avg pooling 0.2042 0.1902 0.2042 0.1797
Max pooling 0.2068 0.2071 0.2068 0.1845

Concat (Avg-Max) 0.2323 0.2597 0.2323 0.2105

8x8
Avg pooling 0.1858 0.1841 0.1858 0.1636
Max pooling 0.2105 0.2133 0.2105 0.1887

Concat (Avg-Max) 0.2268 0.2494 0.2268 0.2082

9x9
Avg pooling 0.1836 0.1803 0.1836 0.1593
Max pooling 0.2166 0.2185 0.2166 0.1944

Concat (Avg-Max) 0.2321 0.2428 0.2321 0.2089

10x10
Avg pooling 0.1651 0.1654 0.1651 0.1424
Max pooling 0.2171 0.2138 0.2171 0.1923

Concat (Avg-Max) 0.2265 0.2340 0.2265 0.2052

pool size increased, the efficacy of the average method decreased more compared
to other methods. The average method demonstrated roughly half the efficacy of
the Concat(Avg, Max) method when evaluating the 10x10 pool size. In general,
for a shallow model, the average pooling performed better for smaller pool sizes,
whereas max pooling, particularly Concat(Avg, Max), stood out as the pool size
increased. Figure 9 illustrates the performance of methods for the Lenet-5 model
and the SVHN dataset. The performance of the average pooling was comparable
for 2x2, 3x3, and 4x4 pool sizes. As with other datasets, its performance decreased
substantially as the size of the pool grew. The Concat(Avg, Max) method obtained
an F1 score of 72.61% for the 10x10 pool size, while the average pooling achieved
a performance of 29.41%. In general evaluation of the Lenet-5 model, or in other
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Figure 8. Accuracy, precision, recall, and F1 score results of pooling methods with
various pool sizes in the LeNet model using the Cifar100 dataset.

words, a shallow model, the selection of pooling method is important depending on
the pool size used. If the pool size is small, the average pooling should be preferred,
whereas if the pool size is large, the maximum pooling method should be chosen. If
the number of model parameters increase is not a concern, the Concat(Avg, Max)
method can be applied to larger pool sizes.

In the continuation of the study, the performance of pooling methods was com-
pared using ResNet-9 which has a deeper and different architecture. In this context,
since the relevant model contained a greater number of pooling layers, the images
were resized to a resolution of 224x224. Figure 10 depicts the accuracy graphs
acquired during the training phase for various pool sizes and each method. The
shallow Lenet-5 model performed better with smaller pool sizes, such as 2x2 and
3x3, when the average pooling was applied to all the datasets used in the study.
Figure 11 illustrates the efficacy of methods for various pool sizes utilizing the
ResNet-9 model and the Cifar10 dataset. In addition, Table 5 quantifies all of
the experimental results. In contrast to the Lenet-5 model, the average pooling in
ResNet-9 trails behind other methods for all pool sizes. In addition, as the pool
size increases, the performance of the average pooling method diminishes in both
the shallow and deep models. While the max pooling and the Concat(Avg, Max)
method attain comparable performance, the Concat(Avg, Max) method is observed
to perform better for larger pool sizes.

Examined quantitatively, the max pooling for a 2x2 pool attained a 13.12%
higher F1 score than the average pooling. The difference between Concat(Avg,
Max) and max pooling was less than 1%, and the max pooling was found to be
superior. Considering a larger pool size of 5x5, the Concat(Avg, Max) obtained the
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Figure 9. Accuracy, precision, recall, and F1 score results of pooling methods with
various pool sizes in the LeNet-5 model using the SVHN dataset.

Pool size: 2x2

Pool size: 7x7

Pool size: 5x5

Pool size: 10x10

Figure 10. Training graphs of pooling methods for 2x2, 5x5, 7x7, and 10x10 pool sizes
using the Resnet-9 model and the Cifar10 dataset.
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best performance. It achieved a 21.3% improvement in the F1 score over the average
pooling and a 7.44% improvement over the maximum pooling for this specific pool
size. Notably, as the pool size increases, the methods’ efficacy typically decreases
due to information loss. Concat(Avg, Max) performed better than the 2x2 pool
size for 7x7 and 8x8 pool sizes. Due to the increased number of pooling layers in
this experimental setting, the image resolution became inadequate; therefore, the
stride value was fixed at 6 after a pool size of 6x6.

Figure 11. Accuracy, precision, recall, and F1 score results of pooling methods with
various pool sizes in the ResNet-9 model using the Cifar10 dataset.

Using the ResNet-9 model and the Cifar100 dataset, experimental analysis was
conducted to assess the performance of the methods on a similar but more difficult
dataset. Table 6 provides a quantitative presentation of the results obtained for
the respective experimental setting. In addition, to facilitate the comparison of
methods for various pool sizes, the scores are presented in Figure 12 as a stacked
bar graph. The graph reveals a situation comparable to the Cifar10 dataset. While
the max pooling outperforms other methods for small pools, it is clear that the
Concat(Avg, Max) method performs better as the pool size increases. Similar to
the previous situation, 8x8 and 9x9 pool sizes received higher scores than 2x2.

Finally, the performance of the methods was compared using the ResNet-9 model
and the SVHN dataset. The quantitative results obtained for this experimental
setup are provided in Table 7. Additionally, the F1 score of the methods for each
pool size is given in Figure 13. In contrast to other experimental results, it was
observed that even for the smallest pool size, the Concat(Avg, Max) method yielded
higher scores. Notable is the fact that, for a 2x2 pool size, the Concat(Avg, Max)
method produced F1 score enhancements of 2.84% and 12.29%, compared to the
maximum and average methods, respectively.
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Figure 12. Accuracy, precision, recall, and F1 score results of pooling methods with
various pool sizes in the ResNet-9 model using the Cifar100 dataset.

5. Conclusion

In this study, the success of pooling methods, which play a crucial role in the suc-
cess of CNNs and are frequently preferred, was compared experimentally for vari-
ous models, datasets, and pool sizes. In addition, the experimental performance of
concatenating maximum and average pooling methods to reduce information loss
under similar conditions was examined. The concept underlying this method is to
incorporate the strengths of both pooling methods. While maximum pooling is
effective at preserving the input’s most prominent characteristics, average pooling
is effective at capturing the data’s general tendencies. It was hypothesized that
the final feature map derived by combining the feature maps generated by these
two methods would provide a more accurate representation of the input by incor-
porating both the most prominent features and general trends. The experimental
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Figure 13. F1 score results of pooling methods with various pool sizes in the ResNet-9
model using the SVHN dataset.

results revealed that the superiority of a particular pooling method varied depend-
ing on the application scenario. In the shallow model, i.e., LeNet-5, the average
pooling outperformed all other methods for small pool sizes across all datasets used
in the study. As the pool size increased, the efficacy of the average pooling method
deteriorated and fell behind that of the maximum pooling. For large pool sizes,
i.e. > 5x5, the Concat(Avg, Max) outperformed the other two algorithms. In the
ResNet-9 deep model, the max pooling performed better than the other methods
for small pool sizes. In this model, the average pooling lagged behind the other
methods for all pool sizes. As the size of the pool increased, the Concat(Avg, Max)
method provided a more accurate representation and obtained better results. For
the SVHN dataset, this method yielded the highest scores for all pool sizes. This
study guides selecting pooling methods depending on the model and pool size. The
experimental results demonstrated that the pooling method has a significant effect
on model performance. Moreover, there were model and pool size-dependent varia-
tions among different pooling methods. Future research will investigate the impact
of using multiple pooling methods at various levels of deep CNN models.
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Appendix

Table 4. Compare pooling methods for Model: Lenet Dataset: SVHN

Pool size Method AccuracyPrecisionRecallF1 score

2x2
Avg pooling 0.8611 0.8483 0.8506 0.8492
Max pooling 0.8436 0.8333 0.8299 0.8305

Concat (Avg-Max) 0.8557 0.8479 0.8400 0.8427

3x3
Avg pooling 0.8637 0.8528 0.8501 0.8508
Max pooling 0.8471 0.8351 0.8403 0.8355

Concat (Avg-Max) 0.8608 0.8678 0.8388 0.8496

4x4
Avg pooling 0.8507 0.8358 0.8372 0.8352
Max pooling 0.8256 0.8152 0.8056 0.8087

Concat (Avg-Max) 0.8486 0.8361 0.8383 0.8361

5x5
Avg pooling 0.8287 0.8098 0.8114 0.8080
Max pooling 0.8007 0.8007 0.7673 0.7784

Concat (Avg-Max) 0.8313 0.8303 0.8003 0.8109

6x6
Avg pooling 0.8138 0.7923 0.7925 0.7892
Max pooling 0.8024 0.7901 0.7748 0.7804

Concat (Avg-Max) 0.8189 0.8133 0.7903 0.7993

7x7
Avg pooling 0.7541 0.7390 0.7147 0.7212
Max pooling 0.7470 0.7485 0.7150 0.7241

Concat (Avg-Max) 0.7712 0.7608 0.7395 0.7399

8x8
Avg pooling 0.7427 0.7144 0.7033 0.6990
Max pooling 0.7446 0.7277 0.7050 0.7071

Concat (Avg-Max) 0.7894 0.7870 0.7515 0.7642

9x9
Avg pooling 0.6447 0.6016 0.5839 0.5757
Max pooling 0.7253 0.7085 0.6869 0.6911

Concat (Avg-Max) 0.7763 0.7635 0.7448 0.7516

10x10
Avg pooling 0.3690 0.3239 0.3061 0.2941
Max pooling 0.7095 0.7064 0.6641 0.6712

Concat (Avg-Max) 0.7461 0.7369 0.7255 0.7261
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Table 5. Compare pooling methods for Model: ResNet-9 Dataset: Cifar10

Pool size Method AccuracyPrecisionRecallF1 score

2x2
Avg pooling 0.4689 0.4764 0.4689 0.4646
Max pooling 0.5984 0.6031 0.5984 0.5958

Concat (Avg-Max) 0.5845 0.6016 0.5845 0.5859

3x3
Avg pooling 0.3825 0.3971 0.3825 0.3730
Max pooling 0.5272 0.5498 0.5272 0.5221

Concat (Avg-Max) 0.5476 0.5730 0.5476 0.5465

4x4
Avg pooling 0.2870 0.2822 0.2870 0.2584
Max pooling 0.4014 0.4392 0.4014 0.3812

Concat (Avg-Max) 0.4209 0.4782 0.4209 0.4134

5x5
Avg pooling 0.3118 0.3098 0.3118 0.2904
Max pooling 0.4439 0.5032 0.4439 0.4290

Concat (Avg-Max) 0.5045 0.5261 0.5045 0.5034

6x6
Avg pooling 0.3266 0.3391 0.3266 0.3154
Max pooling 0.5034 0.5621 0.5034 0.4923

Concat (Avg-Max) 0.5675 0.5907 0.5675 0.5636

7x7
Avg pooling 0.3507 0.3660 0.3507 0.3411
Max pooling 0.5193 0.5892 0.5193 0.5093

Concat (Avg-Max) 0.6044 0.6175 0.6044 0.6018

8x8
Avg pooling 0.3749 0.3930 0.3749 0.3668
Max pooling 0.5352 0.6164 0.5352 0.5264

Concat (Avg-Max) 0.6413 0.6444 0.6413 0.6400

9x9
Avg pooling 0.3009 0.3090 0.3009 0.2805
Max pooling 0.4882 0.5558 0.4882 0.4778

Concat (Avg-Max) 0.5520 0.5830 0.5520 0.5504

10x10
Avg pooling 0.3173 0.3375 0.3173 0.2982
Max pooling 0.5357 0.5911 0.5357 0.5291

Concat (Avg-Max) 0.5926 0.6139 0.5926 0.5887
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Table 6. Compare pooling methods for Model: ResNet-9 Dataset: Cifar100

Pool size Method AccuracyPrecisionRecallF1 score

2x2
Avg pooling 0.1893 0.2055 0.1893 0.1779
Max pooling 0.2841 0.3104 0.2841 0.2809

Concat (Avg-Max) 0.2714 0.3031 0.2714 0.2659

3x3
Avg pooling 0.1567 0.1701 0.1567 0.1383
Max pooling 0.2617 0.3237 0.2617 0.2549

Concat (Avg-Max) 0.2884 0.3369 0.2884 0.2766

4x4
Avg pooling 0.082 0.0899 0.082 0.064
Max pooling 0.1658 0.2103 0.1658 0.1527

Concat (Avg-Max) 0.1954 0.2315 0.1954 0.1789

5x5
Avg pooling 0.097 0.1138 0.0972 0.0783
Max pooling 0.2050 0.2845 0.2050 0.1929

Concat (Avg-Max) 0.2334 0.3034 0.2334 0.2150

6x6
Avg pooling 0.0937 0.1247 0.0937 0.0767
Max pooling 0.2476 0.3048 0.2476 0.2350

Concat (Avg-Max) 0.2880 0.3448 0.2880 0.2751

7x7
Avg pooling 0.1383 0.1625 0.1383 0.1223
Max pooling 0.2916 0.3696 0.2916 0.2873

Concat (Avg-Max) 0.3323 0.4265 0.3323 0.3296

8x8
Avg pooling 0.1305 0.1389 0.1305 0.1111
Max pooling 0.2886 0.3755 0.2886 0.2867

Concat (Avg-Max) 0.3382 0.4307 0.3382 0.3309

9x9
Avg pooling 0.3186 0.3212 0.3186 0.2969
Max pooling 0.5047 0.5709 0.5047 0.5032

Concat (Avg-Max) 0.5418 0.5936 0.5418 0.5355

10x10
Avg pooling 0.1001 0.1139 0.1001 0.076
Max pooling 0.2674 0.3421 0.2674 0.2552

Concat (Avg-Max) 0.2997 0.3616 0.2997 0.2840
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Table 7. Compare pooling methods for Model: ResNet-9 Dataset: SVHN

Pool size Method AccuracyPrecisionRecallF1 score

2x2
Avg pooling 0.4552 0.4219 0.4044 0.4014
Max pooling 0.5512 0.5250 0.4914 0.4959

Concat (Avg-Max) 0.5754 0.5680 0.5104 0.5243

3x3
Avg pooling 0.3539 0.3074 0.2704 0.2591
Max pooling 0.4305 0.3911 0.3585 0.3559

Concat (Avg-Max) 0.4706 0.4427 0.4016 0.3988

4x4
Avg pooling 0.1903 0.0921 0.1140 0.0745
Max pooling 0.2392 0.1759 0.1551 0.1200

Concat (Avg-Max) 0.2718 0.2278 0.1833 0.1598

5x5
Avg pooling 0.2004 0.1565 0.1392 0.1066
Max pooling 0.2741 0.1871 0.1791 0.1292

Concat (Avg-Max) 0.3168 0.2451 0.2358 0.2182

6x6
Avg pooling 0.1979 0.1028 0.1163 0.075
Max pooling 0.2374 0.1228 0.1645 0.1216

Concat (Avg-Max) 0.3178 0.2419 0.2278 0.1982

7x7
Avg pooling 0.2974 0.2744 0.2307 0.2166
Max pooling 0.3953 0.3726 0.3170 0.3130

Concat (Avg-Max) 0.4897 0.4928 0.4359 0.4364

8x8
Avg pooling 0.2400 0.2424 0.1983 0.1819
Max pooling 0.3657 0.3459 0.2862 0.2709

Concat (Avg-Max) 0.4671 0.4681 0.3995 0.4028

9x9
Avg pooling 0.1851 0.1374 0.1426 0.1041
Max pooling 0.2769 0.1997 0.1856 0.1439

Concat (Avg-Max) 0.3929 0.3665 0.3222 0.3093

10x10
Avg pooling 0.2017 0.1523 0.1477 0.1098
Max pooling 0.2680 0.2503 0.1823 0.1393

Concat (Avg-Max) 0.3754 0.3875 0.3057 0.2871
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