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safsızlığının elektronik ve optik özellikleri
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Abstract

Investigation of the intense THz laser field-related optical response of a
two-dimensional parabolic quantum dot with on-center screened Coulomb
impurity has been performed within the framework of high-frequency Floquet
theory. The energy spectrum and wave functions of the system are obtained
by using the finite element method while optical absorption coefficients
and refractive index changes are calculated based on the compact-density
matrix approach. Our results highlight the fact that action of intense laser
field on the system leads to important modifications in the electronic and
optical characteristics. Also, we found that the peak amplitude and position
of optical coefficients can be adjusted by altering screening parameter and
confinement strength. The controllability of these features could be useful for
optimization of the optoelectronic devices.

Özet

Merkezde perdelenmiş Coulomb safsızlığına sahip iki boyutlu bir parabo-
lik kuantum noktasının yoğun THz lazer alanına bağlı optik cevabının
araştırılması, yüksek frekanslı Floquet teorisi çerçevesinde gerçekleştirilmiştir.
Sistemin enerji spektrumu ve dalga fonksiyonları sonlu elemanlar yöntemi kul-
lanılarak elde edilirken, optik soğurma katsayıları ve kırılma indisi değişiklikleri
kompakt yoğunluk matrisi yaklaşımına göre hesaplanmaktadır. Sonuçlarımız,
yoğun lazer alanının sistem üzerindeki etkisinin elektronik ve optik özelliklerde
önemli değişikliklere yol açtığını vurgulamaktadır. Ayrıca, optik katsayıların
pik genliği ve konumunun, perdeleme parametresi ve hapsetme şiddetinin
değiştirilerek ayarlanabileceğini bulduk. Bu özelliklerin kontrol edilebilirliği
optoelektronik cihazların optimizasyonunda faydalı olabilir.

1. INTRODUCTION

In recent years, studies on the electronic and optical properties of two-dimensional quantum dots
(2DQDs), which possess extraordinary electronic and optical properties, have become important not
only from the aspect of fundamental science but also for device applications (Barseghyan, 2015; Huang,
2013; Kumar, 2023; Mikhail, 2017; Shojaei, 2015). In particular, the physics of impurity states in QDs
has become an important subject due to the modification of electronic and optical properties associated
with impurity(Wang, 2019). Therefore, many researchers have focused on the intriguing impurity-
related properties of QDs and have broadcasted a number of publications (Bera, 2016; Hashemi, 2015;
Vala, 2017). Xie have investigated both the electric field and confinement effects on the impurity-
related states and nonlinear optical rectification of a parabolic disc-like QD (Xie, 2009). Al-Hayek
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and Sandouqa have obtained the hydrogenic-like impurity binding energy of a Gaussian QD by using
the method of the shifted 1/N expansion (AlHayek, 2015). The controllability of electronic properties
and optical characteristics in an impurity doped quantum disc by magnetic field has been demonstrated
by Niculescu and co-workers (Niculescu, 2017).

In most of the studies, the impurity potential in QDs is usually described by Coulomb poten-
tial (CP) (Coden, 2017; Kirak, 2022; Sheng, 2016) or Gaussian impurity (Ganguly, 2017; Halonen,
1996; Sarkar, 2016), while the Screened Coulomb (or the Debye-Yukawa) potential (SCP) (Varshni,
2001) is less preferred for impurity modeling. Although less studied in QDs, the SCP, which is a
short-range potential and tends faster to zero than CP at |r| → ∞ limit (AlAhmadi, 2012; Poszwa,
2014), has been widely implemented in different areas such as atomic physics, nuclear physics, plasma
physics, semiconductors, and quantum chemistry (Brum, 1984; Chang, 1988; Jiao, 2014; Soylu, 2008;
Taseli, 1995). For instance, Ping and Jiang have investigated the effects of the charge screening on
the exciton binding energy in GaAs-AlxGa1−x quantum wells (Ping, 1993). Villalba and Pino have
presented the energy levels of a two-dimensional screened hydrogenic donor under a constant magnetic
field (Villalba, 2002). They showed that the strength of screening parameter is considerably effective
in consisting of the bounded states in 2D-screened hydrogen atom.

On the other hand, another important topic that is studied extensively is the effect of intense
THz laser field (ITLF) on the behavior of impurity states in nanostructures. Due to the ability
of ITLF on adjusting and controlling of electronic and optical properties of nanostructures, a great
number of works have been reported by researchers (Aktas, 2016; Chakraborty, 2018; Ungan, 2019;
Vinasco, 2019). Bejan and Niculescu have researched the influence of ITLF on the electronic and
optical properties in an asymmetric double quantum dots (Bejan, 2016). Theoretical results given in
Ref. (Brandi, 2004) show that the binding energies of donor impurities are affected by the intensity of
the laser. The research of photoionization cross-section and impurity binding energy in GaAs-GaAlAs
spherical quantum dots under electric and intense laser fields have been investigated by Burileanu
and they found that increment in the electric and laser field intensities leads to diminishment in the
magnitude of impurity binding energy (Burileanu, 2014). The other important research related to the
effect of THz laser field on the shallow-donor impurity binding energy in GaAs semiconductors has
been performed by Wang et al. and the obtained results show that the binding and transition energies
depend on the laser field intensity and can be changed by tuning laser intensity (Wang, 2017).

As can be seen from the literature, many studies have been conducted on the optical and electronic
properties of laser-driven QDs which include hydrogenic or Gaussian impurity. However, the effect
of ITLF on the optical response of a 2DQD with an on-center screened Coulomb impurity has been
not examined so far. The goal of this work is to investigate the electronic and optical properties of a
2DQD with impurity defined by SCP and irradiated by a THz laser. The structure of this paper is as
follows: The theoretical framework is described in Section 2 and Section 3 is dedicated to discuss of
the obtained results. Finally, a brief conclusion is given in Section 4.

2.MATERIAL AND METHOD

In this paper, we investigate the THz laser effect of an on-center donor impurity in a two-dimensional
parabolic QD system. Presence of an impurity is described with SCP given as VSC = −e−λr/r where
λ is screening parameter characterizing the shielding of the impurity ions. We assume that the system
is irradiated by a non-resonant, monochromatic, circularly polarized ITLF of frequency Ω. Within the
framework of non-perturbative theory, in the high-frequency regime the motion of electron is specified

by the time-averaged dressed potential ⟨Vd(r, α0)⟩ = 1
T

T∫
0

V (r+α(t))dt where T = 2π/Ω is the period

of ITLF. Here α(t) = α0(x̂ cosΩt + ŷ sinΩt) corresponds to the motion of the electron in the ITLF
and the α0 = eA0/m

∗Ω is the laser-dressing intensity parameter. Time-independent Schrödinger
equation governing the effects of high-frequency radiation for the zeroth Floquet component (φnm)
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with corresponding quasienergy (εnm) is given:[
p2

2m∗ + ⟨VdP (r, α0)⟩+ ⟨VdSC(r, α0)⟩
]
φnm(r) = εnmφnm(r) . (1)

Here the radial and magnetic quantum numbers are depicted by n and m, VdP and VdSC corre-
sponds to the laser-dressed form of parabolic confinement and screened Coulomb impurity potentials,
respectively. In this study, we have numerically carried out the calculation of eigen energies with cor-
responding eigen functions by using one-dimensional finite element method (FEM) based on Galerkin
approach. This approach identified in a weak formulation is a variational expansion method and the
basis functions are local, piecewise polynomials in real space. For the survey of the optical response of
the system, we have considered the dipole transitions allowed only between states satisfying the selec-
tion rule ∆m = ±1. Therefore, we have selected the energy levels and the wave functions participating
in the transitions to be E0 = ε00, E1 = ε11 and ψ0 = φ00, ψ1 = φ11.

The linear and third-order nonlinear optical absorption coefficients (OACs) for intersubband tran-
sitions are obtained by means of the compact density matrix approach and iterative scheme:

α(1)(ω) = ω

√
µ

ϵr

σs|M10|2ℏΓ0

(E10 − ℏω)2 + (ℏΓ0)2
(2)

α(3)(ω, I) = −ω
√
µ

ϵr

(
I

2nrϵ0c

)
σsℏΓ0|M10|2

[(E10 − ℏω)2 + (ℏΓ0)2]
2

×
{
4|M2

10| − |M11 −M00|2

×
[
3E2

10 − 4E10ℏω + ℏ2(ω2 − Γ2
0)
]

E2
10 + (ℏΓ0)2

}
,

(3)

and the total OAC can be written as α(ω, I) = α(1)(ω) + α(3)(ω, I). Here ϵ0 and µ are the electric
and magnetic permeability, σs is the carrier density, I is the intensity of the incident light with x-
polarization, nr is the refractive index of medium, c is the vacuum speed of light, E10 denotes the
transition energy between the states, Mij = |⟨ψi|er cosϕ|ψj⟩| (i, j = 0, 1) are the off-diagonal matrix
elements of the dipole moment and Γ0 = 1/T0 is phenomenological operator.

The expressions of linear and the third-order nonlinear relative refractive index changes (RICs)
are given by, respectively:

∆n(1)(ω)

nr
=

1

2n2rϵ0
|M10|2σs

[
E10 − ℏω

(E10 − ℏω)2 + (ℏΓ0)2

]
(4)

and
∆n(3)(ω, I)

nr
= − µc

4n3rϵ0
|M10|2

σsI

[(E10 − ℏω)2 + (ℏΓ0)2]
2

×
[
4(E10 − ℏω)|M10|2

−(M11 −M00)
2

E2
10 + (ℏΓ0)2

{(E10 − ℏω)

×
[
E10(E10 − ℏω)− (ℏΓ0)

2
]

− (ℏΓ0)
2(2E10 − ℏω)

}]
.

(5)

The total magnitude of the RIC is written as ∆n(ω, I)/nr = ∆n(1)(ω)/nr +∆n(3)(ω, I)/nr.
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Fig. 1. Variation of energies of E0 and E1 as a function of the screening parameter for different values
of (a) laser-dressing parameter and (b) confinement strength.

3.RESULTS

In this section, we present and discuss the numerical results concerning the influence of THz laser
field on a typical GaAs quantum dot structure with an on-center screened impurity. The physical
parameters used in our calculations are: m∗ = 0.067m0 (m0 being the free electron mass), charge
density of σs = 5× 1024 m−3, T0 = 0.14 ps, µ = 4π× 10−7 Hm−1, nr = 3.2 and I = 1.5× 1010 W/m2.

Before discussing the optical response of the system, it would be beneficial to investigate the
effect of screening parameter on the energy states. Hence, the dependence of energies E0 and E1

on λ−parameter for several values of laser-dressing parameter and confinement strength is presented
in Fig. 1. As is apparent from Fig. 1 (a), the increase of α0 leads to a significant rise in the E0

whereas E1 is less affected. In Fig. 1 (b), we can clearly see that augmentation in ℏω0 gives cause for a
remarkable increase in E1 while inducing relatively less increase in the ground-state energy. As is seen
from both figures, the greater values of λ−screening parameter bring about a notable enhancement in
the energies.

In attempt to understand the behavior of the ground-state binding energy of the laser-dressed
system with screened Coulomb impurity, in Fig. 2 we present the variation of binding energy as a
function of laser-dressing parameter for three values of λ and ℏω0. Binding energy is defined by
Eb = E0

0 −E0 where E0
0 states the ground state energy in the absence of impurity. Fig. 2 (a) displays

an appreciable diminishment in the magnitude of binding energy for higher values of λ. Increment of
screening effect brings about weakening interaction between impurity and electron which explains the
behavior in Fig. 2 (a). On the other hand, strengthening in confinement potential brings about an
increase in the binding energy as seen from Fig. 2 (b). The physical reason can be explained by the fact
that the greater values of ℏω0 give rise to more localized impurity-related states because of stronger
quantum confinement and increment of absolute Coulomb interaction. Moreover, from Fig. 2 (a) and
(b) we observe that the magnitude of impurity binding energy demonstrates a remarkable decline with
increasing laser-dressing parameter owing to increment in the electron-impurity distance, which causes
weakening in the strength of the Coulomb interaction.

The investigation of the influences of λ and ℏω0 on the dipole matrix element (|M10|) is important
for better understanding of the optical response of the system under ITLF. Therefore, in Fig. 3 we
exhibit the change of magnitude of |M10| as a function of α0 for different values of λ and ℏω0 . It is
clear from Fig. 3 (a) that the magnitude of |M10| showing an increasing behavior up to specific value
of α0 is followed by a decrease. In addition, the augmentation of λ−parameter leads to an increment
in the absolute value of |M10|. Fig. 3 (b) depicts that the dipole matrix element declines considering
higher values of ℏω0. In this figure, remarkable observation is that the magnitude of |M10| enhances
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Fig. 2. Binding energy as a function of laser-dressing parameter for different values of (a)
λ−parameter for confinement of 5 meV, (b) the confinement strength for a fixed λ = 0.1 nm−1.
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Fig. 3. Plot of |M10| as a function of the laser-dressing parameter for three values of (a) screening
parameter and (b) confinement strength.

with increasing α0 at the lowest value of ℏω0. However, for the greater values of ℏω0, the variation of
|M10| depicts a similar behavior as Fig. 3 (a).

To investigate the effect of intense laser field on the optical response of the system, we display
the variation of the OACs and RICs as a function of incident photon energy for λ = 0.1 nm−1

with ℏω0 = 5 meV in Fig. 4. It would be important to remark that the dashed, dotted and solid
lines indicate the linear, third-order nonlinear and the total optical characteristics, respectively. The
greater values of α0 lead to a diminishment in the height of the resonance peaks of the OACs whereas
cause an increment in the magnitude of RICs. The physical interpretation of Fig. 4 can be explained
by the change in the absolute value of dipole matrix element by the increase in the α0−parameter and
this result is consonant with Fig. 3. The peak positions of OACs and RICs move to the lower energy
values (red-shift) with increasing α0 owing to diminishment in the energy interval between states E0

and E1, which could be easily seen in Fig. 1 (a).
Another important examination on the optical characteristics of the system is the effect of screen-

ing. Therefore, the variations of the optical coefficients as a function of incident photon energy for
several values of λ−secreening parameter considering the fixed values α0 = 4 nm and ℏω0 = 5 meV
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are shown in Fig. 5 (a) and (b). It can be clearly observed that in compliance with the previously
presented energy and |M10| data, increment in λ−parameter leads to an increase in the peak heights
of the linear, third-order nonlinear and total OACs and RICs while the peak positions of OACs and
RICs shift toward to the lower energy region.

Fig. 6 demonstrates the variation of optical absorption coefficients and refractive index changes
versus the photon energy for different confinement strength for laser-dressing parameter of 4 nm.
From both figures, we evidently observe that augmentation of confinement strength brings about a
considerable reduction in the amplitudes of OACs and RICs. Besides, strengthening in confinement
causes a blue-shift in the optical response on account of enhancement in the transition energy.

It may be significant also to examine the effects of the screening parameter and confinement
frequency in the magnitude of resonant peak values of total OAC and RIC. Hence, Fig. 7 (a) and (b)
depict the changes in the peak values of OAC and RIC at resonance frequency as a function of α0 for
different values of λ and ℏω0.

The main figures of Fig. 7 (a) and (b) shows that the resonant peak values of OAC and RIC increase
for greater values of λ and exhibit a decreasing behavior for stronger laser field. From the inset figure of
Fig. 7 (a), the noticeable behavior for the maximum value of total absorption coefficient is readily seen.
The highest value of |αtot|max is obtained for a specific confinement strength value (ℏω0 = 7 meV) at
lower laser dressing parameters whereas it is highest for ℏω0 = 3 meV at greater values of α0. From
the inset figure of Fig. 7 (b), it can be readily seen that the maximum value of total RIC decrease for
higher values of ℏω0. Further, the resonant peak of RIC increases for lower values of α0 value but this
magnitude starts to decline with the strengthening in the ILF.

4.DISCUSSION AND CONCLUSION

In this work, investigation on the electronic and optical properties of a laser-driven 2DQD including
a screened Coulomb impurity has been performed. The influence of non-resonant, circularly polarized
ITLF has been tackled within the framework of Floquet approach and effective mass approximation.
The numerical solution of Schrödinger equation of system is achieved by the use of FEM. The numerical
results demonstrate that exposing an ITLF onto a 2DQD system results in remarkable changes in the
impurity binding energy, dipole moment matrix elements and the optical characteristics of the system.
By altering the magnitude of confinement frequency, laser-dressing and λ−screening parameter, shifts
in the resonant peak positions of OACs and RICs are observed. On the other hand, enhancement in the
peak amplitudes of OACs and RICs is observed for the lower values of α0 and ℏω0 while this increment
is seen with increasing the screening effect. In brief, results of this work reveal that the confinement
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Fig. 4. The change in the linear, third-order nonlinear and total (a) OACs and (b) RICs as a function
of the photon energy for three values of α0 with λ = 0.1 nm−1 and ℏω0 = 5 meV .
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Fig. 5. (a) Optical absorption coefficients and (b) refractive index changes versus incident photon
energy for different values of λ−screening parameter.
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Fig. 6. (a) OACs and (b) RICs vs the photon energy for different values of ℏω0. We set α0 = 4 nm
and λ = 0.1 nm−1.

strength, screening and laser-dressing parameters can be used to control the optical response of the
system which can provide an assistance to impurity-doped QD device applications.
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