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ABSTRACT 

This research aims to evaluate the performance of dimensionality determination methods under various simulation 

conditions. Therefore, dimensionality determination methods were compared, including optimal parallel analysis, MAP, 

HULL, EGA (TMFG) estimation, EGA (glasso) estimation, and comparison data forest method. The type of distribution, 

sample size, number of items per factor, number of categories, and measurement model were specified as simulation 

conditions in the study. For each condition, 100 replications were conducted. A fully crossed simulation design was employed 

in the study. The results of this study, which examined the performance of factor determination methods under skewed 

distributions, indicated that the HULL method had the highest average considering the average accuracy values of all 

conditions. Meanwhile, the HULL method had the lowest Relative bias average. However, no method demonstrated adequate 

performance under all conditions. This study examined one-factor and two-factor structures with interfactor correlations of 

0.00 and 0.30. Considering structures with more than two factors in education and psychology, future research could focus 

on working with data exhibiting skewed distributions involving more factors and items to compare the performance of 

methods. 
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ÇARPIK DAĞILIMLARDA FAKTÖR SAYISI BELİRLEME YÖNTEMLERİNİN 

PERFORMANSLARININ İNCELENMESİ 

 

ÖZET 

Bu araştırmanın amacı faktör sayısı belirleme yöntemlerinin çeşitli simülasyon koşulları altında performanslarını 

değerlendirmektir. Bu amaç doğrultusunda boyutluluk belirleme yöntemlerinden optimal paralel analiz, MAP, HULL, EGA 

(TMFG) kestirimi, EGA (Glasso) kestirimi ve comparison data forest yöntemi karşılaştırılmıştır. Çalışmada simülasyon koşulları 

olarak dağılımın türü, örneklem büyüklüğü, faktör başına düşen madde sayısı, kategori sayısı ve ölçme modeli belirlenmiştir. 

Çalışmada her bir koşul için 100 replikasyon yapılmıştır. Çalışmada tamamen çaprazlanmış simülasyon deseni kullanılmıştır. 

Çarpık dağılımlarda faktör sayısı belirleme yöntemlerinin performanslarının incelendiği bu çalışma sonucunda tüm koşulların 

doğruluk değerlerinin ortalaması dikkate alındığında en yüksek ortalamaya HULL yönteminin sahip olduğu görülmüştür. Aynı 

zamanda en düşük göreli yanlılık ortalaması da HULL yöntemindedir. Ancak tüm koşullarda yeterli performansı gösteren bir 

yöntemin olmadığı söylenebilir. Diğer bir deyişle her koşulda doğru sonucu verecek bir yöntem bulunmamaktadır. Bu çalışmada 

tek faktörlü, faktörler arası korelasyonu 0.00 ve 0.30 olan iki faktörlü yapılar incelenmiştir. Eğitimde ve psikolojide ikiden fazla 

faktör sayısına sahip yapılar göz önünde bulundurulduğunda gelecekteki araştırmalarda çarpık dağılım gösteren verilerde daha 

fazla faktör ve madde sayısıyla çalışılarak yöntemlerin performansları karşılaştırılabilir. 

Anahtar Kelimeler: Faktör sayısı belirleme; MAP; HULL; karşılaştırmalı faktör forest; EGA 

 

1. INTRODUCTION 

Latent traits attributed to individuals in education and psychology are considered constructs. Since 

these constructs cannot be directly observed, individuals’ performance regarding the measured trait can be 

determined based on their responses to a measurement tool designed to assess the construct of interest. 

However, the validity of these performances should also be examined. Researchers often use Exploratory 

Factor Analysis (EFA) to examine the construct validity of measures (Cosemans et al., 2022; Finch, 2020; 

Haslbeck & Bork, 2022; Henson & Roberts, 2006; Svetina, 2011).  

Deciding on the number of factors is one of the most essential steps in EFA (Cosemans et al., 2022; 

Finch, 2020; Reio & Shuck, 2015; Svetina, 2011; Zhang, 2007). In EFA, both overfactoring and 

underfactoring are problematic. When underfactoring occurs, variables are compressed into a smaller factor 

space, leading to loss of information, neglect of essential factors, and increased error loads (Cosemans et 

al., 2022). Overfactoring, on the other hand, can lead to the division of factors that are together or result in 

unimportant factors (Cosemans et al., 2022; Finch, 2020; Lee et al., 2023). Therefore, the criteria used in 

determining the number of dimensions become crucial. 

In many studies that employ EFA, standard options in statistical software are more commonly 

preferred when determining the number of dimensions (e.g., Finch, 2020; Henson & Roberts, 2006; 

Montoya & Edwards, 2021; Schmitt & Sass, 2011). Goretzko et al. (2019) reported in their literature review 
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that 55% of the studies they reviewed employed the Kaiser criterion (K1 rule), and 46% of them employed 

Cattell’s Scree test (Cattell, 1966). However, using these methods alone to determine the number of 

dimensions has been criticized. For instance, in Cattell’s Scree test method, eigenvalues are arranged from 

highest to lowest and connected by a line. However, this method is also criticized for being subjective 

(Ledasma & Mora, 2007). Considering the literature in Turkey, one could state that only Cattell’s Scree 

test and the Kaiser criterion are still used to decide on the number of dimensions in scale development 

studies (Koyuncu & Kılıç, 2019). Making decisions solely based on methods like the scree plot, where 

researchers’ subjective judgments play a role in determining the number of dimensions, may not yield 

accurate results (Ledasma & Mora, 2007).  

Deciding on the dimensionality of a measurement instrument based on more than one method can 

also be problematic (Ledesma et al., 2015; Lee, 2023). Each method has strengths and weaknesses. 

Therefore, it becomes crucial to examine which method yields better results under what conditions of the 

data. In this case, the question of which methods to examine may arise. The Parallel Analysis (PA) method 

Horn (1965) suggested is widespread considering the factor retention methods. However, in addition to this 

method, there are also other methods such as Minimum Average Partial Correlation (MAP), HULL 

(Lorenzo-Seva et al., 2011), or, more recently, the Exploratory Graph Analysis (EGA) method, which has 

been used more frequently. With the widespread application of machine learning methods in various fields, 

some researchers have suggested using machine learning techniques as dimensionality determination 

methods (Goretzko & Ruscio, 2023). 

When reviewing the literature on dimensionality determination methods, one may come across 

many studies working with categorical data (Goretzko & Bühner, 2020; Li et al., 2020; Svetina, 2011; Yang 

& Xia, 2015). Accordingly, the focus appears to be on studying the performance of dimensionality 

determination methods, specifically in dichotomous data. Some studies also compare various methods 

under different conditions in continuous data (Auerswald & Moshagen, 2019; Green et al., 2016). In this 

study, unlike other studies, we worked both on skewed data alone and manipulated the data to have 3 and 

5 categories. Furthermore, the methods under investigation in terms of their performance may also differ 

from the literature. The dimensionality determination performance of EGA, which has been frequently used 

in recent years, is compared with the machine learning-based Comparison Data Forest method (Goretzko 

& Ruscio, 2023). The study investigated whether the machine learning method could solve skewed 

distributions. Therefore, this study may contribute to the literature in four aspects: i) examining which 

method performs better in skewed distributions, ii) examining the performance of machine learning 

methods in dimensionality determination, iii) examining whether machine learning methods can offer a 

solution for skewed distributions, and iv) examining the performance of the commonly preferred EGA in 

skewed and categorical datasets.  
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In this study, factor retention methods including Optimal Parallel Analysis (PA; Timmerman & 

Lorenzo-Seva, 2011), MAP (normal and revised), HULL, EGA with TMFG estimation [EGA(TMFG)], 

EGA with Glasso estimation [EGA(Glasso)], and the Comparison Data Forest method proposed by 

Goretzko and Ruscio (2023) were compared. The primary reason for preferring Optimal PA is that it 

accurately determines the number of dimensions even under challenging conditions (Golino et al., 2020; 

Nájera et al. 2021; Timmerman & Lorenzo-Seva, 2011). Conversely, EGA employs a network estimation 

method with a community detection algorithm that shows the number of dimensions and the distribution of 

items across relevant dimensions (Golino & Epskamp, 2017). Considering the literature, EGA is highly 

accurate in determining the number of dimensions (Lee, 2023). Furthermore, EGA is more resistant to 

differences in sample size, number of items, and correlations between dimensions (Golino & Epskamp, 

2017). 

Additionally, EGA is unaffected by researchers’ a priori guidance (Lee, 2023), which is why it was 

preeffered in this study. The MAP method, which utilizes the partial correlation matrix and is based on 

principal component analysis, has been found to provide better results in determining the number of 

dimensions compared to other methods in a simulation study conducted by Kılıç and Uysal (2019). 

Therefore, the MAP method was also included in the study. On the other hand, the study included the HULL 

method because it suggests the number of dimensions based on fit indices. Finally, the study included the 

Comparison Factor Forest method (Goretzko & Ruscio, 2023), which utilizes machine learning methods of 

Random Forest and XGBoost algorithms and is based on the Comparison Data method (Ruscio & Roche, 

2012). In this context, this research examines the performance of dimensionality determination methods 

under various simulation conditions. Within the research framework, the study compared the main effects 

of each condition and the interaction effects of conditions. Accordingly, answers were sought to the 

following questions:  

(1) What are the accuracy values of dimensionality determination methods according to simulation 

conditions?   

(2) What are the relative bias values of dimensionality determination methods according to simulation 

conditions? 

 

2. METHOD 

This study compares methods for determining dimensionality in a Monte Carlo simulation. In 

simulation studies, datasets generated based on desired characteristics (e.g., distribution, factor loadings, or 

number of items) are analyzed with the methods of interest, and the results are compared. 
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2.1. Simulation Conditions 

Simulation factors such as distribution, sample size, number of items per factor, number of 

categories, and measurement model were determined in the study. In this study, 100 replications were 

conducted for each condition. Given that PA generates 500 datasets for each dataset, we preferred to 

conduct 100 replications considering the prolonged analysis time.  

 

Figure 1. Simulation Conditions 

 

We studied 2x2x2x2x3x2 = 96 simulation conditions (see Figure 1). Considering the distribution 

of the data, one of the simulation conditions, the datasets were skewed by a skewness coefficient of ±2.5. 

For this purpose, the dataset demonstrating a continuous normal distribution was generated, and then it was 

skewed using the cutoff points presented in Appendix 1. Generally, the skewness coefficient in real datasets 

falls within the range of ±2.00 (Garrido et al., 2011; Muthén & Kaplan, 1985). Therefore, a skewness 

coefficient of ±2.50 was chosen to examine extreme conditions. 

Sample sizes of 200 and 1000 were determined as conditions. In simulation studies, sample sizes 

of 200 (small), 500 (medium), and 1000 (large) are commonly preferred (Beauducel & Herzberg, 2006; Li, 

2016; West et al., 1995). In addition, Gorsuch (1974) proposed a minimum sample size of 200. Therefore, 

a sample size of 200 was included in this study. In addition, a sample size of 1000 was included as a 

simulation condition to examine the effect of increasing sample size on factor retention methods.  

Distribution 
of data

• Left 
Skewed

• Right 
Skewed

Categories

• 3 
Categories

• 5 
Categories
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In their review study, Goretzko et al. (2021) reported that the number of items per factor in most 

studies (37.2%) was above 7. Therefore, this study determined the number of items per factor as 10 and 15. 

Since the study focuses on two-dimensional structures, when the number of items per factor is 15, the scale 

consists of 30 items. Therefore, thinking that longer scales would be less common, the number of items per 

factor was limited to 15. 

In the condition related to the number of categories, there are 3 and 5 categories. As such, 5-point 

Likert-type items were included in the simulation condition, considering their common utilization (Lozano 

et al., 2008). Considering Likert-type scales, the number of categories would not be less than 3 in general. 

Dichotomous Likert-type scales may exist, but they are less common in practice. Therefore, the data was 

categorized into a minimum of 3 categories. 

Under the model conditions analyzed, unidimensional conditions plus conditions for two factors 

with an inter-factor correlation of 0.00 and two factors with an inter-factor correlation of 0.30 were 

examined. The reason for examining unidimensional structures is to prevent artificial success, as methods 

would always have a 100% success rate when they suggest a unidimensional structure. In two-dimensional 

structures, the inter-factor correlation can influence the performance of methods. Therefore, data were 

generated with interfactor correlations of 0.00 and 0.30. One of the reasons for selecting an inter-factor 

correlation of 0.30 is that this value is more commonly found in practical studies (Li, 2016) and is also 

preferred in simulation studies (Cho et al., 2009; Curran et al., 1996; Flora & Curran, 2004; Foldnes & 

Grønneberg, 2017).  

The average factor loading was manipulated as 0.40 and 0.70. Since the lowest recommended factor 

loading is generally 0.30 (Costello & Osborne, 2005) or 0.40 (Tabachnick & Fidell, 2019), an average 

factor loading condition of 0.40 was included. On the other hand, the condition of 0.70 was added as a 

simulation condition to examine structures with high factor loadings.  

2.2. Evaluation Criteria 

The accuracy was used as evaluation criteria. As evidenced in the literature, this statistic is used to 

compare the performance of methods (Goretzko & Bühner, 2022; Kılıç & Uysal, 2019). Accuracy is 

calculated as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

𝑛𝑟𝑒𝑝
. 100 1 

Where correct estimates means cases where the number of factors was correctly identified by the 

respective method. The other evaluation criteria is relative bias (RB). RB is calculated as  

  

𝑅𝐵 = 
𝜁 − 𝜁𝑇𝑅𝑈𝐸
𝜁𝑇𝑅𝑈𝐸

 2 
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Where 𝜁𝑇𝑅𝑈𝐸 is true for the number of factors in simulation conditions (1 or 2). 𝜁 means the average 

of the number of factors estimates. |RB|> 0.10 indicates substantial bias (Flora & Curran, 2004; Forero et 

al., 2009). So we used the cut-off criteria as 0.10 for RB.  

2.3. Data Analysis 

We used the lavaan package (Rosseel, 2012) in the R software (R Core Team, 2022) to generate 

data. In addition, we used the EFA.MRFA package (Navarro-Gonzalez & Lorenzo-Seva, 2021) for Optimal 

PA and HULL methods, EFA.dimensions package (O’Connor, 2022) for MAP analysis, EGAnet package 

(Golino & Christensen, 2020) for EGA. For the Comparison Factor Forest method, we used the codes 

shared by Goretzko and Bühner (2022).  

 

3. FINDINGS 

This section presents the findings in the order of research problems.  

3.1. Examination of Accuracy Values 

Figure 2 shows the accuracy values obtained from the methods. Additionally, accuracy values are 

presented in Appendix 2 for researchers who wish to conduct a detailed examination. In addition, one-way 

ANOVA was conducted to identify the variables influencing accuracy values. The ANOVA results 

indicated that distribution of data [F(1, 658) = 0.03, p = 0.86], model [F(2,658) = 0.93, p = 0.39], and items per 

factor [F(1,658)=0.72, p = 0.40] conditions differed in terms of accuracy values. Furthermore, the average 

factor loading [F(1, 658) = 96.80, p < 0.01, η2 = 0.13], number of categories in variables [F(1, 658)=5.38, p < 

0.05, η2 = 0.008], sample size [F(1,658)=73.39, p<0.01, η2=0.10], and method [F(1,658)=13.62, p<0.01, η2=0.11] 

differed in terms of accuracy averages. The simulation condition that has the greatest effect on accuracy 

scores is average factor loadings. This is followed by factor retention method and sample size. Eta square 

values show that average factor loading has a significant effect on accuracy values, while sample size and 

method have a moderate effect.
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Figure 2. Accuracy Values of the Methods
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Considering the factor determination methods in Figure 2, none of the methods exhibited adequate 

performance in all conditions. The average accuracy of the methods for all conditions was 54.32% for 

Factor Forest, 69.28% for MAP, 66.25% for MAP(R), 85.73% for HULL, 55.47% for EGA (TMFG), and 

64.96% for EGA (Glasso). In all unidimensional conditions with an average factor loading of 0.40, except 

for the factor forest, other methods had sufficient accuracy (>90%). As the number of factors increased, the 

performance of methods also changed. Under the conditions of low average factor loading (0.40), two 

factors, and 10 items per factor, regardless of sample size, HULL, MAP, Revised MAP, and optimal PA 

did not demonstrate adequate performance. Under these conditions, Factor Forest had 100% accuracy when 

the sample size was 1000. Under the same conditions, but with a smaller sample size (n = 200), the Factor 

Forest method did not demonstrate adequate performance. Under the conditions of low average factor 

loading (0.40) two factors, and 10 items per factor, EGA methods had sufficient accuracy values in datasets 

consisting of 5-category variables and a sample size of 1000. 

The study found that EGA (TMFG), MAP, Revised MAP, and Optimal PA methods demonstrated 

adequate performance in two-dimensional structures with 10 items and AFL of 0.70, regardless of the 

number of categories and sample size. EGA (Glasso) and Factor Forest demonstrated adequate performance 

in conditions other than those where the sample size was 200 and the number of categories was 3. However, 

under these conditions, the performance of the HULL method was lower than other methods. Only under 

one of these specified conditions (3 categories and a sample size of 1000), it had an accuracy rate of over 

90%.  

In unidimensional structures where the number of items per factor was 15 and AFL was 0.40, the 

performances of EGA methods and Factor Forest were quite low. Under these conditions, the accuracy 

value for Factor Forest was 0. However, the EGA methods had an accuracy value of around 25%. The 

HULL method, on the other hand, demonstrated adequate performance in 5-category data when the sample 

size was 1000. MAP and revised MAP methods exhibited adequate performance in both sample sizes when 

there were 5 categories. They also demonstrated adequate performance when there were 3 categories and 

the sample size was 1000.  

Under all conditions with two-dimensional structures where the number of items per factor was 15 

and AFL was 0.40 (ψ = 0.00 and ψ = 0.30), EGA (TMFG), Optimal PA, and Factor Forest did not 

demonstrate adequate performance. EGA (Glasso), on the other hand, demonstrated sufficient accuracy for 

the specified conditions when there were 5 categories and a sample size of 1000. The HULL method had 

sufficient accuracy with a sample size of 1000 for the specified conditions. In most of the specified 

conditions, MAP and revised MAP methods had accuracy rates of lower than 90%.  

In unidimensional structures where the number of items per factor was 15 and AFL was 0.70, the 

accuracy value for Factor Forest was 0. In contrast, HULL, MAP, revised MAP, and Optimal PA methods 



297 

 

 

 

demonstrated 100% accuracy. EGA methods showed sufficient accuracy under the sample size of 1000. 

However, EGA methods demonstrated inadequate performance under the specified conditions in small 

sample sizes.  

In two-dimensional structures where the number of items per factor was 15 and AFL was 0.70 (ψ 

= 0.00 and ψ = 0.30), all conditions demonstrated that Optimal PA, Revised MAP, MAP, and HULL 

methods have sufficient accuracy. Under the specified conditions, Factor Forest exhibited adequate 

performance only with a sample size of 1000, while its performance was quite low with a sample size of 

200. Put differently, under the conditions where the sample size was 1000, Factor Forest achieved at least 

99% accuracy, while under the same conditions with a sample size reduced to 200, it achieved a maximum 

of 1% accuracy. EGA (TMFG) did not achieve sufficient accuracy under any of the specified conditions, 

while EGA (Glasso) achieved sufficient accuracy in all conditions where the sample size was 1000. The 

accuracy values of the methods did not show significant variations based on whether the data were right-

skewed or left-skewed. 

3.2. Examination of RB Values 

RB values obtained from the methods can be seen in Figure 3. In addition, RB values are presented 

in Appendix 3 for researchers who wish to examine them in detail. One-way ANOVA was conducted to 

determine the simulation conditions influencing the RB values. ANOVA results indicated that the 

distribution of data [F(1, 658) = 0.01, p = 0.92] and number of categories in variables [F(1, 658) = 0.23, p 

= 0.23] did not differ in terms of RB values. In contrast, Model [F(2, 658) = 31.91, p < 0.01, η2 = 0.09], 

average factor loading [F(1, 658) = 9.08, p < 0.01, η2 = 0.01], items per factor [F(1, 658) = 84.79, p < 0.05, 

η2 = 0.11], sample size [F(1, 658) = 28.20, p < 0.01, η2 = 0.04], and method [F(1, 658) = 61.88, p < 0.01, 

η2 = 0.36] differed in terms of RB averages. The simulation condition that has the greatest effect on RB is 

factor retention method. This is followed by items per factor and sample size. Eta square values show that 

factor retention method has a significant effect on RB values, while items per factor has moderate and 

sample size has small effect. The RB averages of the methods for all conditions were 0.93 for Factor Forest, 

-0.25 for MAP, -0.23 for MAP(R), -0.01 for HULL, 0.46 for EGA (TMFG), and 0.42 for EGA (Glasso). 

For two-factor structures with an AFL of 0.70, the MAP, revised MAP, HULL, and optimal PA 

methods had RB values within appropriate ranges (|RB| < 0.10) under all simulation conditions. Under the 

same conditions, the Factor Forest method did not demonstrate adequate performance when the sample size 

was 200 and the number of items was 15, overestimating the number of factors. EGA (Glasso) indicated 

adequate performance under the specified conditions with a sample size of 1000 but did not indicate 

adequate performance in most conditions with a sample size of 200. Similarly, EGA (TMFG) demonstrated 

inadequate performance in most conditions with a sample size of 200 while also performing inadequately 

in some conditions with a sample size of 1000. 
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Considering the unidimensional structures, one could express that the Factor Forest method tends 

to overestimate the number of factors in most conditions. The Factor Forest method exhibited an adequate 

RB value in unidimensional structures, where AFL was 0.70, the number of items was 10, and the sample 

size was 1000. The MAP and revised MAP methods generally had negative RB values under conditions 

where the number of items was low. The HULL method demonstrated adequate performance under most 

conditions for unidimensional structures. However, conditions where the sample size was 200 and AFL 

was 0.40 reduced the performance of the HULL method. The optimal PA method generally exhibited 

adequate RB values in unidimensional structures under most conditions. However, it made biased 

estimations under conditions where the sample size was small, AFL was low, and the number of items was 

15. The EGA methods had adequate RB values under conditions with a sample size of 200, few items, and 

low AFL. They demonstrated adequate performance under the conditions where the sample size was 1000 

and the AFL was 0.40, and also under conditions where the AFL was 0.70 and the number of items was 15. 
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Figure 3. RB Values of the Methods 
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In two-dimensional structures where the AFL was 0.40, the HULL method had sufficient RB values 

under most conditions. The Factor Forest method did not perform adequately under any conditions when 

the sample size was 200. However, it showed better performance under conditions where the number of 

items was 10 rather than conditions where the sample size was 1000. The revised MAP method did not 

have sufficient RB values under nearly all specified conditions. MAP, on the other hand, had sufficient RB 

values under conditions where the sample size was 1000, the number of items was 15, and the interfactor 

correlation was 0. EGA (TMFG) demonstrated adequate performance under conditions where the sample 

size was 1000, the number of items was 10, and there was no correlation between dimensions. EGA (Glasso) 

had sufficient RB values under more conditions compared to EGA (TMFG). EGA (Glasso) had sufficient 

RB values under all conditions when the sample size was 1000 but did not have sufficient RB values under 

any of the conditions when the sample size was 200. 

 

4. DISCUSSION AND CONCLUSION  

This study examined the performance of factor retantion methods in skewed distributions. In other 

words, no method yields correct results under any condition. However, when examined in general, the 

Factor Forest method might be suitable for use in two-factor structures where there are a small number of 

items per factor and a high sample size. Similarly, in their study, Goretzko and Ruscio (2023) found that 

the Factor Forest method yielded more biased results in unidimensional structures compared to the 

comparison data (CD) method. Since the Factor Forest method yielded more inconsistent results than other 

methods in this research, using this method alone for determining the number of factors may increase the 

Type I error rate and reduce the test power. Therefore, the suggestion by Goretzko and Ruscio (2023) that 

this method can be used in conjunction with the CD method could be considered in future studies. 

In this study, among the examined simulation conditions, the MAP method (ncondition = 56) and the 

Optimal PA method (ncondition = 55) demonstrated adequate performance in more conditions compared to 

other factor determination methods. These methods were followed by the Revised MAP (ncondition = 53), 

HULL (ncondition= 51), EGA Glasso (ncondition= 48), Factor Forest (ncondition = 33), and EGA (TMFG; n=31) 

methods, respectively. However, these results are valid considering all simulation conditions. Researchers 

can decide on the factor retention method by evaluating simulation conditions close to their own conditions. 

In this study, the skewness coefficients of the variables were determined to be ±2.5. Although the skewness 

coefficient was above the upper and lower limits estimated in real data, MAP and optimal PA, which 

demonstrated adequate performance under more than half of the conditions, were more robust to skewed 

distributions compared to other methods. This study's results support the literature findings that Optimal 

PA yields accurate results under challenging conditions (Golino et al., 2020; Nájera et al. 2021).  
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The EGA (TMFG) and EGA (Glasso) methods cannot be considered suitable factor determination 

methods for conditions with a sample size of 200. However, they may be suitable for use in larger samples 

(≥1000) and two-factor structures. The fact that EGA (TMFG) and EGA (Glasso) yield similar results when 

used for factor determination indicates consistency between these methods, and their combined use may 

increase the chances of accurately determining the number of factors.  

 

5. RECOMMENDATIONS 

The simulation conditions examined in this study are limited. This study examined unidimensional 

structures as well as two-dimensional structures with interfactor correlations of 0.00 and 0.30. Considering 

structures with more than two factors in education and psychology, future research could focus on working 

with data exhibiting skewed distributions involving a greater number of factors and items to compare the 

performance of different methods. This study skewed the variables by having 3 and 5 categories. In future 

studies, the researchers could compare the performance of methods using continuous datasets or datasets 

with dichotomous variables. On the other hand, practitioners could be advised to (i) avoid using the Factor 

Forest method alone and ii) consider the suggestions of the MAP, Optimal PA and HULL methods. 

However, it should be noted that these generalizations are limited to datasets exhibiting skewed 

distributions and simulation conditions. 
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Appendix-1.  

The number of 
categories 

Right Skewed (Skewness Coefficient = 2.5) Left Skewed (Skewness Coefficient = -2.5) 

3 𝑌 = {

0, 𝑦𝑖
∗ ≤ 1

1,  1 < 𝑦𝑖
∗ ≤ 1.80

2, 𝑦𝑖
∗ > 1.80

 𝑌 = {

0, 𝑦𝑖
∗ ≤ −1.80

1, −1.80 < 𝑦𝑖
∗ ≤ −1

2, 𝑦𝑖
∗ > −1

 

5 𝑌 =

{
 
 

 
 
0, 𝑦𝑖

∗ ≤ 0.75

1, 0.75 < 𝑦𝑖
∗ ≤ 1.28

2, 1.28 < 𝑦𝑖
∗ ≤ 1.645

3, 1.645 < 𝑦𝑖
∗ ≤ 2.05

4, 𝑦𝑖
∗ > 2.05

 𝑌 =

{
 
 

 
 
0, 𝑦𝑖

∗ ≤ −2.25

1,  −2.25 < 𝑦𝑖
∗ ≤ −1.80

2, −1.80 < 𝑦𝑖
∗ ≤ −1.30

3, −1.30 < 𝑦𝑖
∗ ≤ −0.8

4, 𝑦𝑖
∗ > −0.8
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Appendix-2. Accuracy Values of the Methods 
C

at
eg

o
ri

es
 

S
am

p
le

 S
iz

e 

M
et

h
o
d

s 

10 Items 15 Items 
Average Factor Loadings  = 0.40 Average Factor Loadings  =  0.70 Average Factor Loadings  = 0.40 Average Factor Loadings  = 0.70 

Unidimension

al 

2 Factors 
Unidimensio

nal 

2 Factors   2 Factors 
Unidimensio

nal 

 

Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 
Unidimensio

nal 
Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 

Skewness of the Data 

LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS 

3 200 M1 38.4 43.4 33.0 31.0 17.0 19.0 75.4 76.1 93.0 89.0 85.0 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 200 

M2 100.0 100.0 5.0 1.0 2.0 0.0 8.7 8.6 
100.

0 

100.

0 

100.

0 

100.

0 
67.0 73.0 55.0 54.0 36.0 36.0 

100.

0 

100.

0 

100.

0 

100.

0 
99.0 

100.

0 

3 200 
M3 100.0 100.0 3.0 5.0 2.0 1.0 10.6 12.2 99.0 99.0 98.0 97.0 76.0 82.0 50.0 58.0 27.0 25.0 

100.
0 

100.
0 

92.0 89.0 91.0 92.0 

3 200 
M4 99.2 99.4 51.5 43.0 38.4 38.1 90.1 87.6 84.0 82.0 88.0 86.0 82.4 83.3 65.0 64.0 47.0 45.0 

100.

0 

100.

0 
98.0 92.9 96.0 94.0 

3 200 
M5 99.4 99.4 15.0 8.0 12.0 6.0 3.9 2.6 91.0 86.0 98.0 

100.

0 
0.0 0.0 2.0 3.0 2.0 2.0 58.0 59.0 32.0 35.0 31.0 35.0 

3 200 M6 99.4 99.4 18.0 17.0 23.0 17.0 5.6 5.5 46.0 44.0 56.0 55.0 1.0 2.0 7.0 9.0 13.0 14.0 57.0 60.0 29.0 29.0 36.0 43.0 
3 200 

M7 100.0 99.9 58.0 49.0 48.0 45.0 57.9 58.2 
100.

0 
99.0 

100.

0 

100.

0 
72.0 70.0 45.0 46.0 34.0 34.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

3 
1000 M1 76.6 76.8 100.0 100.0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

0.0 0.0 81.0 73.0 69.0 55.0 0.0 0.0 
100.

0 
99.0 

100.
0 

100.
0 

3 1000 
M2 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

100.

0 

100.

0 

100.

0 

100.

0 
97.0 98.0 94.0 86.0 27.0 28.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 
3 1000 

M3 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 
100.

0 

100.

0 

100.

0 

100.

0 
95.0 97.0 60.0 55.0 9.0 11.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 
3 1000 

M4 100.0 100.0 82.0 79.0 83.0 87.0 98.7 
100.

0 
87.0 84.0 91.0 83.0 97.4 98.7 93.0 93.0 87.0 99.0 

100.

0 

100.

0 
98.0 92.0 96.0 95.0 

3 1000 
M5 100.0 100.0 73.0 92.0 72.0 77.0 12.0 23.0 

100.
0 

100.
0 

100.
0 

100.
0 

0.0 0.0 40.0 46.0 35.0 31.0 
100.

0 
100.

0 
80.0 80.0 78.0 80.0 

3 1000 
M6 100.0 100.0 92.0 94.0 83.0 89.0 28.0 28.0 

100.

0 

100.

0 

100.

0 

100.

0 
23.0 28.0 97.0 98.0 92.0 97.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 
3 1000 

M7 100.0 100.0 56.0 49.0 76.0 71.0 95.0 97.0 
100.

0 

100.

0 

100.

0 

100.

0 
91.0 86.0 66.0 61.0 44.0 41.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

5 200 M1 58.0 55.0 48.0 40.0 25.0 30.0 82.0 79.0 97.0 99.0 94.0 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 
5 200 

M2 100.0 100.0 3.0 9.0 3.0 3.0 19.0 24.0 
100.

0 

100.

0 

100.

0 

100.

0 
86.0 95.0 75.0 82.0 63.0 55.0 

100.

0 

100.

0 
99.0 

100.

0 
99.0 98.0 

5 200 
M3 100.0 100.0 6.0 10.0 3.0 5.0 22.0 27.0 98.0 97.0 99.0 99.0 90.0 96.0 75.0 74.0 45.0 38.0 

100.
0 

100.
0 

90.0 89.0 90.0 94.0 

5 200 
M4 100.0 100.0 54.0 56.0 36.0 48.0 89.3 93.4 86.7 82.5 89.0 86.7 86.0 89.3 74.0 63.0 60.0 54.0 98.9 

100.

0 
94.9 96.9 96.0 96.0 

5 200 M5 94.0 99.0 19.0 28.0 20.0 24.0 0.0 0.0 98.0 97.0 97.0 97.0 0.0 0.0 4.0 5.0 4.0 2.0 75.0 89.0 54.0 54.0 39.0 40.0 

5 200 M6 94.0 99.0 26.0 22.0 16.0 33.0 3.0 5.0 91.0 96.0 90.0 96.0 2.0 2.0 18.0 22.0 15.0 21.0 78.0 92.0 84.0 91.0 85.0 87.0 

5 200 
M7 100.0 100.0 63.0 63.0 46.0 58.0 60.0 69.0 

100.
0 

100.
0 

100.
0 

100.
0 

82.0 80.0 55.0 46.0 46.0 49.0 
100.

0 
100.

0 
100.

0 
100.

0 
100.

0 
100.

0 

5 1000 
M1 85.0 82.0 100.0 100.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 
0.0 0.0 87.0 86.0 73.0 78.0 0.0 0.0 

100.

0 

100.

0 

100.

0 

100.

0 
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10 Items 15 Items 

Average Factor Loadings  = 0.40 Average Factor Loadings  =  0.70 Average Factor Loadings  = 0.40 Average Factor Loadings  = 0.70 

Unidimension

al 

2 Factors 
Unidimensio

nal 

2 Factors   2 Factors 
Unidimensio

nal 

 

Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 
Unidimensio

nal 
Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 

Skewness of the Data 
LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS 

5 1000 
M2 100.0 100.0 1.0 2.0 0.0 0.0 6.0 2.0 

100.

0 

100.

0 

100.

0 

100.

0 
99.0 

100.

0 

100.

0 
99.0 76.0 78.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 
5 1000 

M3 100.0 100.0 1.0 0.0 0.0 0.0 7.0 2.0 
100.

0 

100.

0 

100.

0 

100.

0 
98.0 

100.

0 
87.0 96.0 39.0 47.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

5 1000 
M4 100.0 100.0 82.0 76.0 82.0 90.0 

100.

0 
98.6 89.0 80.8 87.0 85.0 97.4 98.8 97.0 90.0 90.0 92.0 

100.

0 

100.

0 
99.0 97.0 95.0 94.0 

5 1000 
M5 100.0 100.0 94.0 96.0 92.0 88.0 26.0 37.0 

100.

0 

100.

0 

100.

0 

100.

0 
3.0 2.0 55.0 61.0 53.0 39.0 

100.

0 

100.

0 
89.0 89.0 76.0 87.0 

5 1000 
M6 100.0 100.0 98.0 98.0 

100.

0 
99.0 36.0 47.0 

100.

0 

100.

0 

100.

0 

100.

0 
25.0 31.0 99.0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

5 1000 
M7 100.0 100.0 66.0 67.0 78.0 90.0 

100.
0 

96.0 
100.

0 
100.

0 
100.

0 
100.

0 
93.0 84.0 67.0 75.0 52.0 55.0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

M1: Factor Forest, M2: MAP, M3: MAP(R), M4: HULL, M5: EGA(TMFG), M6: EGA(Glasso), M7: Optimal PA 
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Appendix-3. RB of the Methods 
C
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10 Items 15 Items 
Average Factor Loadings  = 0.40 Average Factor Loadings  =  0.70 Average Factor Loadings  = 0.40 Average Factor Loadings  = 0.70 

Unidimension

al 

2 Factors 
Unidimensio

nal 

2 Factors   2 Factors 
Unidimensio

nal 

 

Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 
Unidimensio

nal 
Ψ = 0.00 Ψ = 0.30 Ψ = 0.00 Ψ = 0.30 

Skewness of the Data 

LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS LS RS 

3 200 M1 1.2 1.1 0.7 0.7 1.0 0.9 0.2 
 

0.2 
0.0 0.1 0.1 0.1 3.3 3.3 1.8 1.7 1.8 1.7 3.9 3.9 0.6 0.5 0.7 0.7 

3 200 M2 0.0 0.0 -0.9 -0.9 -0.8 -0.8 -0.9 -0.9 0.0 0.0 0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 

3 200 M3 0.0 0.0 -0.7 -0.8 -0.6 -0.7 -0.9 -0.9 0.0 0.0 0.0 0.0 -0.2 -0.2 -0.3 -0.2 -0.4 -0.4 0.0 0.0 0.0 0.1 0.0 0.0 
3 200 M4 0.0 0.0 -0.0 0.0 -0.1 -0.1 0.1 0.1 -0.1 -0.1 -0.0 -0.0 0.3 0.2 0.1 0.1 -0.1 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 

3 200 M5 0.0 0.0 0.6 0.7 0.6 0.7 1.3 1.3 0.0 0.1 0.0 0.0 1.8 1.9 0.9 1.0 1.0 0.9 0.7 0.7 0.4 0.4 0.5 0.5 

3 200 M6 0.0 0.0 0.7 0.8 0.7 0.8 1.4 1.4 0.3 0.4 0.3 0.3 1.9 1.9 1.3 1.2 1.2 1.0 0.8 0.8 0.6 0.6 0.5 0.4 
3 200 M7 0.0 0.0 0.1 0.1 0.0 0.1 -0.2 -0.2 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 

3 1000 M1 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 0.2 0.2 0.3 0.4 2.7 2.7 0.0 0.0 0.0 0.0 

3 1000 M2 0.0 0.0 -1.0 -1.0 -0.8 -0.8 -1.0 -1.0 0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.1 -0.4 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 
3 1000 M3 0.0 0.0 -0.9 -0.9 -0.7 -0.7 -1.0 -1.0 0.0 0.0 0.0 0.0 -0.0 -0.0 -0.2 -0.2 -0.5 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 

3 1000 M4 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.0 -0.1 0.0 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 

3 1000 M5 0.0 0.0 0.1 0.0 0.1 0.1 1.0 0.9 0.0 0.0 0.0 0.0 1.8 1.6 0.4 0.4 0.5 0.5 0.0 0.0 0.1 0.1 0.1 0.1 
3 1000 M6 0.0 0.0 0.0 0.0 0.1 0.1 0.8 0.9 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 1000 M7 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.2 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

5 200 M1 0.8 0.9 0.4 0.5 0.8 0.7 0.2 0.2 0.0 0.0 0.0 0.0 3.3 3.1 1.7 1.6 1.8 1.8 3.9 3.9 0.5 0.5 0.6 0.5 
5 200 M2 0.0 0.0 -0.8 -0.7 -0.7 -0.6 -0.8 -0.8 0.0 0.0 0.0 0.0 -0.1 -0.0 -0.1 -0.1 -0.2 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 

5 200 M3 0.0 0.0 -0.6 -0.6 -0.6 -0.5 -0.8 -0.7 0.0 0.0 0.0 0.0 -0.1 -0.0 -0.1 -0.1 -0.3 -0.3 0.0 0.0 0.0 0.1 0.0 0.0 
5 200 M4 0.0 0.0 -0.1 0.0 -0.1 -0.0 0.1 0.1 -0.1 -0.1 -0.1 -0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 

5 200 M5 0.1 0.0 0.5 0.5 0.5 0.5 1.3 1.3 0.0 0.0 0.0 0.0 1.9 1.9 0.8 0.8 0.9 0.8 0.4 0.2 0.3 0.3 0.4 0.4 

5 200 M6 0.1 0.0 0.6 0.7 0.8 0.5 1.5 1.5 0.0 0.0 0.1 0.0 2.2 2.1 0.8 0.7 0.8 0.7 0.4 0.1 0.1 0.0 0.1 0.1 
5 200 M7 0.0 0.0 0.2 0.2 0.1 0.2 -0.2 -0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.3 0.4 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

5 1000 M1 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 0.1 0.1 0.3 0.2 3.0 3.2 0.0 0.0 0.0 0.0 

5 1000 M2 0.0 0.0 -0.9 -0.8 -0.6 -0.6 -0.9 -1.0 0.0 0.0 0.0 0.0 -0.0 0.0 0.0 -0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 
5 1000 M3 0.0 0.0 -0.7 -0.6 -0.5 -0.5 -0.9 -1.0 0.0 0.0 0.0 0.0 -0.0 0.0 -0.1 -0.0 -0.3 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 

5 1000 M4 0.0 0.0 -0.1 -0.1 -0.1 -0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 

5 1000 M5 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.7 0.0 0.0 0.0 0.0 1.6 1.7 0.3 0.2 0.3 0.4 0.0 0.0 0.1 0.1 0.1 0.1 
5 1000 M6 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 1000 M7 0.0 0.0 0.0 -0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

M1: Factor Forest, M2: MAP, M3: MAP(R), M4: HULL, M5: EGA(TMFG), M6: EGA(Glasso), M7: Optimal PA 
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GENİŞLETİLMİŞ TÜRKÇE ÖZET 

 

ÇARPIK DAĞILIMLARDA FAKTÖR SAYISI BELİRLEME YÖNTEMLERİNİN 

PERFORMANSLARININ İNCELENMESİ  

 

GİRİŞ 

Açımlayıcı faktör analizinde (AFA), faktör sayısına karar vermek en önemli adımlardan biridir 

(Cosemans & et al., 2022; Finch, 2020; Reio & Shuck, 2015; Svetina, 2011; Zhang, 2007).  AFA’da 

olması gerekenden az faktör çıkarmak değişkenleri daha küçük bir faktör uzayına sıkıştırır ve bu durum 

da bilgi kaybına, önemli faktörlerin ihmal edilmesine ve artan hata yüklerine neden olur (Cosemans vd., 

2022). Olması gerekenden fazla faktör çıkarmak ise aslında bir arada olan faktörlerin bölünmesine veya 

önemsiz faktörlere neden olabilir (Cosemans & et al., 2022; Finch, 2020; Lee & et al, 2023). Bu nedenle 

boyut sayısına karar vermede kullanılacak kriterler de önemli hale gelmektedir.  

Bir ölçme aracının boyutluluğuna karar verirken sadece bir yönteme göre karar vermek de 

problemli olabilir (Ledesma vd., 2015; Lee, 2023). Her bir yöntemin kendine ait üstün ve zayıf yanları 

bulunmaktadır. Bu nedenle hangi yöntemin verinin hangi koşulunda iyi sonuçlar verdiğinin incelenmesi 

önemli hale gelmektedir. Bu durumda da hangi yöntemlerin inceleneceği sorusu ortaya çıkabilir. 

Boyutluluk belirleme yöntemleri incelendiğinde genellikle Horn (1965) tarafından önerilen paralel 

analiz (PA) yönteminin popüler olduğu ancak bu yöntemin yanında Minimum Average Partial 

Correlation (MAP), HULL (Lorenzo-Seva vd., 2011) veya son zamanlarda daha sık kullanılmaya 

başlanan Açımlayıcı Grafikl Analizi (EGA) yöntemleri bulunmaktadır. Makine öğrenmesi 

yöntemlerinin birçok alanda uygulama bulmasıyla birlikte boyutluluk belirleme yöntemi olarak 

kullanımını öneren araştırmacılar da olmuştur. (Goretzko & Ruscio, 2023).  

Bu çalışmada boyutluluk belirleme yöntemlerinden optimal paralel analiz (Timmerman & 

Lorenzo-Seva, 2011), MAP (normal and revize), HULL, EGA(TMFG kestirimiyle), EGA(Glasso 

kestirimiyle) ve Goretzko & Ruscio (2023) tarafından önerilen karşılaştırmalı faktör ormanı 

(comparison factor forest) yöntemi karşılaştırılmıştır. Bu doğrultuda bu araştırmanın amacı faktör sayısı 

belirleme yöntemlerinin çeşitli simülasyon koşulları altında performanslarını değerlendirmektir. 

Araştırma çerçevesinde her bir koşulun temel etkisinin yanı sıra koşulların etkileşiminin etkisini 

karşılaştırılmıştır. Bu amaç doğrultusunda şu sorulara yanıt aranmıştır?  

 Simülasyon koşullarına göre faktör sayısı belirleme yöntemlerinin doğru tahmin yüzdesi 

değerleri nasıldır?  

 Simülasyon koşullarına göre faktör sayısı belirleme yöntemlerinin göreli yanlılık değerleri 

nasıldır? 
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YÖNTEM 

Boyutluluk belirleme yöntemlerinin karşılaştırıldığı bu çalışma bir Monte Carlo 

simülasyonudur. Simülasyon çalışmalarında istenilen özelliklere (dağılım, faktör yükü ya da madde 

sayısı gibi) göre üretilen veri setleri ilgilenilen yöntemlerle analiz edilerek sonuçları karşılaştırılır.  

Simülasyon Koşulları 

Çalışmada simülasyon faktörleri olarak dağılım, örneklem büyüklüğü, faktör başına düşen 

madde sayısı, kategori sayısı ve ölçme modeli belirlenmiştir. Çalışmada her bir koşul için 100 

replikasyon yapılmıştır.  

Simülasyon koşullarından verilerin dağılımı koşulunda veri seti çarpıklık katsayısı ±2.5 olacak 

şekilde çarpık hale getirilmiştir. Örneklem büyüklüğü için 200 ve 1000 koşulları belirlenmiştir. 

Kategori sayısı koşulunda 3 ve 5 kategori bulunmaktadır. İncelenen model koşulunda tek boyutlu, 2 

faktör ve faktörler arası korelasyon 0.00 ve 2 faktörlü faktörler arası korelasyonun 0.30 olduğu koşulları 

incelenmiştir. Ortalama faktör yükü 0.40 ve 0.70 olarak manipüle edilmiştir.  

Veri Analizi 

Verileri üretmek için için R paket programında (R Core Team, 2022) bulunan lavaan paketi 

(Rosseel, 2012) kullanılmıştır. Optimal paralel analiz ve HULL yöntemi için EFA.MRFA paketi 

(Navarro-Gonzalez & Lorenzo-Seva, 2021), MAP analizi için EFA.dimensions (O’Connor, 2022), 

EGA yöntemleri için EGAnet paketi (Golino & Christensen, 2020) kullanılmıştır. Karşılaştırmalı faktör 

ormanı (comparison factor forest) yöntemi için ise Goretzko & Bühner (2022) tarafından paylaşılan 

kodlar kullanılmıştır. 

TARTIŞMA, SONUÇ VE ÖNERİLER 

Çarpık dağılımlarda faktör sayısı belirleme yöntemlerinin performanslarının incelendiği bu 

çalışma sonucunda tüm koşulların doğru kestirim yüzdesi değerlerinin ortalaması dikkate alındığında 

en yüksek ortalamaya HULL yönteminin sahip olduğu görülmüştür. Aynı zamanda en düşük göreli 

yanlılık (RB) ortalaması da HULL yöntemindedir. Ancak tüm koşullarda yeterli performansı gösteren 

bir yöntemin olmadığı söylenebilir. Diğer bir deyişle her koşulda doğru sonucu verecek bir yöntem 

bulunmamaktadır. Ancak genel olarak incelendiğinde factor forest yönteminin faktör başına düşen 

madde sayısının az ve örneklem büyüklüğünün yüksek olduğu iki faktörlü yapılarda kullanılmasının 

uygun olabileceği söylenebilir. Benzer şekilde Goretzko & Ruscio (2023) yaptığı çalışmada factor 

forest yöntemi karşılaştırmalı veri (comparison data [CD]) yöntemine göre tek boyutlu yapılarda daha 

yanlı sonuçlar göstermiştir. Factor forest yönteminin bu araştırmada diğer yöntemlerle daha tutarsız 

sonuçlar vermesi nedeniyle tek başına faktör sayısı belirleme yöntemi olarak kullanılmasının 1. tip hata 

oranını arttıracağı ve testin gücünü azaltacağı düşünülmektedir. Bu nedenle Goretzko & Ruscio (2023) 

tarafından bu yöntemin CD yöntemiyle birlikte kullanılabileceği önerisi bundan sonraki çalışmalarda 

dikkate alınabilir.  

Bu çalışmada diğer faktör sayısı belirleme yöntemlerine göre, MAP (n=56) ve optimal PA 

(n=55) yöntemleri incelenen simülasyon koşulları içinde diğer yöntemlere göre daha çok koşulda yeterli 
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performansı göstermiştir. Bu yöntemleri ise; Revize MAP (n=53), HULL (n=51), EGA(Glasso) (n=48), 

factor forest (n=33) ve EGA(TMFG) (n=31) yöntemleri izlemektedir.  Bu çalışmada değişkenlerin 

çarpıklık katsayısı ±2.5 olacak şekilde belirlenmiştir. Çarpıklık katsayısının gerçek verilerde tahmin 

edilen alt ve üst sınırın da üzerinde olmasına rağmen koşulların yarısından fazlasında yeterli 

performansı gösteren MAP ve optimal PA’nın çarpık dağılımlara diğer yöntemler göre daha dayanıklı 

olduğu söylenebilir. Bu çalışmanın sonuçları, Optimal PA’nın zorlu koşullar altında doğru sonuçlar 

verdiği alanyazındaki bulguları (Golino vd., 2020; Nájera vd. 2021) desteklemektedir. EGA(TMFG) ve 

EGA(Glasso) yöntemleri örneklem büyüklüğünün 200 olduğu koşullar için uygun bir faktör belirleme 

yöntemi olduğu söylenemez ancak büyük örneklemler (n≥1000) ve iki faktörlü yapılarda 

kullanılabilecek bir yöntemdir. EGA(TMFG) ve EGA(Glasso) faktör sayısı belirleme yöntemleri 

kullanılırken benzer sonuçlar vermesi yöntemler arasındaki uyum anlamına gelir ve birlikte kullanımı 

faktör sayısını doğru belirleme şansını arttırabilir. Gelecekteki çalışmalarda sürekli veri setleri ya da iki 

kategorili verilerle yöntemlerin performanslarının karşılaştırılması araştırmacılara önerilebilir. Diğer 

taraftan uygulayıcılara; i) tek başına factor forest yöntemini kullanmamaları, ii) optimal PA ve HULL 

yöntemlerinin önerilerini daha fazla önem vermeleri önerilebilir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


