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Abstract

The aim of the present article is to analyze x-Ricci—Yamabe solitons on almost coK&hler
manifolds and to characterize them when the potential vector field is pointwise collinear
with the Reeb vector field. It is proved that a compact almost coKéhler manifold admitting
a *-Ricci—Yamabe soliton under certain restriction on x-scalar curvature is coKéahler and
*-Ricci flat; in addition, that the soliton is steady. (k,p)-almost coKéhler manifolds
admitting such solitons are also considered and finally, the obtained results are completed
by non-trivial examples.
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1. Introduction

Geometric flows, like Ricci flow and Yamabe flow, enabled mathematical physicists to
explain certain relativistic and cosmological phenomenon [18] in a sophisticated way; in ad-
dition, to analyze the mathematical context of geometric quantization ([1,2]). It is known
that techniques in Ricci flow are deeply associated with general relativity, particularly for
static metric [40].

Investigations on Hamilton’s Ricci flow ([21,22]) acquired acceleration after its success-
ful application by Perelman to solve the famous Poincaré conjecture which was unsolved
for a long time. Since then, a good number of articles have turned up in the arena of ex-
isting literature with variations of the original concept in different kinds of manifolds from
different perspectives. Though the seed of Yamabe flow was implied within the ground
breaking work of Hamilton, later Yamabe individually created its distinct foundation. A
self similar solution of the Ricci flow is a Ricci soliton and a similar definition applies for a
Yamabe soliton. It is to be mentioned that solitons play a fundamental role in formation
of singularities of the flow.
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In [37], Wang studied *-Ricci solitons on contact 3-manifolds using x-Ricci curvature.
A combination of Ricci solitons and Yamabe solitons, namely, Ricci—Yamabe solitons on
(K, p)-almost coKéhler manifolds have been studied by Mandal in the paper [24]. For
further details about Ricci-Yamabe solitons we refer to [19]. The theory of Ricci solitons
has been enriched by a good number of geometers. Through them are ([3,4,8-11,14-17,33—
38]). Relativistic perfect fluid spacetimes with Ricci-Yamabe solitons have been studied
by several authors. After going through the above works, we feel the necessity regarding
the analysis of the combination of x-Ricci soliton and Yamabe soliton as x-Ricci—Yamabe
soliton. Its study is the main goal of the present article.

In a Riemannian manifold (M", g)(n > 3) of dimension n, the equations of the flows
named after Ricci and Yamabe are depicted by

Jg
5, (1) =—25() (1.1)

and 5
g
21) = —r(t)g(), (12)
obeying certain initial conditions. Here S represents the Ricci curvature tensor and r is
the scalar curvature corresponding to g.

A soliton of a geometric flow is a fixed solution, up to diffeomorphisms and scaling.
Thus, for a geometric flow, the soliton is obviously the Riemannian metric which provides
maximum symmetry of the space, up to diffeomorphisms and scaling.

A smooth manifold (M", g) with Riemannian metric g is named a Ricci soliton if it
agrees with the equation

1
§Lv9 + 8 =19y,

where V' is a vector field called the potential vector field, £y stands for the Lie derivative
operator in the direction of V and + is a real scalar. Ricci solitons are generalizations
of Einstein metrics and specific solutions of the flow (1.1). For shrinking, expanding or
steady cases of Ricci solitons, « is positive, negative or zero, respectively.

A smooth manifold (M",g)(n > 3) with Riemannian metric g is named a Yamabe
soliton if it agrees with the equation

1
ing =(y—1)g.

Like a Ricci soliton, a Yamabe soliton is a specific solution of the flow (1.2). The soliton
is shrinking, expanding or steady according as « is positive, negative or zero, respectively.
For further details, see ([25,27,29,30,33,36-39]).

A Ricci—Yamabe flow of type (I, m) is a linear combination of the Ricci flow and Yamabe
flow described by

%(t) = —21S(t) + mr(t)g(t),

agreeing with certain initial conditions, where [ and m are real scalars.

The self-similar solution of the Ricci-Yamabe flow of type (I,m) is known as a Ricci—
Yamabe soliton of type (I, m) if it varies as a group of diffeomorphisms with one parameter
and changes by scale factor. A Ricci-Yamabe soliton of type (I, m) is characterized by

Lyg+2lS = (2v —mr)g. (1.3)

The soliton is shrinking, expanding or steady according as -y is positive, negative or zero,
respectively. A Ricci—Yamabe soliton of type (I, m) becomes a Ricci soliton if [ = 1 and
m = 0 and a Yamabe soliton if l =0 and m = 1.

In [31], Tachibana initiated the study of *-Ricci curvatures. x-Ricci curvatures have been
analyzed from different perspectives in the articles ([12,20,23,26,28]). A *-Ricci curvature
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is a generalization of the usual Ricci curvature. Hence, it carries more information and it
demands a separate study.

If the Ricci curvature and the scalar curvature are substituted by *-Ricci curvatures
and *-scalar curvatures in (1.3), respectively, then the soliton is called *-Ricci-Yamabe
soliton of type (I,m). Thus, a x-Ricci-Yamabe soliton is represented by

Lyg+ 205" = (2y —mr”)g, (1.4)

where S* indicates the x-Ricci curvature defined by
1
S*(Vlv ‘/2) — Etr{‘/}) — R(‘/laT‘/Q)T‘/?)}a

for any vector fields V7, Vo and V3 on the manifold, R being the Riemann curvature tensor
field, r* the x-scalar curvature and 7 a (1,1)-tensor field on the manifold. When the
potential vector field V' is equal to the gradient of a certain smooth function ¢ (which is
known as potential function) on M, a x-Ricci—Yamabe soliton is called a gradient x-Ricci—
Yamabe soliton and it is described by

VV +1S* = (’y - %mr*)g, (1.5)
where VV stands for the Hessian of . In [33], Wang studied Ricci solitons on compact
almost coKéhler manifolds and proved that such a manifold is coKéhler and Ricci flat
admitting steady soliton. One of our purposes is to extend the result for x-Ricci—Yamabe
solitons on almost coKéhler manifolds.

In the present article, after the formal literature review, we assemble, in Section 2,
the known results regarding almost coKéahler manifolds. Section 3 contains some results
associated with x-Ricci—-Yamabe solitons on almost coKéhler manifolds. In this section
we also study such compact manifolds and extend a result of Wang [33]. We deduce
some characteristics of x-Ricci-Yamabe solitons on (k, p)-almost coKéhler manifolds in
Section 4, whereas Section 5 is allotted to analyze gradient x-Ricci—Yamabe solitons. The
concluding section strengthens the obtained results by providing illustrative examples that
will establish the transparency of the deduced results.

2. Preliminaries

Let M be a differentiable manifold of dimension (2n + 1) equipped with an almost
contact metric structure (7,6, w, g), where 7 is a tensor field of type (1,1), € is a vector
field, w is a 1-form and ¢ is a Riemannian metric on M such that ([13,15]):

(V1) = -Vi4+w)e, w®) =1, (2.1)

for all V; € x(M). As a consequence, we get the following;:

T = 07 g(V17 9) = w(V1)7 w(Tvl) = 07

g(mV1,7Va) = g(V1, V2) — w(V1)w(V2),

g(tV1, Vo) = —g(V1,7Va), g(tV1,V1) =0,
for all V1, Vo € x(M). A smooth manifold M of dimension (2n+ 1) with an almost contact
metric structure is known as an almost contact metric manifold.

Consider the 2-form 7 satisfying
7(V1, Vo) = g(V1,7V3),

for all Vi, Vo € x(M). If dw = 7, then an almost contact metric manifold is known as
a contact metric manifold. An almost contact metric manifold is an almost coKéahler
manifold if both w and 7 are closed, that is, d7 = 0 and dw = 0. According to Blair [6],
an (almost) coKéhler manifold and an (almost) cosymplectic manifold coincide.

Let M be an almost coKéhler manifold of dimension (2n+1). We consider the operators
h, ' and L defined by h = 1Lo7, B = hr and L = R(-,0)6, where R is the curvature
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tensor and £ is the Lie differentiation operator. These operators agree with the following
(113, 15)):

ho =0, tr(h)=0, tr(h/)=0, hr=—th, Rh*=h? divf=0,
VO =1, Ver=0, (2.2)
TLT — L = 2h*.
In an almost coKéahler manifold, the 1-form w is closed, so
(Vyw)Va = (Vi,w)Vi,
for all Vq, Vo € x(M).

The almost coKéahler structure is integrable if and only if
(Vv m)Va = g(hV1, V2)0 — w(V2)h VA, (2.3)

for all V1, Vo € x(M).
The idea of (k, u)-nullity distribution on contact metric manifolds was coined by Blair
et al. [7]. The contact metric manifold M whose curvature follows the relation

R(V1,V2)0 = K[w(V2)V1 — w(V1)Vo] 4 plw(V2)AVi — w(V1)hVe), (2.4)

for all V1, Vo € x(M) and for some real scalars k, u, is known as a (k, )-contact metric
manifold and it is said that 6 belongs to the (k, p)-nullity distribution. The manifold is
called a generalized (k, 1)-contact metric manifold if , p are differentiable functions of
any order and M is said to be a (k, p)-almost coKéhler manifold whenever k, p are real
numbers.

A (k, p)-almost coKahler manifold of dimension (2n + 1) has the following curvature
restrictions ([13,15]):

R*V) = KkT?V7, (2.5)
S(V1,0) = 2nkw(V7),
Q0 = 2nk0,

for all V; € x(M), where @ is the Ricci operator defined by g(QVi, Va) = S(Vi, Va).

Definition 2.1 ([5]). An almost coK&hler manifold is known as an w-Einstein manifold
if the Ricci curvature agrees with the following

SV, V2) = ag(V1, Va) + bw(Vi)w(Va), (2.6)
for all Vq, Vo € x(M), where a and b are smooth functions on the manifold.
Tracing V4 and V5 in the above equation, we infer
r=2n+1)a+b, (2.7)
where 7 is the scalar curvature.

Lemma 2.2 ([10]). In a (k, p)-almost coKdhler manifold of dimension (2n+1) with k < 0,
the following relations hold

QVi =phVi 4 2nkw(V1)0, (2.8)
(VV1 h)VQ — (szh)Vl :K[W(‘/Q)T‘/l — (/J(Vl)TVQ -+ 2g(7’vl, VQ)@]
+ulw(Va)ThVy — w(Vi)ThVa],
(Vv hr)Va — (Vihr)Vi =wlw(Va)Vi — w(Vi)Va + plw(Va)hVi — w(VD)RVA],  (2.10)
for all Vq, Vo € x(M).

(2.9)
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3. x-Ricci—Yamabe solitons on almost coKahler manifolds

In any 3-dimensional Riemannian manifold, the Weyl conformal curvature tensor van-
ishes identically. So, the curvature tensor of a 3-dimensional w-Einstein almost coK&hler

manifold is given by
R(V1,V2)Vs =5(Va, V3)Vi — S(V1, Vs)Va + g(V2, V3)QV1

r
—g(Vl, ‘/3)6321/2 - 5[9(‘/27 Vé)vl - g(‘/b V3)V2]7
for all V1, Vo, V3 € x(M). Using (2.6) and (2.7) in (3.1), we infer

a—>b

+blg(Va, Va)w(V1)0 — g(V1, V3)w(V2)0
Fw(V2)w(V3)Vi — w(V1)w(V3)Va].
Taking Vi = 6 in the above equation, we get

b
R(6, Vo)V = 2F

[9(Va, V3)0 — w(V3)Va].
Now we state and prove the following two lemmas.

Lemma 3.1. For a 3-dimensional w-Finstein almost coKdhler manifold, we have
a+b
2

(Vizh)Va = (Vi h) Vs =
for all Vo, V3 € x(M).
Proof. We have

[w(Vo)TVs — w(V3)TVa] + w(V3)ThVe — w(Va)ThVs,

(VVSTh)‘/Q = g(hVa, hV3)0 + T((Vvsh)VQ),
where we applied (2.3). Thus we can write the following
(VisTh)Va = (Vipmh)Vs = 7((Vizh)Va — (Vigh)Va).
Due to Blair et al. [7], we infer
g(R(0,V1)V2, V) = g((Vv,7)Va, V3) + g((VyTh)Va — (Vi Th) V3, V1),
Inserting (2.3), (3.2) and (3.4) in (3.5), we obtain

(T h)Va — (Viph)V) = 20

[w(Va)Va = w(V2)Va] — w(V3)hVa + w(V2)hVs.

Applying 7 to the above equation, we infer
— [(Vih)Va = (Vip h)Va] + w((Vigh)Va = (Viy h)V3)0
a+b

= [w(V3)TVa — w(Va)TV3] — w(V3)ThVe + w(Va)ThVs.

By a straightforward computation, we get
w((Vyzh)Va = (Vi,h)V3) = 0.
Using (3.7) in (3.6), we obtain the desired result.

(3.1)

(3.3)

(3.6)

(3.7)
0

In contrast with the usual Ricci tensor, the x-Ricci tensor is non-symmetric, in general.
But, in the following, we show that, in particular, for a 3-dimensional almost coKé&hler

manifold, the x-Ricci tensor is symmetric.

Lemma 3.2. The x-Ricci curvature and x-scalar curvature of a 3-dimensional w-Einstein

almost coKdahler manifold are, respectively, given by
a—>b

2
r*=a—b.

S* =

(3.8)
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Proof. By virtue of (2.3), we infer
Vv, Vs = g(hVa, V3)0 — w(Vs)hV, + 7V, Vi,
which implies
Vv, Vv, V3 =V, g(hVa, V3)0 + g(hVa, V3)Vy, 0
—Vy,w(V3)hVa — w(V3) Vi hVa + Vi, 7V, V.
Replacing V2 by V; and V3 by Vy, V3 in (3.9), we obtain
Vv TV, Vs = g(hVi, Vi, V3)0 — w(V, Va)hVi + 7V, Vi, Vs.
Using (2.2) and (3.11) in (3.10), we infer
Vv, Vv, V3 =V, g(hVa, V3)0 + g(hVa, V3)hrV4
—Vy,w(V3)hVa — w(V3)Vy hVa + g(hV1, Vi, V)0
—w(Vy, V3)hVi + 7V, Vi, Va.
Interchanging Vi and V5 in the above equation, we get
Vv, Vv, TV =V, g(hVi, V3)0 + g(hVi, V3)hrVa
—Vy,w(V3)hVi — w(V3) Vi, hVi + g(hVa, Vv, V)0
—w(Vy, V3)hVa + 7V, Vy, Va.
Also, from (3.9), we have
Viviva Vs = g(h[V1, Val, V3)0 — w(V3)h[Vi, Va] + TV v vy V.
From (3.12) and (3.13), we obtain
R(V1, Va)mVs =[g((Vvi h)Va, Vs) — g((Vieh)Vi, V3)]0 + g(hVa, Va)hVi
—g(hV1, V3)htVa — (Vyw)(Va)hVa + (Vipw)(Va) V2
—w(V3)[(Vy, h)Va — (Vy,h)Vi] + TR(V7, Vo) V.
Using (3.3) in (3.14), we get

RV, Vo)V =2 g Vh, Vi) (15) — glrVa, Va)eo(Vi))0

+9(ThVa, V3)w(V1)8 — g(ThVi, V3)w(V2)0 + g(hVa, Va)hTVy
—g(hV1, V3)htVa — g(htVi, V3)hVa + g(htVa, V3)hVy

(V) [252

—w(Va)rhVi| + T R(VA, Va) V.

[W(VQ)Tvl — (.U(Vl)TVQ] + w(Vl)ThVQ

Taking the inner product with 7W in the above equation, we have
g(R(V1, Va)TV3, 7W) = — g(hV2, V3)g(hVi, W) + g(hVi, V3)g(hVa, W)

(V)5

+g(hVa, W)w(Vi) — g(hVi, W) (V2) |
+g(R(V1, Va) Vs, W) — w(R(V1, Va) Vi) (WD),

[g(V1, W)w(V2) — g(Va, W)w(V1)]

Contracting the above equation, we obtain
a—2b
2

S*(Va, V3) = [9(Va, V3) — w(V2)w(V3)].

879

(3.12)

(3.13)

(3.14)

(3.15)
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Again, contracting the previous relation, we infer
r*=a—b. O
Theorem 3.3. If a 3-dimensional w-FEinstein almost coKdhler manifold is a x-Ricci—

Yamabe soliton with the potential vector field of gradient type, then the potential vector
field is pointwise collinear with the Reeb vector field.

Proof. Let V = Dy, where D denotes the gradient operator. We denote the star Ricci
operator by Q* given by g(Q*Vi,V32) = S*(V1,V3). Then, from equation (1.5), we have

1
Vy, D) = (’y - 5mr*)v1 —1Q*W,. (3.16)
The above equation yields
R(V1,V2) Dy = (Vi Q")Vi = (Vi Q) Va. (3.17)
In view of Lemma 3.2, it follows
a—1b
(Vle*)VQ = — [g(hTVl, V2)9 + w(VQ)thl]. (3.18)

Applying (3.18) in (3.17), we obtain

a—>

R(V1, Vo) D) = == [w(Va) Vi — w(Va)hrVal.

Putting V1 = 0 in the above equation, we infer

a—2>b

R(0,V2) Dy = — 5 htVa.

Taking the inner product in both sides with V7, we have

9RO, Vo) Dy, Vi) = = g(Vi, Vi), (319
which yields

9RO, Va)Vi, D) = Ly (i, hrv)
In view of (3.2), the above equation gives

(a+b)[g(0, Dp)Va — g(Va, D)0] = (a — b)hTV5. (3.20)
Taking the inner product in both sides with 6, we have
Dy = w(Dy)b,

provided that a +b # 0. Thus, V is pointwise collinear with . If a + b = 0, (3.20) implies
a—b=0,s0 a=>b= 0, which is discarded because in that case, the Ricci tensor is
identically zero. O

In the following theorem, we will see what happens for the converse case.

Theorem 3.4. If a 3-dimensional w-FEinstein almost coKdhler manifold admits a x-Ricci—
Yamabe soliton with the potential vector field V' pointwise collinear with the Reeb vector
field, V- = f0 with f nowhere zero along the integral curves of 0, then the potential vector
field is pointwise collinear with the gradient of f.

Proof. In view of (2.2), we get
ViV = Vif)8+ f(htVh). (3.21)
From (1.4), we have
(Lvg)(V1,V2) = g(Vy V1, Vo) + (Vi f)0 + f(h7V1), V2)
—g(V1, Vv Va) + g(Vi, (Vaf)8 + f(h7V2)) + 215%(V1, V2) (3.22)
= (2 —mr")g(V1, V).
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Putting Vo = 7V7, we have from above
g(Df, V1) =0.
Replacing V7 by 7V1, in the above equation, we obtain

Df = (6£)6.
If f is nowhere zero along the integral curves of 6, then

vt pr o

(0f)

So far, in this section, we have considered 3-dimensional almost coK&hler manifolds
with *-Ricci—Yamabe solitons. In the following we shall establish a result for (2n + 1)-
dimensional compact manifolds. Let us now prove the following theorem which is a kind
of an extension of a result given by Wang [33].

Theorem 3.5. If a compact and connected almost coKdhler manifold is a x-Ricci—Yamabe
soliton with the potential vector field pointwise collinear with the Reeb vector field 0, then
the manifold is coKdhler and x-Ricci flat; in addition, the corresponding soliton is steady,
provided that r* is constant along the integral curves of 6.

Proof. If the potential vector field V' is pointwise collinear with the Reeb vector field 6,
V = f0, for a smooth function f defined on the manifold, we have

ViV = (Vif) + f(h'V1).
Using the above condition in (1.4), we infer

mr*

2

Vi(f)w(Va) + Va(F)w(Vi) + 2fg(W'VA, Va) + 208*(Vi, Vo) = 2( = == )9(Vi, Va). (3.23)

The above equation gives
Vi(f)0 +w(Vi)Df +2fh'Vi 4 21Q* V) = (27 — mr*) V1. (3.24)
Contracting V; and V4 in (3.23) with respect to a 7-basis, we obtain

0f = (2n+1)(v - mTT*) —Ir* (3.25)

By covariant differentiation of (3.24) with respect to V5 and then contracting V5 in the
resultant equation, we infer

O(Vi(f)) + Df(w(V1)) + w(VD)AS + 2(W V1) (f) + 2fdiv(h' V1)

2n+1 (326)
+ 20(div@™*) (V1) + 21 Z 9(Q*Ve, Vi, ei) = (2y — mr*)divig,
i=1
where A is the Laplacian operator. Replacing V; by 6 and using the facts that divQ* =
%dr* and dive = 0, we get that
0(0(f)) + Af + 10r* + 2ltr(Q*R') = 0.

By virtue of (3.25), the above equation gives

2 1
Af + 20tr(Q*h') = %a(mr*). (3.27)
In (3.24), replacing V; by hV; and then contracting V; in the resulting equation, we infer
Itr(Q*h') + ftr(h?) = 0. (3.28)
Combining (3.27) and (3.28), we get
2n+1

Af?=2|Df|* +2f( 0(mr*) + 2ftx(h?)).

2
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Assuming 0(r*) = 0, we have
Af? = 2|DfI2 + 4f24 ().

Considering the manifold compact and using the divergence theorem, we obtain
| D51+ 25%(n))dne = o,
M

As a consequence of the above equation, we get f is a non-zero constant and h = 0. Hence
by following the same arguments of the paper [33], it can be easily concluded that the
manifold is coK&hler and x-Ricci flat. The corresponding soliton is steady. This completes
the proof. O

4. x-Ricci—Yamabe solitons on (k, )-almost coKédhler manifolds

Let us first prove the following.

Lemma 4.1. The x-Ricci curvature and *-scalar curvature of a (2n + 1)-dimensional
(K, p)-almost coKdhler manifold are, respectively, given by

S*=—k(g —wRw), (4.1)

*

r* = —2nk. (4.2)
Proof. Applying (2.9) in (3.14), we obtain
R(V1, Vo) 7V3 =k[g(7V1, Va)w(Va) — g(7V2, V3)w (V1)
+2g(7V1, Va)w(V3)10 + plg(ThVi, Vs)w(V2)
—g(ThVa, V3)w(V1)]0 + g(hVa, V3)hrVi — g(hVA4, V3)hTVa
—g(htV1, V3)hVa + g(hTVa, V)RV
—w(V3)[k(w(V2)TVi — w(V1)TVa + 2g(7V4, V2)0)
+u(w(Va)ThVi — w(Vi)ThVa)] + TR(Vi, Vo) V.
Therefore,
9(R(V1, Vo)TV3, W) = — g(hV5, V3)g(hVi, W) + g(hVA, V3)g(hV2, W)
—g(h7V1, V3)g(htVa, W) + g(h7Va, V3)g(hTVi, W)
—k[g(Vi, W)w(Va)w(V3) — g(Va, W)w(V1)w(V3)]
—plg(hVi, W)w(V2)w(V5) — g(hVa, W)w(Vi)w(Vs)]
+9(R(V1,V2)V3, W) — w(R(V1, V2) V3)w(W).

Contracting V1 and W in the above equation, we obtain

5*(Va, V3) =8(V2, V3) — klg(V2, V3) — w(Va)w(V3)]

o (V)a(Vi) — g (e, i), )
Using (2.8) in (4.3), we have
S*(Va, V3) = —k[g(V2, V3) — w(V2)w(V3)].
Tracing V5 and V3 in the above equation, we obtain
r* = —2nk. O

Theorem 4.2. If a (k,p)-almost coKéihler manifold with k < 0 s a x-Ricci—-Yamabe
soliton, then v = —nmk.
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Proof. From (1.4), (4.1) and (4.2), we get
(Lvg)(Va,V3) = (27 + 2lk + 2nmk)g(Va, V3) — 2lkw(Va)w(V3). (4.4)
By covariant derivative, we infer
(Vvi (Lvg))(Va, Va) = =20k[(Vv;w) (Va)w(V3) + w(V2) (Vs w) (Vs)]. (4.5)
From (2.2), we have
(Vyiw)(Va) = g(h1Vi, Va). (4.6)
From (4.5) and (4.6), we obtain
(Vi (Lvg))(Va, Va) = =2lk[g(h7V1, Va)w (V) + g(hTV1, Vs)w(V2)]. (4.7)

Using formula for commutativity of Lie derivative and covariant derivative (for details see
Yano [41], p.23), we have

(Lv(Vvig) = Vii(Lvg) = Vv g)(Ve, Vs)
= —9((LvV)(V1,V2), V3) — g((Lv V) (V1, V3), Va).
Because of the parallelism of the metric tensor g, the above equation reduces to
(Vi (Lvg))(Va, V3) = g((Lv V)(V1, V2), V3) + g((LvV)(V1, V3), V2).
From the above equation, we have
29((LvV)(V1,V2), V3) =(Vv; (Lvg)) (Va, V3) + (Vv, (Lvg)) (Va, V1) (4.8)
— (Vs (Lvg)) (W1, V2).
Using (4.7) in (4.8), we obtain
9Ly V) (Vi, V&), Vi) = —2lrg(hrVi, Va)w(VA),

from which we get
(va)(vla VYQ) = _QZKg(h‘Tvly ‘/2)9

Taking the covariant derivative of the above equation with respect to the vector field V;
and using (2.2), we infer

(Vi (Ly'V))(Va, V3) = =2lkg((Vi, h)Vo, V3)0 — 2lkg(hTVa, Vs)hrVi.  (4.9)
According to Yano ([41, p. 23]), we have
(LvR)(V1,V2) V3 = (V1 (LvV))(Va, V3) = (Vi, (Lv V) (V1 V3), (4.10)

for any vector fields Vi, Vs, Vs.
Substituting (4.9) in (4.10), we obtain

(Cv R)(VA, Va) Vs = — 2klg((Vya hr)Va — (Vg hr) Vi, V)0
+g(htVo, V3)htVi — g(hTVi, V3)h1V5).
Using (2.10) in the above equation, we get
(LvR)(V1, V2) Vs = — 21k [k(g(V1, Va)w(V2)0 — g(V2, Va)w(V1)0)

+ulg(hV1, Va)w(V2)0 — g(hVa, Vs)w(V1)6)]

+g(htVa, V3)h7Vi — g(htVi, Va)hTV5).
Contracting the above equation over Vj, we obtain

(LvS)(Va, V3) = 2lkpug(hVa, V). (4.11)

From (2.8), we infer

S(Va, V3) = ug(hVa, V3) + 2nkw(Va)w(Vs). (4.12)
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Taking Lie derivative of (4.12) with respect to V' and using (4.4), we obtain
(LvS)(Va, V3) =p[(2y + 2lk + 2nmk)g(hV2, V)
+9((Lvh)Va, V3)] + 2nk[(Lyw)(Va)w(Vs) (4.13)
+w(V2)(Lyw)(Va)].

Now,

(Lyw)(Va) =(Lvg)(Va,0) + g(Va, Ly0) 414
=(2v + 2nmr)w(Va) + g(Va, Ly 6), o

where we have used (4.4).
Using (4.14) in (4.13), we have

(LyS)(Va, V3) =p[(27 + 2lk + 2nmk)g(hVa, V3)
Fo((Lvh)Va, Va)] + 2nkfA(y + nmi)w(Va)w(Va)  (4.15)
+9(Va, Ly O)w(Vs) + g(V3, Ly O)w(V2)].
Comparing (4.11) and (4.15), we obtain
pl(2y + 2k + 2nmk)g(hVa, V3)
+ g((Lyh)Va, V3)] + 2nk[4(y + nmk)w(Va)w(V3)
T (Vs Ly 0)w(Va) + gV, £y 0)(Va)] = 2rpg(hVa, Vi)

Let {e1,...,€2,+1} denote an orthonormal 7-basis, with es, 1 = 6, of the tangent space
at each point of the manifold, where he; = /—ke;. Contracting Vo and V3 with respect to
the above basis, we get

w(Lyh) = =2(y + nmk). (4.16)
Again, putting Vo = V3 =6 in (4.4), we obtain
w(Ly) = —(y +nmk). (4.17)

Comparing (4.16) and (4.17), we get
v = —nmk. (|
As k < 0, we state

Corollary 4.3. Under the hypotheses of Theorem 4.2, the soliton is expanding or steady
or shrinking according as the value of m is negative or zero or positive.

Remark 4.4. If m = 0, we see from Theorem 4.2 that v = 0 and the soliton is /-almost
*-Ricci soliton. In that case, the soliton is steady. If [ = 1 and m = 0, the soliton is a
*-Ricci soliton. Such solitons are also steady in (k, pt)-almost coKdhler manifolds.

Theorem 4.5. If a (k,p)-almost coKéahler manifold with k < 0 s a x-Ricci—-Yamabe
soliton and the potential vector field V' is pointwise collinear with the Reeb vector field 0,
then V' is a constant multiple of 6.

Proof. If the potential vector field V' is pointwise collinear with 6, that is, V' = p#, where
p is a smooth function, from (1.4), we get

pg(Vvi0,V2) + (Vip)w(Va) + pg(Vi,0, V1)

+ (Vep)o(VR) + 218" (Vi, Vo) = (2 — mr)g(Vi, Vo). (19
Using (2.2), (4.1) and (4.2) in (4.18), we obtain
2pg9(htV1, Vo) + (Vip)w(Va) + (Vap)w(Vi) (4.19)

= (27 4 2nmk + 2lk)g(V1, Va) — 2lkw(V1)w(Va).
Putting V5 = 6 in (4.19), we get
(Vip) + (Bp)w(Vi) = (27 + 2nmi)o(V2). (4.20)
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Again, putting V3 = 6 in (4.20), we obtain

(0p) = v+ nmk. (4.21)
From (4.20) and (4.21), we get
(Vip) = (v + nmr)w(V1). (4.22)
Using (4.22) in (4.19), we obtain
pg(hTVi, Vo) = (v + Ik + nmk)[g(V1, Va2) — w(V1)w(Va)]. (4.23)

Replacing V; by 7V} in (4.23), we get
pg(hVi,Va) = —(v + Ik + nmk)g(tVi, V2).

Again, replacing V; by hVy, we infer
pK

9(hTViVa) = — P S a1 V) — w(V)(12)] (1.2)
Using (4.24) in (4.23), we obtain
2/{
ey O ][V, V) = w(Va)e(V2)] =0,

which is true for any vector fields Vi, Vo. Thus, from above, we get

s (v+1k+nmr)?

- 9

K
from which we conclude that p is a constant. ([l

Theorem 4.6. A (k, u)-almost coKahler manifold can not be a x-Ricci—Yamabe soliton if
the potential vector field is the Reeb vector field 0.

Proof. 1f the potential vector field V' is the Reeb vector field 6, then from (4.19), we get
g(htV1, V) = (v + nmk + 15)[g(V1, V2) — w(Vi)w(V2)],

which implies

htVi = (v + Ik + nmr) Vi — w(V1)6. (4.25)
Operating both sides of (4.25) by 7 and using (2.1), we obtain
hVi = (v + Ik + nmgk)TV]. (4.26)
Again, operating both sides of (4.26) by h and using (2.5), we get
kT2Va = (v + Ik + nmk)h7V]. (4.27)

Tracing the above equation and using tr(h7) = 0, we infer x = 0, which is a contradiction.
Thus, a (2n+1)-dimensional (k, p1)-almost coK&hler manifold can not be a *-Ricci-Yamabe
soliton if the potential vector is the Reeb vector field 6. O

Due to Blair ([5, p. 72]) and Tanno [32], we give the following definition

Definition 4.7. A vector field V on an almost contact metric manifold is called an
infinitesimal contact transformation if it satisfies

LVW = fwa

for f a smooth function on M. If f = 0, then the vector field V is called a strict infinitesimal
contact transformation.

Theorem 4.8. If a (k,p)-almost coKéihler manifold with k < 0 is a x-Ricci—-Yamabe
soliton, then the potential vector field is an infinitesimal contact transformation.
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Proof. Applying V3 =0 in (4.4), we infer
(Lyg)(Va,0) =2(y + nmr)w(Va). (4.28)
Again, replacing V5 by 6
9(Lv,0) = —(y + nmx),
which implies

LyO = —(v+ nmk)b. (4.29)
Taking Lie derivative of w(V2) = g(Va, #) with respect to V', we have
(Lyw)(V2) = (Lvg)(Va,0) + g(Va, Lv ). (4.30)

Using (4.28) and (4.29) in (4.30), we obtain
(Lyw)(Va) = (v + nmr)w(V2),
it follows that V is an infinitesimal contact transformation. O

As a consequence of the above theorem, we can state the following

Corollary 4.9. If the potential vector field of a x-Ricci—Yamabe soliton in a (k, p)-almost
coKahler manifold is a strict infinitesimal contact transformation, then v = —nmk.

5. Gradient x-Ricci—Yamabe solitons on (k, ;1)-almost coK&dhler manifolds

In this section we study gradient *-Ricci—Yamabe solitons on (k, u)-almost coKahler
manifold.

Theorem 5.1. If a (k,u)-almost coKahler manifold with k < 0 is a gradient *-Ricci—

Yamabe soliton, then either u?> = —k or the soliton is trivial.
Proof. With the help of (1.5), we have
1
Vi D = (v = gmr* )i - 1Q*V, (5.1)

where 9 is a smooth function on the manifold.
Using (4.1) and (4.2) in (5.1), we obtain

Vv, DY = (v + Ik + nmr) Vi — lkw(V1)6. (5.2)
Differentiating (5.2) covariantly with respect to Vs, we get
Vo Vv DY =(y + Ik + nmk)Vy, Vi

IK[Vy,w(V1)0 + w(Vi) Vi, 0)- (5:3)
Interchanging V7 and V3 in (5.3), we obtain
Vv, Viv,DY =(y + Ik + nmk)Vy, Va (5.4)
—Ik[Vy,w(V2)0 + w(Va) Vi, 6].
Also, from (5.2), we get
Vv, v DY = (v + Ik + nmr)[Vi, Vo] — lkw([V4, Va])0. (5.5)
Using (2.2), (5.3)-(5.5), we obtain
R(V1, Vo)D) = —lk[w(Va)htVi — w(Vi)hT V3. (5.6)
By (5.6), we get
g(R(V1,V2)D1),6) = 0. (5.7)
Also from (2.4), we have
9(R(V1,V2)0, D) =k[(Vi)w(V2) — (Var)w(V1)] (5.8)

+u[(MV19)w(Va) — (hVay))w (V)]
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As g(R(V1, Vo)V, W) = —g(R(V3, Vo)W, V3), from (5.7) and (5.8), we get
K[(Vi)w(Va) — (Vav)w(V1)] + pl(AViY)w(Va) — (hVadh)w(VA)] = 0.
Putting V5 = 6 in the above equation, we obtain
K[(Viv) — (09)w (V)] + p(hVig) = 0.

Replacing Vi by AV; in (5.9), we get

(hViv) = p[(Vie) — (6)w (V1))
Therefore, from (5.9) and (5.10), we obtain

(v + 1) [(Vie) = (09)w (V)] = 0,

thus we get either k = —pu? or Dy = (6v)6.
When Dy = (6)0, from (5.2), we infer

Vi(0)8 + (0¢)hTVi = (v + Ik + nmk) Vi — lkw(V1)6.

Taking the inner product of (5.11) with V5, we get

Vi(09)w(Vo) + (04)g(htVi, Vo) = (v + ks + nime)g(Vi, Vo) — lkw(Vi)w(Va).

Putting V5 = 0 in the above equation, we obtain
Vi(0¥) = (v + nmk)w(V1).
From (5.12) and (5.13), we get
(00)g(h7V1,V2) = (v + Ik + nmk)[g(V1, V2) — w(Vi)w(V2)].

Contracting V; and V5 and using tr(7h) = 0, we obtain

(v + Ik + nmk) = 0.
Using (5.15) in (5.14), we obtain

(0¢)g(h7V1,V2) =0,

887

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

which gives (01) = 0. Thus, from the relation Dy = (6v)8, we get Dy = 0, i.e, V = 0,

which shows that the soliton is trivial.

0

Corollary 5.2. If a (k, p)-almost coKdhler manifold is a gradient x-Ricci—Yamabe soliton,

then I = 0.
Proof. Applying Dy =0 in (5.2), we obtain

(v + Ik +nmk)g(Vi, V) — lkw(Vh)w(Va) = 0.
Contracting the above equation, we have

2nlk + n(2n + 1)mk
2n+1 '

Again, putting V3 = Vo = 6 in (5.16), we infer
v = —nmk.

Comparing (5.17) and (5.18), we get Ik = 0. As k < 0, we get that { = 0.

(5.16)

(5.17)

(5.18)
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6. Examples

Example 6.1. Let M = {(z,y,2) € R?: 2 # 0}, where (z,y, z) are the standard coordi-
nates in R3. We consider the linearly independent vector fields

813’ Q_aya 3 =

By a direct computation, we get

Uy =

oz Yoy T as

[ur,ug] =0, [ur,us] = w1, [uz,us] = ua.

Let g be the Riemannian metric defined by g(u;, uj) = 6;5, i,5 = 1,2, 3.
We define the 1-form w by w(Vi) = g(Vi,us3) for all vector fields V; on M.
Let 7 be the (1, 1)-tensor field represented by

TU1T = U2, TU2 = —Ul, TU3=O.
It is easy to see that
wlug) =1, 72V = -Vi +w(V1)us,
g(tV1,7Vo) = g(V1,Va) — w(V1)w(Va),

for any vector fields Vi, Vo on M. Thus (7,us3,w,g) defines an almost contact metric
structure.
By the formula due to Koszul, we have the following

vulul = —us, vu1u2 = 07 Vu1u3 = Ui,
Vuyug = —u3,  Vyur =0,  Vy,ug = ug,
Vu3u1 = 0, VU3UQ = 0, VU3U3 =0.
Clearly M is an almost coKéhler manifold with hu; = —ug, hus = u1 and hug = 0.
The components of the curvature tensor are
R(u1,u2)ur = ug, R(ui,ug)ug = —u1, R(ug,us)uz = —us,
R(ug,u2)uz = —uz, R(ui,uz)uz = —u1, R(uz,ui)u; = —us,

R(uy,u2)us =0, R(ug,uz)u; =0, R(ug,ui)us=0.
The only non-vanishing components of the Ricci curvature tensor are
S(ui,ur) = =2, S(ug,u2) = -2, S(us,uz) = -2,
thus
S5(V1,V2) = =29(V1, V2)
for any vector fields Vi, Vo on M and the scalar curvature r is —6. Thus we can write the

curvature tensor as
a—>b
R(V1,V2)V3 :T[Q(VZ7V3)V1 —g(V1, V3) V3]
+b[g(Vz, V3)w(V1)0 — g(Vi, V3)w(V2)0
Fw(Y)w(Va) Vo — w(Vi)w(V3)Va],

for any vector fields Vi, V5 and V3 on M, where a = —2, b = 0.
The non-zero components of the x-Ricci curvature are

S*(uy,ur) = =1, S*(ug,uz) = —1.

Therefore the x-scalar curvature r* is —2.
Let V = ciu1 + couo + c3ug be the potential vector field, where cq, ca,c3 € R. Then

(Lvg)(ut,ur) = 2¢c3, (Lyg)(ug,uz) =2c3, (Lyvg)(usz,uz)=0.
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Thus, from (1.4), we obtain the following equations

y—1—m=cs,

vy—m=0.
From the above two equations, we get [ = —c3. Thus M is a x-Ricci—Yamabe soliton with
[l = —c3, v = m, where m can be any real number.

Now, let V' = fug where f is a smooth function on M. Then
(Lvg)(ur,ur) =2f, (Lvg)(uz,u2) =2f, (Lvg)(us,uz)=2(usf).

Thus, from (1.4), we obtain the following equations

f—=—vy—1—m=0, (6.1)
(usf) —y—m=0. (6.2)
Equation (6.1) implies f = 7+ + m, which is a constant. Thus (usf) = 0, so, from (6.2)
we have v = —m and finally, from (6.1), we get f = [. The above data verifies Theorem

3.4.

Example 6.2. Let M = {(z,y, z,u,v) € R® : v # 0}, where (z,v, 2,u,v) are the standard
coordinates in R®. We consider the linearly independent vector fields

0 0 0 0 0
2v 2v —2v —2v
uy=¢e"'—, us=e"'—, uz=e “‘'—, ug=e “‘—, us=—.
! ox 2 oy 3 0z 4 ou 5T o
By a direct computation, we get
[ur,us] = —2u1, [ug,us] = —2uz, [uz,us] = 2u3, [u4,us] = 2uy

and all the remaining brackets [u;,u;] =0 for 4,5 =1,2,3,4,5.
Let g be the Riemannian metric defined by g(u;,u;) = 6;5, 4,5 = 1,2,3,4,5.
We define the 1-form w by w(Vi) = g(Vi, us) for all vector fields Vi on M.
Let 7 be the (1, 1)-tensor field represented by
TUu] = ug, Tuz=U4, TU3=—Ul, TUs= —Uz, Tus=0.

Then it is easy to see that

w(us) =1, 2V =-W + w(V1)us,

g(TVl, TVQ) = g(Vl, VQ) - w(vl)w<‘/§)v
for any vector fields Vi, V5 on M. Thus (7, us,w,g) defines an almost contact metric

structure.
By the formula due to Koszul, we have the following

vulul = 2u57 vu1u5 = —2U]_, V’U,QUQ = 2U5,
quUS = —2U2, Vugu?) = —2U5, vu3u5 = 2U3,
Vu4u4 = —QU5, VU4U5 = 2U4
and all the rest V,,u; =0 for ¢,5 = 1,2,3,4,5. Clearly M is an almost coKé&hler manifold
with huy = —2ug, hus = —2uy4, hug = —2uq, hug = —2us and hus = 0.
The components of the curvature tensor are
R(u1,u2)uy = 4ug,  R(uy,uz)uz = —4uy, R(uy,us)u; = —4us,
R(ui,uz)uz = 4uy, R(ui,uq)ur = —4uy, R(ui,us)ug = 4uy,
R(ul, U5)U1 = 4U5, R(ul,U5)’LL5 = —4U1, R(UQ, U3)U2 = —4’LL3.

R(ug,us)us = 4ug, R(uz,us)us = —4dug, R(uz,us)us = 4dus,
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R(uz,us)ug = dus,  R(uz,us)us = —dug, R(us,us)us = duy,
R(U/.?)a U/4)U4 = —4U3, R('LL37’LL5)U,3 = 4U5, R(Ug, U5)U5 — _4U3,
R(ug, us)ug = dus,  R(ug, us)us = —duy

and all the other R(u;,uj)er =0 for 4, j,k = 1,2,3,4,5. From above, we conclude that M
is a (k, u)-almost coKéhler manifold with k = —4 and pu = 0.

The only non-vanishing component of the Ricci curvature tensor is S(us,us) = —16 and
the scalar curvature r is —16.

The non-zero components of the x-Ricci curvature are

S*(ul,ul) = S*(UQ,UQ) = S*(U3,U3) = S*(U4,U4) =4.

Therefore, the x-scalar curvature r* is 16.
Let us consider the potential vector field V' as the Reeb vector field . Then

(Lvg)(ur,ur) = =4, (Lvg)(uz,uz) = —4,

(Lvg)(us,us) =4, (Lvg)(us,us) =4, (Lyg)(us,us) = 0.
Thus, from (1.4), we obtain the following equations

vy—4—-8m+2=0, (6.3)
v—4l —8m —2 =0,
v = 8m.

Equations (6.3) and (6.4) are inconsistent. Thus M does not admit a *-Ricci-Yamabe
soliton if the potential vector field is the Reeb vector field 8, which verifies Theorem 4.5.
Now, let the potential vector field V' be the gradient of a smooth function v on M. Then,
from (1.5), we obtain

Vv, Dip = (’y - %mT*)Vl —1Q*W.
Also, D1 can be written as
Dyp = (uryp)ur + (ugth)uz + (usp)us + (ua®)ug + (usth)us

Thus,
Vul Dy (u1 (ulw) — Q(U5¢))U1 + ul(qu U + U (u?,w)u;;

)
+ur (uap)ua + (ur(usy) + 2(ury))us,
Vi, DY =uz(ur9p)ur + (ua(uath) — 2(use))ug + ua(usip)us
Fug(uat)ug + (uz(ust)) + 2(ugeh))us,
uz(u1p)ur + uz(ugp)us + (us(uzrh) + 2(use))us
Fuz(ugh)ug + (uz(usy)) — 2(uzep))us,
Vi D =ug(ur9p)ur + ug(ugt))ug + ug(uzep)us
+(ua(ua®) + 2(usv))ua + (ua(usy) — 2(ua)))us,
Vus DY =us(urh)ur + us(ugy))ug + us(uzt))us

Fus (ugr) )ug + us(usy))us.
The last five equations imply

Vs DY =

ur (ur)) — 2(us) = v — 4L — 8m,
uz(u2y)) — 2(usy)) = v — 4l — 8m,
uz(ush) + 2(usyp) = v — 4l — 8m,
ug(ugh) + 2(usy)) = v — 4l — 8m,
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us(usy) =y — 8m,

Thus we get the following partial differential equations

u (ustp) + 2(ury)) = 0,
uz(usy) + 2(ugy)) = 0,
uz(usy)) — 2(uzyp) =0,
Uy ’LL51/1) (Uﬂm = 07
uy(ugy) =0,  ui(uzy) =0,
Ul(u4¢) — 07 uQ(u?)w) = Oa
ug(ug) =0, uz(ugy)) =0,
us(u1y) =0, us(uzep) =0,
us(uzy) =0, us(ugep) = 0.
40 021 oY
a2 " Zge T A
821/1 6¢
_ 821/1 3¢
¥ v 77 o _
e 9.2 +28v v — 4l — 8m,
4y 0% oY
S 2 = —di-
0%
Guz ~ 178
%y oY
2v 07" —
Ozov 2 Oz 0,
%Y o
2v 207 —
Oyov +2e Ay 0,
oy 0% 0, OV
2v . Vs
0z0v 2e 0z 0,
%Y oY
—2v o 2077 _
Oudv o 0,
Oxdy 0x0z ’
2 2
v, P
dxdu Oyoz
82¢ _ —4v 82¢ -0
oyou 0z0u

891

(6.5)

(6.6)

which show that 1) is a constant. Thus, Theorem 5.1 is verified. Hence, from (6.5)-(6.6),

we have

v —4l —8m = 0,

v —8m

= 0.

The above two equations indicate that [ = 0 which verifies Corollary 5.2. The value of v is
8m, where m is a real number. In particular, if we take m = 1, then the soliton becomes
a gradient x-Yamabe soliton and it is shrinking.
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