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Multiple Attribute Decision Making (MADM) tools make preference 

decisions over multiple attributes’ alternatives available, which in most 

cases conflict among themselves. The classic MADM includes techniques 

that consider a set of fixed and predefined attributes when making a 

decision. However, the majority of real-world decisions occur in dynamic 

and unstable scenarios. Therefore, classic MADM will not be the answer 

to our problems in the real world and uncertainty. This paper addresses a 

flexible framework for dynamic MADM, based on the concept of fuzzy sets 

theory and the VIKOR method to provide a rational, scientific and 

systematic process for prioritizing patients in the Emergency Department 

(ED), under a fuzzy environment where the uncertainty, subjectivity, and 

vagueness are addressed with linguistic variables parameterized by 

triangular fuzzy numbers. Finally, the computational results are discussed 

in detail. Dynamic decisions arise in many applications, including 

military, medical, management, sports and emergency situations. 

Therefore, this study can affect a wide range of applied fields. 
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1. INTRODUCTION 

As existing systems become more complex, the importance of dynamic systems has become much 

wider than in the past. Decision making in dynamic systems can cause growth, survival and even 

destruction of systems. Today, most real-world decisions are made in a dynamic environment (Jassbi 

et al., 2014). Therefore, it is necessary to create a suitable framework for these types of decisions. In 

this paper, we seek to find a framework for this type of decision making. In classical models of 

multiple criteria decision making (MCDM), it is assumed that when making a decision, the decision 

maker has predefined a fixed set of criteria and presented fixed alternatives with a clear picture of all 
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available alternatives (Peng & Tzeng, 2013). In dynamic situations, the problem is that decisions are 

made in a constantly changing (dynamic) environment (Alinezhad & Taherinezhad, 2020), and the 

available alternatives can change over time. In most studies conducted in the field of multiple attribute 

decision making (MADM), the decision-making matrices in them are static (Alinezhad et al., 2023; 

İşler & Çalık, 2022; Norouziyan, 2022; Amini et al., 2016). That is, the weight of attributes and the 

value of alternatives for each attribute belong to a period of time, and the change of these items during 

the past or future periods was less considered. While it is quite evident that all the information related 

to MADM matrices can change over time and their values are not necessarily constant during several 

time periods. Therefore, these items can be seriously effective in the decision-making process and 

ranking of alternatives. 

Decision-making with the above conditions, which we call dynamic decision-making under 

uncertainty, is used in many fields, including military, medical, management, sports, and emergency 

situations. In hospitals and medical centers, the triage system refers to the process of prioritizing 

patients based on the severity of the disease in order to perform the best treatment measures in the 

shortest possible time (Sabry et al., 2023). Our main problem is to provide a framework for decision-

making in one of the common types of triages (American 5-level triage). The proper triage will 

increase the quality of patient care services, increase satisfaction, reduce the waiting time and stay of 

patients, reduce deaths, and increase the efficiency of emergency departments in parallel with 

reducing related costs (Sabry et al., 2023). 

The term triage was first used in 1800 by one of Napoleon’s army doctors named Doctor Dominique 

Jean Larry to prioritize and treat wounded soldiers in war. From the early 1990s, several countries 

started designing and providing triage systems until the five-level triage systems were created and 

introduced in the late 1990s and early 2000s (Travers et al., 2002). Among these systems, the triage 

system of Australia, Canada, Manchester and the emergency severity index (ESI) gained the most 

acceptance. The triage process becomes meaningful when, firstly, there are resources for providing 

services, secondly, the relative balance between the supply and demand of resources is not 

established, and thirdly, a specific plan for prioritizing patients is defined (Sabry et al., 2023). The 

ESI system is an American 5-level triage system that was invented in 1999 by two emergency 

medicine specialists named Richard Warez and David Eitel. The ESI triage structure is one of the 5-

level triage methods in which patients are divided based on the two criteria of disease severity and 

the facilities required by the patient. Currently, ESI triage seems to be the most appropriate triage 

system. This system has been revised three times and currently the fourth edition is available (Gilboy 

et al., 2012). 

In the ESI algorithm, there are four decision points as shown in Figure 1 (Gilboy et al., 2012): 

• Decision point A: “Is the patient dying or does he need immediate and life-saving intervention?” 

In this case, it is placed at level 1. 

• Decision point B: “Shouldn’t the patient wait?” (Including: high-risk symptoms, impaired 

consciousness, pain, severe distress), which in this case is placed at level 2. 

• Decision point C: In the absence of conditions A and B, the facilities needed by the patient are 

estimated in the emergency room to determine the patient’s task. The patient’s need for two or 

more emergency facilities, if vital signs are not disturbed, puts the patient at level 3. The patient’s 

need for one of the emergency facilities places the patient on level 4, and the patient who does not 

need to use emergency facilities is placed on level 5. 

• Decision point D: If the facilities needed by the patient are two or more according to the definition, 

at this stage, the patient’s vital signs should be considered for classification. If there is a 
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disturbance in the vital signs, the patient will return to level 2, and otherwise, the patient will be 

divided into level 3. 

In the following, after identifying the problem and its precise definition, the first step in conducting 

the research is to study the literature of the subject in order to gain knowledge and determine the place 

of the current research among the studies. The next step is problem modeling with the help of MADM 

techniques and modeling methods in fuzzy conditions. Then, the proposed model will be implemented 

in a case study that is an improvement in the way of prioritizing patients in the emergency department 

of the hospital to determine its efficiency and effectiveness. At the end, the obtained results are 

analyzed and a final summary is made. 

 
Figure 1. The ESI triage algorithm (Gilboy et al., 2012) 

2. LITERATURE REVIEW 

Decision making is a long-standing field that has been widely researched by various decision-making 

tools (Taherinezhad & Alinezhad, 2023; Taherinezhad & Alinezhad, 2022; Alinezhad & 

Taherinezhad, 2021; Khalili & Alinezhad, 2018; Sarrafha et al., 2014; Kiani Mavi et al., 2010; 

Alinezhad et al., 2007). For example, specifically in the area of decision making using non-dynamic 

MADM, we can refer to İşler and Çalık’s (2022) study. İşler and Çalık (2022) proposed the use of 

the WASPAS technique to select Islamic financial trades, focusing on the problem of "investment 

according to Islamic principles". In addition, they used the entropy method to determine the weights 

of criteria. In another research, Norouziyan (2022) focused on a petrochemical case study, using 

analytic hierarchy process (AHP) and VIKOR methods to determine the weights of criteria and 

ranking the alternatives, respectively. Also, Ramadan and Özdemir (2022) prioritized Istanbul rail 
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system projects using Fuzzy AHP and PROMETHEE. The important point is that the criteria did not 

change in any of the decision-making stages in the mentioned studies and were constant. In other 

words, these MADM problems are non-dynamic. While this paper focuses on a dynamic problem. 

Therefore, in order to review the detailed and scientific literature, we limited the search for articles 

to the field of dynamic MADM (DMADM). For the first time, Brehmer (1992) examined decision-

making under conditions in which decisions are not independent and the state of the surrounding 

world changes (dynamically), and presented a general method based on control theory as a means of 

organizing research in this field. Badiru et al., (1993) presented a decision support system based on 

the simulation and Analytic Hierarchy Process (AHP) method, which is called dynamic decision-

making and can be used to implement dynamic decision-making scenarios. Lin et al., (2008) 

presented a dynamic decision-making model whose main structure is based on the TOPSIS method. 

Also in it, integration and integration of the concepts of gray numbers and the Minkowski distance 

function have been done in order to deal with uncertain information. Wei (2009) investigated the 

problem of dynamic intuitionistic fuzzy MADM in which all attributes’ values are expressed as 

intuitionistic fuzzy numbers or interval values of intuitionistic fuzzy numbers. In addition, he has 

presented some geometric cumulative operators such as the Dynamic Intuitionistic Fuzzy Weighted 

Geometric (DIFWG) operator and the Uncertain Dynamic Intuitionistic Fuzzy Weighted Geometric 

(UDIFWG) operator to collect uncertain dynamic intuitionistic fuzzy information. Chen and Li 

(2011) presented a dynamic MADM model based on Triangular Intuitionistic Fuzzy Numbers (TIFN) 

to solve DMADM problems, where all decision information was in TIFN form. Hu and Yang (2011) 

also proposed a method based on cumulative prospect theory and pair set analysis to solve stochastic 

dynamic decision-making problems in which the weight information of the criteria is completely 

unknown and the values of the criteria are in the form of discrete random variables. Campanella and 

Ribeiro (2011) introduced a flexible framework for solving the DMADM problem based on the 

classical model, which can be applied to any dynamic decision-making process. This framework aims 

to solve the above problem by expanding the classic MCDM model in a flexible way. Wang et al., 

(2015) presented an interval dynamic reference point-based method for Emergency Decision Making 

(EDM) problems. The above method uses a method similar to TOPSIS, which is a popular decision-

making technique, to rank the alternatives. Lourenzutti and Krohling (2016) developed the TOPSIS 

technique and presented the Group Modular Random TOPSIS (GMo-RTOPSIS) method for group 

decision making with heterogeneous information and in a dynamic environment. In this method, each 

decision maker can independently define the set of attributes, the weight vector, and the basic factors 

effective in ranking the alternatives, as well as the type of information for each attribute. 

In the following, we will review the research done on the problem of prioritizing emergency 

department patients through decision tools. Chen et al., (2010) presented an analytical framework for 

Dynamic Multiple Criteria Decision Analysis (DMCDA) problems as an extension of classical static 

MCDA. Their research process was such that an overview of MCDA was done and an introduction 

to DMCDA was stated. Then, various design aggregation strategies and an analytical framework of 

DMCDA were described in detail. Finally, an emergency management case study was provided using 

data from the Emergency Management Australia (EMA) database to demonstrate the feasibility of 

the proposed analysis method. Ashour and Okudan (2012) believe that the triage process relies on the 

interaction of the nurse with the patients and then classifying them based on the severity of the disease. 

They used the Fuzzy AHP algorithm and Multi-Attribute Utility Theory (MAUT) to rank patients 

according to their attributes including chief presenting complaint, age, sex, pain intensity and vital 

signs. Also, this algorithm has been applied to a sample of clinical data set from Susquehanna Health’s 

William Sport. In addition, Chang (2014) also presented a scientific and systematic framework based 
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on the concepts of fuzzy sets and using the VIKOR method to evaluate the quality of hospital services 

under conditions of uncertainty. By reviewing previous researches, we find that none of them have 

focused on the evaluation of ESI triage systems in dynamic conditions, while considering the 

necessity of prioritizing patients and its widespread use in emergency departments, the need to 

conduct such a study is strongly felt. Therefore, according to this need and gap, the main contribution 

of this paper in the literature will be the use of the fuzzy VIKOR method in the dynamic environment 

of American 5-level triage (ESI). 

3. MATERIAL AND METHODS 

3.1. VIKOR Method 

Opricovic and Tzeng (2004) developed the VIKOR method for optimizing MCDM problems in 

complex systems. This method focuses on ranking and selecting from a set of alternatives and 

determines compromise solutions to the problem with conflicting attributes, so that it is able to help 

decision makers to reach a final decision. Following previous research, Opricovic and Tzeng (2007) 

presented an extension of the VIKOR method to solve decision problems with conflicting and 

disproportional criteria (different measurement units). In this paper, the combination of the VIKOR 

method with the theory of fuzzy sets and linguistic variables is used to overcome the uncertainty in 

the ranking of alternatives. In addition, the group opinions of the decision-makers are used in such a 

way that the weights of the importance of each of the decision-makers in the final choice are different. 

3.2. Triangular Fuzzy Numbers & Linguistic Variables 

The basic theory of triangular fuzzy numbers is described by Dubois (1980), Klir and Folger (1988), 

and Klir and Yuan (1995), where a fuzzy number is considered as a normalized and convex fuzzy set. 

The triangular fuzzy number 𝑛̃ is represented as a triplet set 𝑛̃ = (𝑛1, 𝑛2, 𝑛3) and shown as in Figure 

2. 
 

 

Figure 2. View of triangular fuzzy number 𝑛̃ (Chen, 2000) 

The membership function of triangular fuzzy numbers is defined as Equation 1: 
 

 𝜇𝑛̃(𝑥) =

{
 
 

 
     

𝑥 − 𝑛1
𝑛2 − 𝑛1

                   ,           𝑛1 ≤ 𝑥 ≤ 𝑛2

𝑥 − 𝑛3
𝑛2 − 𝑛3

                  ,         𝑛2 ≤ 𝑥 ≤ 𝑛3

 0                      , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                (1) 
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Where 𝑛1 and 𝑛3 are the lower and upper limits of the fuzzy number 𝑛̃, respectively, and 𝑛2 is the 

middle limit of 𝑛̃. Fuzzy numbers play an important role in quantitatively formulating fuzzy variables, 

and fuzzy variables can be linguistic variables. Figure 3 shows an example of linguistic variables in 

fuzzy form. In determining the membership function of linguistic variables, one of the variables is 

assumed as the base variable and the membership function is determined for it. Then the membership 

function of other linguistic variables is obtained using special relations based on the base variable. 

Each base variable is defined based on physical variables or numerical variables (Zadeh, 1983). 
 

 
Figure 3. An example of linguistic variables in the form of trapezoidal fuzzy numbers (Zadeh, 1983) 

3.3. Proposed Model 

In this part, the problem is modeled with the VIKOR method, which is the basis of this research. 

Appropriate common functions have also been used to calculate scores in modeling. The modeling is 

the same for the five different levels of triage (ESI) and they differ only in the shared functions. 

Supposedly, for the first level, which is the level of emergency patients, we have used a stronger 

sharing function than other levels to calculate scores. In the fifth level, which is related to outpatients 

and is more crowded than other levels, weaker sharing functions can be used. Figure 4 shows the 

dynamic decision-making diagram in the ESI system. The dynamics of the problem is determined 

using a maintenance policy, which we will talk about later. 
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Figure 4. Prioritizing patients according to the dynamic cycle in the ESI system 

3.3.1. Symbols Definition 

Before stating the proposed model, we will introduce the symbols and some policies considered in it: 

𝑃𝑡: The set of patients available at the moment 𝑡 
𝐶𝑡: The set of criteria available at moment 𝑡 
𝑊̃𝑐: Weight vector of criteria (considered as fuzzy numbers) 

𝑡𝑖𝑗: The time of entering the 𝑖th patient from the 𝑗th level for treatment (𝑗 = 1, 2, 3, 4, 5) 

𝑝𝑖𝑗: Patient 𝑖 of the level 𝑗 (𝑗 = 1, 2, 3, 4, 5) 

𝑡𝑛: Time of next patient arrival (new arrival) 

𝐻𝑡: The set kept to the next iteration in the 𝑡th iteration 

𝑈𝑡: The performance function in the 𝑡th iteration 

𝑅𝑡: Ranking of alternatives in the 𝑡th iteration in the first stage of decision-making (VIKOR method 

ranking) 

𝐸𝑡: Evaluation function in the 𝑡th iteration 

𝑂𝑡: Ranking of the alternatives in the 𝑡th iteration in the second stage of decision-making (final 

ranking) 
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𝐷𝐸: Shared function considered in the second stage of decision making 

3.3.2. Maintenance Policy 

Because the current research model is implemented in a dynamic environment, it is necessary to 

define a maintenance policy. That is, a criterion for selecting a subset of current and past alternatives 

that are taken to the next iteration. The set maintained by the next iteration can be defined in different 

ways. One of these definitions is given in Equation 2: 
 

𝐻𝑡 = {
𝑝𝑖𝑗 ∉ 𝐻              , 𝑖𝑓   ∶   𝑡𝑖𝑗  ≤  𝑡𝑛                  

𝑝𝑖𝑗 ∈ 𝐻                ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
                                                                             (2) 

Where 𝑡𝑖𝑗 is the time of entry of the 𝑖th patient from the 𝑗th level (the level means the same 5 levels 

of ESI triage) for treatment and 𝑡𝑛 is the time of arrival of a new patient. As long as 𝑡𝑖𝑗  is smaller 

than 𝑡𝑛, the patient 𝑝𝑖𝑗 is directed for treatment, otherwise, it will be a member of the maintained set 

and will be evaluated again for prioritization with new patients. According to the above definition, 

the patients who were not treated in the 𝑡th iteration will be members of the 𝐻 set in the (𝑡 + 1)th 

iteration. 

3.3.3. Dynamic Decision-Making Process 

In this research, the end is not considered for the decision-making process. It means that the patient 

can enter the emergency department at any moment. So, the system will always be in a decision cycle. 

Usually, the task of prioritization is carried out by an experienced triage nurse. The iterations consist 

of two main stages, which can be seen in Figure 5. 

 
Figure 5. The cycle of iterations in the dynamic decision-making process 

𝑡 stands for iterations in the dynamic decision process. In each iteration, the first stage is performed 

first. Then, if the maintenance set is empty in the previous iteration, prioritization is formed at the 

end of the first stage. Otherwise (if the maintenance set is not empty in the previous iteration), we 

enter the second stage and then perform the prioritization. Now, according to the above definitions 

and Figure 5, we describe the dynamic decision-making process. The first stage consists of 7 steps: 
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• Step 1: In this step, the decision-maker must express his opinion about the patients according to 

the measures that have been specified in advance and assign a score to the patient according to the 

tables in step 2. It should be noted that the evaluation criteria must also be specified in advance. 

• Step 2: In this step, we convert the qualitative variables selected in the previous step into 

quantitative variables using the following tables. Using Table 1, the importance of the weight of 

each criterion can be converted into quantitative variables in the fuzzy environment. 

Table 1. Linguistic labels for the weight importance of each criterion 
 

 

Linguistic labels 
 

Fuzzy equivalent 

  

Very low (0, 0, 0.1) 
Low (0, 0.1, 0.3) 
Medium low (0.1, 0.3, 0.5) 
Medium (0.3, 0.5, 0.7) 
Medium high (0.5, 0.7, 0.9) 
high (0.7, 0.9, 1) 
Very high (0.9, 1, 1) 

  

Blood pressure, respiration, temperature and pulse ranges are different for different ages (Stewart, 

2003). By using Tables 2 to 7, the qualitative variables of the alternatives can be converted into 

quantitative variables in the fuzzy environment. 

Table 2. Linguistic labels for ranking alternatives based on measures of blood pressure and respiratory status 

 

 

Linguistic labels 
 

Linguistic variables in short Fuzzy equivalent 

   

Normal 𝑁 (0, 1, 3) 
Low 𝐿 (1, 3, 5) 
Medium low and Medium high 𝑀𝐿 −𝑀𝐻 (3, 5, 7) 
Low and High 𝐿 − 𝐻 (5, 7, 9) 
Very low and very high 𝑉𝐿 − 𝑉𝐻 (7, 9, 10) 

   

 

Table 3. Linguistic labels for ranking alternatives based on degree of consciousness criteria 
 

 

Linguistic labels 
 

Linguistic variables in short Fuzzy equivalent 

   

Very low 𝑉𝐿 (0, 1, 3) 
Low 𝐿 (1, 3, 5) 
Medium 𝑀 (3, 5, 7) 
High 𝐻 (5, 7, 9) 
Very High 𝑉𝐻 (7, 9, 10) 

   

 

Table 4. Explanation of linguistic labels based on the level of consciousness 
 

 

Level of consciousness 
 

Description 

  

Alert The patient is fully awake. 

Pain & Voice The patient responds to sound or painful stimulation. 

Voice The patient’s eyes open while talking. 
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Pain The patient does not respond to sound stimulation but responds to painful stimulation. 

Unresponsive The patient is unresponsive and does not respond to sound or painful stimulation. 
  

 

Table 5. Linguistic labels for ranking alternatives based on criteria of pain intensity and required patient 

actions 
 

 

Linguistic labels 
 

Linguistic variables in short Fuzzy equivalent 

   

Alert 𝐴 (0, 1, 3) 
Pain & Voice 𝑃 − 𝑉 (1, 3, 5) 
Voice 𝑉 (3, 5, 7) 
Pain 𝑃 (5, 7, 9) 
Unresponsive 𝑈 (7, 9, 10) 

   

 

Table 6. Linguistic labels for ranking alternatives based on fracture degree criteria 
 

 

Linguistic labels 
 

Linguistic variables in short Fuzzy equivalent 

   

Degree 0 𝐷0 (0, 1, 3) 
Degree 1 𝐷1 (1, 3, 5) 
Degree 2 𝐷2 (3, 5, 7) 
Degree 3 𝐷3 (5, 7, 9) 
Degree 4 𝐷4 (7, 9, 10) 

   

 

Table 7. Explanation of linguistic labels based on the criterion of degree of fracture 
 

 

Degree of fracture 
 

Description 

  

Degree 0 Fracture can be seen only as a crack. 

Degree 1 Despite the fracture, the skin remains healthy and does not get injured. 

Degree 2 A fracture causes the skin to tear, but it is not associated with a wound. 

Degree 3 A fracture causes the skin to tear, but it is associated with a wound. 

Degree 4 A fracture causes damage to other organs such as veins and nerves. 
  

• Step 3: According to the previous two steps, the weight matrix of the criteria and the fuzzy decision 

matrix are in the form of Equation 3: 
 

𝑊̃𝑐 = {𝑤̃1 , 𝑤̃2 , 𝑤̃3 , … , 𝑤̃𝑛 }     ≈    ∀ 𝑊̃𝑖 = ( 𝑤̃𝑖1 , 𝑤̃𝑖2 , 𝑤̃𝑖3 )                                                                   (3) 

Where 𝑊̃𝑐 is the weight of the 𝑛th criterion in the form of a triangular fuzzy number, and the elements 

of the decision-making matrix in Equation 4 are also triangular fuzzy numbers: 
 

𝐷̃𝑡 = [

𝑥̃11 𝑥̃12 ⋯ 𝑥̃1𝑛
𝑥̃21 𝑥̃22 ⋯ 𝑥̃2𝑛
⋮ ⋮ ⋱ ⋮
𝑥̃𝑚1 𝑥̃𝑚2 ⋯ 𝑥̃𝑚𝑛

]             ⟹           ∀ 𝑥̃𝑖𝑗 = ( 𝑎̃𝑖𝑗  , 𝑏̃𝑖𝑗 , 𝑐𝑖𝑗 )                                                (4) 

𝑥̃𝑚𝑛 is the mth alternative score according to the nth criterion. 
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• Step 4: In this step, the largest and smallest number of each column is determined from Equation 

5: 
 

𝑓∗ = max𝑖{𝑥𝑖𝑗}        ,     𝑓
− = min𝑖{𝑥𝑖𝑗}                                                                                                      (5) 

• Step 5: Average level of regret (𝑆) and maximum regret (𝑅) for each patient are calculated from 

Equation 6: 
 

𝑆𝑖 =∑ (𝑤𝑗 ×
(𝑓𝑗

∗ − 𝑓𝑖𝑗)

(𝑓𝑗
∗ − 𝑓𝑗

−)
)       ,      𝑅𝑖 = 𝑀𝑎𝑥 𝑗 (𝑤𝑗 ×

(𝑓𝑗
∗ − 𝑓𝑖𝑗)

(𝑓𝑗
∗ − 𝑓𝑗

−)
)

𝑛

𝑗
                                                   (6) 

Where 𝑆𝑖 represents the relative distance of the 𝑖th alternative from the positive ideal solution (the 

best combination) and 𝑅𝑖 represents the maximum regret of the 𝑖th alternative from the positive ideal 

solution. 

• Step 6: Now, for the final evaluation of patients, the VIKOR index (𝑄) is calculated from Equation 

7: 

𝑄𝑖 = (𝜈 ×  
(𝑆∗ − 𝑆𝑖)

(𝑆∗ − 𝑆−)
) + ((1 − 𝜈) × 

(𝑅∗ − 𝑅𝑖)

(𝑅∗ − 𝑅−)
) 

𝑆∗ = 𝑀𝑖𝑛  {𝑆𝑖}         ,        𝑆
− = 𝑀𝑎𝑥  {𝑆𝑖}       

𝑅∗ = 𝑀𝑖𝑛  {𝑅𝑖}        ,        𝑅
− = 𝑀𝑎𝑥  {𝑅𝑖}                                                                                                    (7) 

𝜈 is a number between zero and one and it is usually considered 0.5. The closer the value of 𝜈 is to 

one, it indicates that the decision maker is more interested in using the weighted value of utility and 

the involvement of all criteria than the maximum utility (Opricovic & Tzeng, 2007). 

• Step 7: Any alternative that has a lower value of 𝑄𝑖 will have a higher priority for selection. At the 

end of these 7 steps, an efficiency matrix according to Equation 8 will be obtained and a VIKOR 

index (𝑄) will be obtained for each alternative. 
 

𝑈𝑡 = [

𝑄1
𝑄2
⋮
𝑄𝑚

]                                                                                                                                                         (8) 

At the end of this stage, the set 𝐻𝑡−1 is decisive. If the set 𝐻𝑡−1 is empty, the evaluation function for 

each patient will be equal to the efficiency function of that patient. By defining the evaluation 

function, the ranking (𝑅𝑡) is created and the maintained collection is also determined in the next 

iteration (𝐻𝑡). If the set 𝐻𝑡−1 is not empty, we go to the second step. 

At this step, due to the fact that the maintenance set is not empty, we use Equation 9 to calculate the 

evaluation function: 
 

𝐸𝑡(𝑝) = {
  𝑈𝑡(𝑝)                                      , 𝑝 ∈ 𝑃 𝑡                    

𝐷𝐸(𝐸𝑡−1  (𝑝) , 𝑈𝑡(𝑝))           , 𝑝 ∈ 𝐻 𝑡−1               
                                                                        (9) 
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Where if the patient is a member of the 𝑃 𝑡 set and not a member of the 𝐻 𝑡−1 set, the same efficiency 

function is used to calculate the evaluation function, and if the patient is a member of the 𝐻 𝑡−1 set, 

we will use the shared function 𝐷𝐸 . In order to calculate the shared function 𝐷𝐸 , we have described 

various functions from the family of t-norms as follows  (Equation 10 to 15). t-norms are introduced 

as an operator to combine distribution functions on statistical metric spaces (Schweizer & Sklar, 

2005). 

Each of these functions has its own characteristics, but their common characteristic is that they are a 

reduction function. The function of Equation 10 is the weakest and the function of Equation 15 is the 

strongest. In the numerical example section, it is explained which common function will be suitable 

for which level. 
 

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∶    𝐷𝐸   (𝐸𝑡−1 (𝑝), 𝑈𝑡 (𝑝)) = 𝑚𝑖𝑛 {𝐸𝑡−1 (𝑝) , 𝑈𝑡 (𝑝)}                                                       (10) 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∶    𝐷𝐸  (𝐸𝑡−1(𝑝), 𝑈𝑡(𝑝)) =  𝐸𝑡−1(𝑝) . 𝑈𝑡(𝑝)                                                                            (11) 

 

𝐿𝑢𝑘𝑎𝑠𝑖𝑒𝑤𝑖𝑐𝑧 ∶    𝐷𝐸  (𝐸𝑡−1 (𝑝) , 𝑈𝑡(𝑝)) = max   {0 , 𝐸𝑡−1 (𝑝) + 𝑈𝑡 (𝑝) − 1}                         (12) 

𝑁𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ∶1 

𝐷𝐸(𝐸𝑡−1(𝑝), 𝑈𝑡(𝑝)) = {
min   {𝐸𝑡−1(𝑝) , 𝑈𝑡(𝑝)}        , 𝐸𝑡−1 (𝑝) + 𝑈𝑡(𝑝) > 1           
0                                        ,      otherwise                                  

                (13) 

 𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∶1 

𝐷𝐸 (𝐸𝑡−1 (𝑝) , 𝑈𝑡 (𝑝)) = {

0                                                        ,   𝐸𝑡−1 (𝑝) = 𝑈𝑡 (𝑝) = 0   

𝐸𝑡−1 (𝑝) . 𝑈𝑡  (𝑝)

𝐸𝑡−1 (𝑝) + 𝑈𝑡 (𝑝) − 𝐸𝑡−1 (𝑝) . 𝑈𝑡 (𝑝)
  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

   (14) 

 

 𝐷𝑟𝑎𝑠𝑡𝑖𝑐 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∶   𝐷𝐸   (𝐸𝑡−1 (𝑝), 𝑈𝑡 (𝑝)) = {
𝐸𝑡−1 (𝑝)           ,      𝑈𝑡 (𝑝) = 1    

𝑈𝑡 (𝑝)               ,      𝐸𝑡−1 (𝑝) = 1
0                       ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

                       (15) 

Now, with the evaluation function specified, we rank the alternatives and determine the retention set 

for the next iteration. Figure 6 shows a summary of the important steps in the decision-making 

process. 
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Figure 6. Operations performed in each iteration in the dynamic decision model 

4. RESEARCH IMPLEMENTATION IN CASE STUDY 

The investigation of this research is related to the prioritization of patients who visit the emergency 

department on a normal day. This problem is implemented in the Excel environment and prioritizes 

patients in each iteration. Patients of one of the ESI triage levels are considered and prioritized. Also, 

when prioritizing patients, the shared functions mentioned in the previous section are also compared 

and the best function is selected for the proposed model. The assumptions of the model are as follows: 

• The arrival of patients is considered in time intervals. Here, patients are compared and prioritized 

in 15-minute intervals. 

• The number of criteria and their weights can be changed in each iteration. 

• Patients’ conditions can be changed in each iteration. 

The data of 20 studied patients are presented in Table 8. The prioritization of up to four iterations is 

checked as follows: 

First iteration (𝑡 = 1): At time 𝑡1, four patients have referred to the triage section in the emergency 

department. To evaluate patients, we have considered four criteria: blood pressure, respiratory status, 

level of consciousness and pain intensity. The weight of each of the criteria as well as the information 

related to the patients is given in the form of linguistic labels (triangular fuzzy numbers) in Tables 9 

and 10. According to the calculations and prioritization, among the patients, patient 𝑃3 is selected for 

treatment. It is assumed that no new patient has been referred to the triage system until the completion 

of the treatment of patient 𝑃3. Therefore, patient 𝑃4 is also treated. Until the completion of the 

treatment of patient 𝑃4, no new patient has entered the system, so patient 𝑃1 is also directed to the 

treatment department. During the treatment of patient 𝑃1, two new patients refer to the system. 

Therefore, the patient with the fourth priority 𝑃2 is considered as a member of the maintained set, and 

along with these two new patients, prioritization is done again. 
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Table 8. Data and information of patients in the study department 
 

 
 

Criteria 
 

 

 

Blood pressure 

(𝑪𝟏) 

 

Respiratory 

status (𝑪𝟐) 

 

level of 

consciousness 

(𝑪𝟑) 
 

 

Intensity of pain 

(𝑪𝟒) 

 

Actions 

required (𝑪𝟓) 

      

𝑾𝒋 
𝐻 𝑉𝐻 𝑀𝐻 𝑀 𝑀𝐻 

(0.7, 0.9, 1) (0.9,1, 1) (0.5, 0.7, 0.9) (0.3, 0.5 0.7) (0.5, 0.7, 0.9) 
      

      

𝑃1 (7, 9, 10) (5, 7, 9) (3, 5, 7) (9, 10, 10) (5, 7, 9) 
𝑃2 (9, 10, 10) (7, 9, 10) (5, 7, 9) (3, 5, 7) (7, 9, 10) 
𝑃3 (9, 10, 10) (7, 9, 10) (5, 7, 9) (5, 7, 9) (9, 10, 10) 
𝑃4 (3, 5, 7) (5, 7, 9) (3, 5, 7) (1, 3, 5) (1, 3, 5) 
𝑃5 (9, 10, 10) (1, 3, 5) (5, 7, 9) (7, 9, 10) (7, 9, 10) 
𝑃6 (7, 9, 10) (3, 5, 7) (1, 3, 5) (7, 9, 10) (5, 7, 9) 
𝑃7 (1, 3, 5) (1, 3, 5) (0, 1, 3) (3, 5, 7) (3, 5, 7) 
𝑃8 (5, 7, 9) (7, 9, 10) (5, 7, 9) (1, 3, 5) (0, 1, 3) 
𝑃9 (7, 9, 10) (1, 3, 5) (3, 5, 7) (7, 9, 10) (7, 9, 10) 
𝑃10 (1, 3, 5) (0, 1, 3) (1, 3, 5) (5, 7, 9) (5, 7, 9) 
𝑃11 (7, 9, 10) (5, 7, 9) (3, 5, 7) (0, 1, 3) (3, 5, 7) 
𝑃12 (3, 5, 7) (0, 1, 3) (1, 3, 5) (1, 3, 5) (3, 5, 7) 
𝑃13 (1, 3, 5) (3, 5, 7) (7, 9, 10) (5, 7, 9) (9, 10, 10) 
𝑃14 (7, 9, 10) (5, 7, 9) (3, 5, 7) (7, 9, 10) (7, 9, 10) 
𝑃15 (3, 5, 7) (7, 9, 10) (5, 7, 9) (3, 5, 7) (1, 3, 5) 
𝑃16 (1, 3, 5) (3, 5, 7) (3, 5, 7) (9, 10, 10) (5, 7, 9) 
𝑃17 (7, 9, 10) (1, 3, 5) (9, 10, 10) (5, 7, 9) (0, 1, 3) 
𝑃18 (3, 5, 7) (5, 7, 9) (7, 9, 10) (3, 5, 7) (0, 1, 3) 
𝑃19 (7, 9, 10) (0, 1, 3) (1, 3, 5) (7, 9, 10) (3, 5, 7) 
𝑃20 (1, 3, 5) (7, 9, 10) (5, 7, 9) (9, 10, 10) (5, 7, 9) 

      

 

Table 9. Fuzzy weight values of criteria and patients’ information in the first iteration 
 

 
 

𝑪𝟏 
 

𝑪𝟐 𝑪𝟑 𝑪𝟒 

     

𝑾𝒋 
𝐻 𝑉𝐻 𝑀𝐻 𝑀 

(0.7, 0.9, 1) (0.9,1, 1) (0.5, 0.7, 0.9) (0.3, 0.5 0.7) 
     

     

𝑃1 (1, 3, 5) (7, 9, 10) (1, 3, 5) (5, 7, 9) 
𝑃2 (5, 7, 9) (3, 5, 7) (0, 1, 3) (1, 3, 5) 
𝑃3 (3, 5, 7) (5, 7, 9) (3, 5, 7) (0, 1, 3) 
𝑃4 (7, 9, 10) (1, 3, 5) (7, 9, 10) (9, 10, 10) 

     

 

Table 10. Prioritizing patients in the first iteration 
 

 
 

𝑺𝒊 
 

𝑹𝒊 𝑸𝒊 R 

     

𝑃1 1.319 0.875 0.659 3 

𝑃2 1.744 0.700 0.661 4 

𝑃3 1.408 0.569 0.328 1 

𝑃4 0.775 0.975 0.503 2 
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Second iteration (𝑡 = 2): Due to the dynamic nature of the system, a new criterion (𝐶5: Actions 

required) has been added to the other criteria. The fuzzy values of criteria weight and patients' 

information are presented in Table 11 and the prioritization of patients in the second iteration is 

presented in Table 12. 
 

Table 11. Fuzzy weight values of criteria and patients’ information in the second iteration 
 

 
 

𝑪𝟏 
 

𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

      

𝑾𝒋 
𝐻 𝑉𝐻 𝑀𝐻 𝑀 𝑀𝐻 

(0.7, 0.9, 1) (0.9,1, 1) (0.5, 0.7, 0.9) (0.3, 0.5 0.7) (0.5, 0.7, 0.9) 
      

      

𝑃1/𝑃2 (5, 7, 9) (3, 5, 7) (0, 1, 3) (1, 3, 5) (5, 7, 9) 
𝑃2 (3, 5, 7) (7, 9, 10) (5, 7, 9) (3, 5, 7) (1, 3, 5) 
𝑃3 (5, 7, 9) (1, 3, 5) (9, 10, 10) (7, 9, 10) (7, 9, 10) 

      

 

Table 12. Prioritizing patients in the second iteration 
 

                 

 𝑺𝒊 𝑹𝒊 𝑸𝒊 R 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 𝑬𝟓 𝑬𝟔 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 
                 

                 

𝑃1 2.361 0.925 0.738 3 0.661 0.488 0.399 0.661 0.535 0 3 2 1 3 2 1 
𝑃2 1.852 0.875 0.479 1 0.479 0.479 0.479 0.479 0.479 0.479 1 1 2 1 1 2 
𝑃3 1.326 1.100 0.607 2 0.607 0.607 0.607 0.607 0.607 0.607 2 3 3 2 3 3 

                 

In this iteration, in order to better compare the results, we have used the mentioned six shared 

functions (Equations 10 to 15, respectively). By using functions one and four, patient 𝑃1 will become 

a member of the maintained set, and by using functions two, three, five and six, patient 𝑃3 will become 

a member of the maintained set. According to the obtained results, evaluation functions one and four 

are not suitable functions for evaluating the most urgent level of the ESI standard, because this level 

requires a stronger common (descending) function to reduce the VIKOR index (𝑄) of patients. 

Patients who have been waiting for previous courses. It is assumed that no new patient will come to 

the system until the treatment of the patient with the first priority is completed, and two new patients 

will be admitted during the treatment of the patient with the second priority. Therefore, evaluation 

functions one and four have been removed, and the patient with the third priority of this iteration (𝑃3) 

along with two newly arrived patients will go to the third iteration and will be evaluated using 

functions two, three, five and six. 

The third iteration (𝑡 = 3): In this iteration, another criterion is added to the criteria of the evaluation 

system (𝐶6: Degree of fracture). The fuzzy values of criteria weight and patient information are 

presented in Table 13 and the prioritization of patients in the third iteration is presented in Table 14. 

According to the calculations, using functions two and five, patient 𝑃1 (patient 𝑃3 in the previous 

iteration) is considered a member of the maintained set, and using functions three and six, patient 𝑃2 

is a member of the maintained set. Therefore, due to the reasons stated in the previous section, 

functions two and five are not suitable functions for evaluation and are removed. Assuming that when 

treating the patient with the second priority (𝑃3), we have a newly arrived patient, the patient with the 

third priority (𝑃2) goes to the next iteration together with the new patient, and they are evaluated by 

using functions three and six. 
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Table 13. Fuzzy weight values of criteria and patients’ information in the third iteration 
 

 
 

𝑪𝟏 
 

𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 

       

𝑾𝒋 
𝐻 𝑉𝐻 𝑀𝐻 𝑀 𝑀𝐻 𝑀𝐿 

(0.7, 0.9, 1) (0.9,1, 1) (0.5, 0.7, 0.9) (0.3, 0.5 0.7) (0.5, 0.7, 0.9) (0.1, 0.3, 0.5) 
       

       

𝑃1/𝑃3 (5, 7, 9) (1, 3, 5) (7, 9, 10) (7, 9, 10) (7, 9, 10) (3, 5, 7) 
𝑃2 (7, 9, 10) (3, 5, 7) (1, 3, 5) (7, 9, 10) (5, 7, 9) (7, 9, 10) 
𝑃3 (5, 7, 9) (7, 9, 10) (3, 5, 7) (1, 3, 5) (7, 9, 10) (0, 1, 3) 

       

 

Table 14. Prioritizing patients in the third iteration 
 

  

𝑺𝒊 
 

𝑹𝒊 𝑸𝒊 R 𝑬𝟐 𝑬𝟑 𝑬𝟓 𝑬𝟔 𝑶𝟐 𝑶𝟑 𝑶𝟓 𝑶𝟔 

             

𝑃1 2.404 0.925 0.765 3 0.465 0.372 0.512 0 3 1 3 1 
𝑃2 2.359 0.838 0.451 2 0.451 0.451 0.451 0.451 2 3 2 3 
𝑃3 2.230 0.888 0.434 1 0.434 0.434 0.434 0.434 1 2 1 2 

             

The fourth iteration (𝑡 = 4): According to the dynamics of the system, in this iteration, the weight of 

the second criterion (respiratory status) and the third criterion (level of consciousness) has decreased 

compared to the previous period. The fuzzy weight values of criteria and patients' information are 

presented in Table 15 and the prioritization of patients in the fourth iteration is presented in Table 16. 
 

Table 15. Fuzzy weight values of criteria and patients’ information in the fourth iteration 
 

 
 

𝑪𝟏 
 

𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 

       

𝑾𝒋 
𝐻 𝑀𝐻 𝑀 𝑀 𝑀𝐻 𝑀𝐿 

(0.7, 0.9, 1) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.3, 0.5 0.7) (0.5, 0.7, 0.9) (0.1, 0.3, 0.5) 
       

       

𝑃1/𝑃2 (7, 9, 10) (3, 5, 7) (1, 3, 5) (7, 9, 10) (5, 7, 9) (7, 9, 10) 
𝑃2 (7, 9, 10) (5, 7, 9) (3, 5, 7) (3, 5, 7) (7, 9, 10) (1, 3, 5) 

       

 

Table 16. Prioritizing patients in the fourth iteration 
 

  

𝑺𝒊 
 

𝑹𝒊 𝑸𝒊 R 𝑬𝟑 𝑬𝟔 𝑶𝟑 𝑶𝟔 

         

𝑃1 2.766 0.875 0.756 2 0.341 0 2 1 
𝑃2 2.047 0.675 0.244 1 0.244 0.244 1 2 

         

 

Based on the results obtained from functions three and six, function six is more suitable. Since level 

one is the most sensitive and urgent level, therefore, the strongest shared function (namely function 

six) is chosen for evaluating patients. In the next iterations, patients are prioritized and treated using 

this function. For the way of prioritizing patients at other ESI triage levels, it is possible to use other 

weaker shared functions that were introduced in the previous section, based on the amount of urgency 

and the sensitivity of the patients’ waiting time. The proposed framework for solving dynamic 

decision-making problems is implemented as a case study in the Emergency Department (ED) of 

Edalatian in Mashhad city in Iran. Figure 7 shows the flow process diagram of patients in Edalatian 

emergency center. 
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Figure 7. Flow chart of patients in Edalatian emergency center 

In order to calculate the waiting time of patients in the normal state and compare it with the state 

where we use the proposed framework, a computer simulation has been done using Arena software. 

In order to determine the necessary statistical distributions, information has been collected from the 

documentation office of the nursing unit of the triage department. This information includes times 

between patient arrivals as well as service time in different emergency departments for 100 patients. 

Using the data input analyzer menu in the Arena software, the corresponding statistical distributions 

have been obtained, which are mentioned below. The process of entering patients has a beta 

distribution with different parameters for each level, which is presented in Table 17. The distribution 

of service time to patients in different parts of the emergency department is also presented in Table 

18. 

Table 17. Statistical distribution of triage levels (Time in minutes) 
 

 

ESI Levels 
 

Distribution Description 

   

ESI 1 BETA 270 + 297 ∗ 𝐵𝐸𝑇𝐴(0.866, 0.889) 
ESI 2 BETA 84.5 + 184 ∗ 𝐵𝐸𝑇𝐴(0.721, 0.785) 
ESI 3 BETA 64.5 + 57 ∗ 𝐵𝐸𝑇𝐴(0.955, 0.987) 
ESI 4 BETA 51 + 39 ∗ 𝐵𝐸𝑇𝐴(0.931, 0.961) 
ESI 5 BETA 29 + 46 ∗ 𝐵𝐸𝑇𝐴(1.08, 1.25) 

   

Table 18. Statistical distribution of service in different parts of the emergency (Time in minutes) 
 

 

Part 
 

Distribution Description 

   

CPR BETA 4.5 + 5 ∗ 𝐵𝐸𝑇𝐴(0.851, 0.952) 
Triage BETA 0.5 + 6 ∗ 𝐵𝐸𝑇𝐴(1.08, 0.977) 
Facial Emergency BETA 14.5 + 16 ∗ 𝐵𝐸𝑇𝐴(1.17, 1.09) 
ENT Emergency BETA 20.5 + 16 ∗ 𝐵𝐸𝑇𝐴(1.09, 1.13) 
Trauma Emergency BETA 14.5 + 31 ∗ 𝐵𝐸𝑇𝐴(1.07, 1.04) 

Plaster Cast BETA 12.5 + 9 ∗ 𝐵𝐸𝑇𝐴(1.09, 1.18) 
Fast Checkup BETA 2.5 + 5 ∗ 𝐵𝐸𝑇𝐴(0.998, 1.06) 
Serum Therapy BETA 41.5 + 20 ∗ 𝐵𝐸𝑇𝐴(0.854, 0.867) 
Injection BETA 2.5 + 4 ∗ 𝐵𝐸𝑇𝐴(1.28, 1.13) 
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5. DISCUSSION ON RESULTS 

The aim of the simulation performed in this research is to estimate the waiting time of patients in 

different parts of the emergency department. Here is the Cardiopulmonary Resuscitation (CPR) part 

for comparison and analysis. The results of the simulation can be seen in Table 19. 

Table 19. Arena software outputs 
 

 

Part of Emergency 
 

Waiting time (minutes) 

  

CPR 12.11 

Triage 1.73 

Facial Emergency 17.90 

ENT Emergency 8.59 

Trauma Emergency 14.96 

Plaster Cast 4.09 

Fast Checkup 24.83 

Serum Therapy 0.08 

Injection 0.19 
  

As the results show, patients will wait for an average of 12.11 minutes in the CPR part. In the static 

model where the queue type is FIFO (First In, First Out), the patient who is in serious condition must 

also wait in the queue and has no priority over other patients in the queue. While in the dynamic 

model, based on the presented prioritization, critical patients are treated sooner and their waiting time 

should naturally be reduced compared to the static state. Table 20 shows the average waiting time of 

patients in the CPR part along with their prioritization. 

The first part of the table, which includes the arrival and service times of the patients, is obtained in 

such a way that we have reduced the simulation execution speed in the Arena software so that these 

times can be determined. The second part, which is related to iterations and prioritization of patients, 

is obtained from the implementation of the VIKOR method in Excel software. As it can be seen, 

decision-making has been done in 15-minute intervals and 9 iterations have occurred, and the output 

of the program presents 9 priorities. The obtained results show that the average waiting time of 

patients in the CPR part is 8.31 minutes, which has significantly decreased compared to the static 

state. 

6. CONCLUSION AND FUTURE STUDIES 

A proper triage system is a system that can perform the process of prioritizing patients in the best 

way in the shortest possible time. Although the type of triage system has a special effect on its 

performance, sometimes even the best systems are confused in prioritization. This is due to the 

inherent nature of triage. In the real world, the criteria at each decision point of the triage process are 

unstable and dynamic and can change constantly.  If a scientific method for dynamic triage 

management is not developed, this issue will show its first effect on patients’ waiting time.  

Table 20. Waiting time (minutes) of patients in CPR part in dynamic mode 
 

P
a

ti
en

ts
 

Arrival 
Time 

Start of 
Service 

End of 
Service 

Waiting 
Time 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 

𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 𝑬 𝑶 

                       

𝑃1 6: 04: 22 6: 16: 01 6: 21: 03 11: 39 0.77 𝟐 0.00 𝟏               
𝑃2 6: 09: 15 6: 09: 15 6: 16: 01 0: 00 0.23 𝟏                 
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𝑃3 6: 16: 29 6: 21: 03 6: 29: 40 4: 34   0.10 𝟐               
𝑃4 6: 21: 09 6: 36: 50 6: 42: 35 15: 41   0.89 𝟒 0.00 𝟏             
𝑃5 6: 25: 50 6: 29: 40 6: 36: 50 3: 50   0.74 𝟑               
𝑃6 6: 34: 13 6: 42: 35 6: 48: 48 8: 22     0.04 𝟐             
𝑃7 6: 38: 58 6: 59: 43 7: 05: 11 20: 45     1.00 𝟒 0.83 𝟑           
𝑃8 6: 43: 48 6: 48: 48 6: 53: 03 5: 00     0.28 𝟑 0.00 𝟏           
𝑃9 6: 49: 24 6: 53: 03 6: 59: 43 3: 39       0.04 𝟐           
𝑃10 6: 55: 13 7: 05: 11 7: 10: 10 9: 58       0.91 𝟒 0.00 𝟏         

𝑃11 7: 03: 11 7: 10: 10 7: 18: 46 6: 59         0.08 𝟐         

𝑃12 7: 08: 23 7: 29: 51 7: 35: 53 14: 46         1.00 𝟒 1.00 𝟑       
𝑃13 7: 14: 41 7: 18: 46 7: 23: 09 4: 05         0.33 𝟑 0.00 𝟏       
𝑃14 7: 18: 01 7: 23: 09 7: 29: 51 5: 00           0.56 𝟐       
𝑃15 7: 33: 01 7: 35: 53 7: 44: 54 2: 52             0.09 𝟏     
𝑃16 7: 38: 28 7: 53: 48 8: 01: 16 15: 20             0.84 𝟑 0 𝟏   
𝑃17 7: 44: 25 7: 44: 54 7: 53: 48 0: 29             0.78 𝟐     
𝑃18 7: 50: 54 8: 01: 16 8: 07: 33 10: 22               0.10 𝟐 0.00 𝟏 
𝑃19 7: 57: 35 8: 15: 46 8: 20: 10 18: 11               1.00 𝟑 0.99 𝟑 
𝑃20 8: 05: 33 8: 07: 33 8: 15: 46 2: 00                 0.32 𝟐 

                       

Due to the importance of this problem in hospitals, many algorithms have been presented to reduce 

the waiting time. In the present study, a dynamic algorithm based on MADM techniques and 

mathematical modeling of the problem was presented in order to prioritize patients in the emergency 

department. Also, in order to reduce the VIKOR index (𝑄) values of the patients belonging to the 

maintenance set, appropriate shared functions were used in the modeling of the problem. 

By simulating the Mashhad Edalatian emergency center and estimating the average waiting time, the 

results of the proposed dynamic model were compared and analyzed with static models. The results 

showed that the waiting time in the dynamic algorithm was significantly reduced compared to the 

static algorithm. Therefore, the presented dynamic algorithm has a better capability and ability to 

reduce waiting time than static algorithms. Considering the extent of the subject of this research, it is 

suggested for future studies that by using other shared (cumulative) functions, the waiting time in 

dynamic mode and other static modes should be investigated. Specifically, the ideas that can be 

considered as future contributions in the literature of this field are as follows: 
 

• Focusing on other types of triage systems and selecting appropriate emergency departments as a 

case study. 

• Using dynamic group decision-making methods with a focus on solving other problems of triage 

systems such as: Increasing patient satisfaction, proper accommodation for patients, reducing 

costs. 

• Using uncertainty methods (including neutrosophic, grey, probabilistic planning, robust 

optimization, etc.) for more realistic simulation of triage systems in order to more scientifically 

match the models with the real world. 

Conflicts of Interests 

The authors declared that there is no conflict of interest. 

Contribution of Authors 

The authors involved in this study are Ali Taherinezhad*, Alireza Alinezhad, and Saber Gholami; All 

authors contributed to the idea, design, resources, data collection, literature review, methods 

implementation and analysis and interpretation sections of the study. 



Taherinezhad, Alinezhad, Gholami             Journal of Optimization & Decision Making 3(1), 398-419, 2024 

 

417 

REFERENCES 

Alinezhad, A., & Taherinezhad, A. (2020). Control Chart Recognition Patterns Using Fuzzy Rule-Based 

System. Iranian Journal of Optimization, 12(2), 149-160. Dor: 

https://dorl.net/dor/20.1001.1.25885723.2020.12.2.2.0 

Alinezhad, A., & Taherinezhad, A. (2021). Performance Evaluation of Production Chain using Two-Stage 

DEA Method (Case Study: Iranian Poultry Industry). new economy and trade, 16(3), 105-130. 

Doi: https://doi.org/10.30465/jnet.2022.36849.1741 

Alinezhad, A., Heidaryan, L., & Taherinezhad, A. (2023). Ranking the Measurement System of Auto Parts 

Companies via MSA–MADM Combinatorial Method under Fuzzy Conditions. Sharif Journal of 

Industrial Engineering & Management, 38.1(2), 15-27. Doi: 

https://doi.org/10.24200/j65.2022.56897.2176 

Alinezhad, A., Makui, A., & Mavi, R. K. (2007). An inverse DEA model for inputs/outputs estimation with 

respect to decision maker’s preferences: The case of Refah bank of IRAN. Mathematical Sciences, 1(1-

2), 61-70. 

Amini, A., Alinezhad, A., & Yazdipoor, F. (2019). A TOPSIS, VIKOR and DEA integrated evaluation method 

with belief structure under uncertainty to rank alternatives. International Journal of Advanced 

Operations Management, 11(3), 171-188. 

Ashour, O. M., & Kremer, G. E. O. (2013). A simulation analysis of the impact of FAHP–MAUT triage 

algorithm on the Emergency Department performance measures. Expert Systems with Applications, 

40(1), 177-187. 

Doi: https://doi.org/10.1016/j.eswa.2012.07.024 

Badiru, A. B., Pulat, P. S., & Kang, M. (1993). DDM: Decision support system for hierarchical dynamic 

decision making. Decision Support Systems, 10(1), 1-18. Doi: https://doi.org/10.1016/0167-

9236(93)90002-K 

Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta psychologica, 81(3), 

211-241. Doi: https://doi.org/10.1016/0001-6918(92)90019-A 

Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria decision making. 

Decision Support Systems, 52(1), 52-60. Doi: https://doi.org/10.1016/j.dss.2011.05.003 

Chang, T. H. (2014). Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. 

Information Sciences, 271, 196-212. Doi: https://doi.org/10.1016/j.ins.2014.02.118 

Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets 

and systems, 114(1), 1-9. Doi: https://doi.org/10.1016/S0165-0114(97)00377-1 

Chen, Y., & Li, B. (2011). Dynamic multi-attribute decision making model based on triangular intuitionistic 

fuzzy numbers. Scientia Iranica, 18(2), 268-274. Doi: https://doi.org/10.1016/j.scient.2011.03.022 

Chen, Y., Li, K. W., & He, S. (2010, October). Dynamic multiple criteria decision analysis with application in 

emergency management assessment. In 2010 IEEE International Conference on Systems, Man and 

Cybernetics (pp. 3513-3517). IEEE. Doi: https://doi.org/10.1109/ICSMC.2010.5642410 

Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic press. 

Gilboy, N., Tanabe, T., Travers, D., & Rosenau, A. M. (2011). Emergency severity index (esi): A triage tool 

for emergency department. Rockville, MD: Agency for Healthcare Research and Quality. 

https://dorl.net/dor/20.1001.1.25885723.2020.12.2.2.0
https://doi.org/10.30465/jnet.2022.36849.1741
https://doi.org/10.24200/j65.2022.56897.2176
https://doi.org/10.1016/j.eswa.2012.07.024
https://doi.org/10.1016/0167-9236(93)90002-K
https://doi.org/10.1016/0167-9236(93)90002-K
https://doi.org/10.1016/0001-6918(92)90019-A
https://doi.org/10.1016/j.dss.2011.05.003
https://doi.org/10.1016/j.ins.2014.02.118
https://doi.org/10.1016/S0165-0114(97)00377-1
https://doi.org/10.1016/j.scient.2011.03.022
https://doi.org/10.1109/ICSMC.2010.5642410


Taherinezhad, Alinezhad, Gholami             Journal of Optimization & Decision Making 3(1), 398-419, 2024 

 

418 

Hu, J., & Yang, L. (2011). Dynamic stochastic multi-criteria decision making method based on cumulative 

prospect theory and set pair analysis. Systems Engineering Procedia, 1, 432-439. Doi: 

https://doi.org/10.1016/j.sepro.2011.08.064 

İşler, M. & Çalık, A. (2022). An approach to islamic investment decision making based on integrated Entropy 

and WASPAS methods. Journal of Optimization and Decision Making, 1(2), 100-113. Retrieved from 

https://dergipark.org.tr/en/pub/jodm/issue/76302/1257617    

Jassbi, J. J., Ribeiro, R. A., & Varela, L. R. (2014). Dynamic MCDM with future knowledge for supplier 

selection. Journal of Decision Systems, 23(3), 232-248. Doi: 

https://doi.org/10.1080/12460125.2014.886850 

Khalili, J., & Alinezhad, A. (2018). Performance evaluation in green supply chain using BSC, DEA and data 

mining. International journal of supply and operations management, 5(2), 182-191. 

Doi: https://dx.doi.org/10.22034/2018.2.6 

Kiani Mavi, R., Makui, A., Fazli, S., & Alinezhad, A. (2010). A forecasting method in data envelopment 

analysis with group decision making. International Journal of Applied Management Science, 2(2), 152-

168. 

Doi: https://doi.org/10.1504/IJAMS.2010.031084 

Klir, G. J., & Folger, T. A. (1987). Fuzzy sets, uncertainty, and information. Prentice-Hall, Inc. 

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4, pp. 1-12). New Jersey: Prentice hall. 

Lin, Y. H., Lee, P. C., & Ting, H. I. (2008). Dynamic multi-attribute decision making model with grey number 

evaluations. Expert Systems with Applications, 35(4), 1638-1644. Doi: 

https://doi.org/10.1016/j.eswa.2007.08.064 

Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision making with 

heterogeneous information in a dynamic environment. Information Sciences, 330, 1-18. 

Doi: https://doi.org/10.1016/j.ins.2015.10.005 

Norouziyan, S. (2022). Application of Analytic Hierarchy Process Method and VIKOR for ABS Market of 

Countries. Journal of Optimization and Decision Making, 1(1), 19-27. Retrieved from 

https://dergipark.org.tr/en/pub/jodm/issue/76301/1257552 

Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of 

VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. 

Doi: https://doi.org/10.1016/S0377-2217(03)00020-1 

Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. 

European journal of operational research, 178(2), 514-529. Doi: 

https://doi.org/10.1016/j.ejor.2006.01.020 

Peng, K. H., & Tzeng, G. H. (2013). A hybrid dynamic MADM model for problem-improvement in economics 

and business. Technological and Economic Development of Economy, 19(4), 638-660. 

Doi: https://doi.org/10.3846/20294913.2013.837114 

Ramadan, Ö. & Özdemir, Y. S. (2022). Prioritization of rail system projects by using FUZZY AHP and 

PROMETHEE. Journal of Optimization and Decision Making, 1 (2), 114-122. Retrieved from 

https://dergipark.org.tr/en/pub/jodm/issue/76302/1257621   

Sabry, A. A. F., Abdel Salam, W. N., Abdel Salam, M. M., Moustafa, K. S., Gaber, E. M., & Beshey, B. N. 

(2023). Impact of implementing five-level triage system on patients outcomes and resource utilization 

in the emergency department of Alexandria main university hospital. Egyptian Journal of Anaesthesia, 

39(1), 546-556. 

https://doi.org/10.1016/j.sepro.2011.08.064
https://dergipark.org.tr/en/pub/jodm/issue/76302/1257617
https://doi.org/10.1080/12460125.2014.886850
https://dx.doi.org/10.22034/2018.2.6
https://doi.org/10.1504/IJAMS.2010.031084
https://doi.org/10.1016/j.eswa.2007.08.064
https://doi.org/10.1016/j.ins.2015.10.005
https://dergipark.org.tr/en/pub/jodm/issue/76301/1257552
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1016/j.ejor.2006.01.020
https://doi.org/10.3846/20294913.2013.837114
https://dergipark.org.tr/en/pub/jodm/issue/76302/1257621


Taherinezhad, Alinezhad, Gholami             Journal of Optimization & Decision Making 3(1), 398-419, 2024 

 

419 

Doi: https://doi.org/10.1080/11101849.2023.2234712 

Sarrafha, K., Kazemi, A., & Alinezhad, A. (2014). A multi-objective evolutionary approach for integrated 

production-distribution planning problem in a supply chain network. Journal of Optimization in 

Industrial Engineering, 7(14), 89-102. Dor: https://dorl.net/dor/20.1001.1.22519904.2014.7.14.8.6 

Schweizer, B., & Sklar, A. (2011). Probabilistic metric spaces. Courier Corporation. 

 
Stewart, J. V. (2003). Vital Signs and resuscitation. CRC Press. Doi: https://doi.org/10.1201/9781498713771 

Taherinezhad, A., & Alinezhad, A. (2022). COVID-19 Crisis Management: Global Appraisal using Two-Stage 

DEA and Ensemble Learning Algorithms. Scientia Iranica, (Article in press). 

Doi: https://doi.org/10.24200/sci.2022.58911.5962 

Taherinezhad, A., & Alinezhad, A. (2023). Nations performance evaluation during SARS-CoV-2 outbreak 

handling via data envelopment analysis and machine learning methods. International Journal of Systems 

Science: Operations & Logistics, 10(1), 2022243. Doi: https://doi.org/10.1080/23302674.2021.2022243 

Travers, D. A., Waller, A. E., Bowling, J. M., Flowers, D., & Tintinalli, J. (2002). Five-level triage system 

more effective than three-level in tertiary emergency department. Journal of emergency nursing, 28(5), 

395-400. Doi: https://doi.org/10.1067/men.2002.127184 

Wang, L., Zhang, Z. X., & Wang, Y. M. (2015). A prospect theory-based interval dynamic reference point 

method for emergency decision making. Expert Systems with Applications, 42(23), 9379-9388. 

Doi: https://doi.org/10.1016/j.eswa.2015.07.056 

Wei, G. W. (2009). Some geometric aggregation functions and their application to dynamic multiple attribute 

decision making in the intuitionistic fuzzy setting. International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, 17(02), 179-196. Doi: https://doi.org/10.1142/S0218488509005802 

Zadeh, L. A. (1983). Linguistic variables, approximate reasoning and dispositions. Medical Informatics, 8(3), 

173-186. Doi: https://doi.org/10.3109/14639238309016081 

https://doi.org/10.1080/11101849.2023.2234712
https://dorl.net/dor/20.1001.1.22519904.2014.7.14.8.6
https://doi.org/10.1201/9781498713771
https://doi.org/10.24200/sci.2022.58911.5962
https://doi.org/10.1080/23302674.2021.2022243
https://doi.org/10.1067/men.2002.127184
https://doi.org/10.1016/j.eswa.2015.07.056
https://doi.org/10.1142/S0218488509005802
https://doi.org/10.3109/14639238309016081

