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Abstract. In this paper, we investigate the existence of a piecewise asymptot-
ically almost automorphic mild solution to some classes of integro-differential

equations with impulsive effects in Banach space. The working tools are
based on the Mönch’s fixed point theorem, the concept of measures of non-

compactness theorem and resolvent operator. In order to illustrate our main

results, we study the piecewise asymptotically almost automorphic solution of
the impulsive differential equations.

1. Introduction

The exploration of impulsive integro-differential equations has witnessed rapid
expansion in recent years, finding diverse applications in mathematical models span-
ning domains such as chemical technology, population dynamics, electrical engineer-
ing, medicine, physics, ecology, economics, biology, and beyond. The pioneering
work of Milman and Myshkis [36] dates back to 1960 when they first introduced
the concept of impulsive differential equations. To delve deeper into the outcomes
and practical uses of impulsive integro-differential equations, comprehensive in-
sights can be gleaned from the monographs authored by Bainov and Simeonov [7].
In the books authored by Benchohra et al. [9, 10], numerous results concerning
differential equations are derived using a range of tools, including the utilization

2020 Mathematics Subject Classification. 34G20.
Keywords. Asymptotically almost automorphic, integro-differential equations, mild solution,
evolution system, Kuratowski measures of noncompactness, Mönch fixed point.
1 noreddinerezoug@yahoo.fr; 0000-0003-3504-8736
2 salim.abdelkrim@yahoo.com, a.salim@univ-chlef.dz-Corresponding author; 0000-0003-
2795-6224
3 benchohra@yahoo.com; 0000-0003-3063-9449.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

894



NONLINEAR SEMILINEAR INTEGRO-DIFFERENTIAL EVOLUTION EQUATIONS 895

of measures of noncompactness and fixed point theory, from which we drew mo-
tivation. In the papers [11–15], the authors investigated several types of integro-
differential equations under different conditions with qualitative and quantitative
results. In [6, 33, 52], the authors considered some fractional integro-differential
equations with state-dependent delay. See [2–4, 26–28, 48, 49], for some recent re-
sults on impulsive equations.

The notion of almost automorphy stands as a significant extension of Bohr’s clas-
sical concept of almost periodicity, initially introduced by Bochner in [16] in connec-
tion with certain aspects of differential geometry. Since its inception, the realm of
almost automorphic functions has witnessed substantial advancement and applica-
tion across diverse fields such as ordinary differential equations, partial differential
equations, functional differential equations, integro-differential equations, fractional
differential equations, and even stochastic differential equations. A notable array of
references, including [5,17–19,24,25,32,35,37,38,41,42,45,50,51,54], serve to illus-
trate these developments. Subsequently, this conceptual framework has undergone
compelling, natural, and potent generalizations. To exemplify, N’Guérékata [40]
introduced the notion of asymptotically almost automorphic functions, which has
been fruitfully applied within the realm of differential equations. For a deeper ex-
ploration of outcomes in this domain, one can turn to [1, 34, 44, 47, 53] and their
associated references. For a comprehensive understanding of the contemporary
theory and applications surrounding asymptotically almost automorphic functions,
N’Guérekata’s monographs [43] offer valuable insights.

In [29], Goldstein and N’Guérékata studied the following semilinear differential
equation in a Banach space X,

x′(t) = Ax(t) + F (t, x(t)), t ∈ R,

where A generates an exponentially stable C0-semigroup and F (t, x) : R× X → X
is a function of the form F (t, x) = P (t)Q(x). Under appropriate conditions on P
and Q, and using the Schauder fixed point theorem, they proved the existence of
an almost automorphic mild solution to the above equation.

José and Claudio [46] investigated the existence and uniqueness of an asymptoti-
cally almost automorphic mild solution to the following abstract fractional integro-
differential neutral equation with unbounded delay:

d

dt
D (t, ut) =

∫ t

0

(t− s)α−2

Γ(α− 1)
AD (s, us) ds+ g (t, ut) , t ≥ 0,

u0 = φ ∈ B,

where 1 < α < 2, D(t, φ) = φ(0)+f(t, φ), A : D(A) ⊂ X → X is a linear densely de-
fined operator of sectorial type on a Banach space X, the history ut : (−∞, 0] → X,
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defined by ut(θ) = u(t+ θ), belongs to an abstract phase space B defined axiomat-
ically, and f, g are functions subject to some additional conditions.

Motivated by the above-mentioned discussions, we are interested in investigating
the existence of piecewise asymptotically almost automorphic mild solution for the
following integro-differential equations with impulsive differential system

y′(t) = Ay(t) +

∫ t

0

R(t− s)y(s)ds+ f (t, y(t),My(t)) , t ̸= tj ,

My(t) =

∫ t

0

H(t, s, y(s))ds, t ∈ R+,

∆y(tj) = y(t+j )− y(t−j ) = Jj(y(tj)), j = 1, 2, 3, . . . ,

(1)

where A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup
(S(t))t≥0 ∈ E and (E, | · |) is a Banach space. Here R(t) is a closed linear opera-
tor on E, with domain D(A) ⊂ D(R(t)) which is independent of t. Furthermore,
the fixed times tj satisfy 0 = t0 < t1 < t2 < . . . < tj < . . . , t+j and t−j denote

the right and left limits of y at tj , ∆y(tj) = y(t+j ) − y(t−j ) represents the jump in
the state y at time tj , where Jj determines the size of the jump. The functions
f : R+ × E × E → E, and H : D × E → E, D = {(t, s) ∈ R+ × R+ : s ≤ t},
are appropriate functions satisfying certain assumptions that will be specified later.

We note that the results we have obtained and the problem addressed in this
paper are regarded as an extension and a natural continuation from the previously
cited works, such as [29,46].

Let us describe the content of this paper. In Section 2, we recall some facts
from resolvent operators and measure of noncompactness. In addition, notations
about almost automorphic functions and asymptotically almost automorphic func-
tions are also introduced in this section. In Section 3, we study the existence of
a piecewise asymptotically almost automorphic mild solutions for system (1) with
their proofs, the results are based on Mönch’s fixed point theorem under some
appropriate assumptions. In last section, we provide an example to illustrate our
obtained results.

2. Preliminaries and Basic Results

In this section, we present some mathematical tools needed to demonstrate the

main results. Let E and Ẽ be two Banach spaces. For any Banach space E, the

norm of E is defined by | · |. The space of all bounded linear operators from E to Ẽ

is denoted by L(E, Ẽ) and L(E,E) is written as L(E). We denote by C(R+, E) the
Banach space of all continuous E-valued function on R+. We use ∥f∥Lp to denote
the Lp(R+, E) norm of f whenever f ∈ Lp(R+, E) for some p with 1 ≤ p <∞. We
consider the following spaces:
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▶ Cb(R+, E) : the Banach space of all continuous and bounded functions y mapping
R+ into E equipped with the norm

∥y∥Cb = sup{|y(t)| : t ∈ R+}.

▶ PC(R+, E) : the space formed by all piecewise continuous functions f : R+ → E
such that f(·) is continuous at t for any t ̸= (tj)j∈N , y(t+j ), y(t

−
j ) exist, and

y(t−j ) = y(tj) for all j ∈ N.
▶ PC(R+ × Ẽ × Ẽ, E) : the space formed by all piecewise continuous functions

f : R+ × Ẽ × Ẽ → Ẽ such that for any (y, ν) ∈ Ẽ × Ẽ, f(·, y, ν) ∈ PC(R+, E), and

for any t ∈ R+, f(t, ·, ·) is continuous at (y, ν) ∈ Ẽ × Ẽ.
▶ PC0(R+, E) : the space formed by all piecewise continuous functions Υ : R+ → E
such that lim

t→∞
Υ(t) = 0.

▶ PC0(R+ × Ẽ × Ẽ, E): the space of all piecewise continuous functions Υ : R+ ×
Ẽ × Ẽ → E satisfying lim

t→∞
Υ(t, y, ν) = 0 in t and uniformly for all (y, ν) ∈ K,

where K is any bounded subset of Ẽ × Ẽ.
▶ PCb(R+, E) the subspace of PC(R+, E) consisting of all bounded functions.

It is well-known that PCb(R+, E) is a Banach space with the norm

∥y∥PCb = sup{|y(t)|, t ∈ R+}.

First, let’s recall some basic defnitions and results on the strong continuous
evolution family which will be used later.

We consider the following Cauchy problem y′(t) = Ay(t) +

∫ t

0

R(t− s)y(s)ds, t ≥ 0,

y(t) = y0.
(2)

Definition 1. ( [23,30]) A resolvent for Equation (2) is a bounded linear operator
valued function S(t) ∈ L(E) for t ≥ 0, satisfying the following properties:

(a): For any t ∈ R+, S(0) = I and ∥S(t)∥B(E) ≤ ηe−λ(t−s) for some constants
η and λ.

(b): For each y ∈ E, S(t)y is strongly continuous for t ≥ 0.

(c): For y ∈ E, S(·)y ∈ C1([0,+∞), E) ∩ C([0,+∞), Ẽ) and

S′(t)y = AS(t)y +

∫ t

0

R(t− s)S(s)Ẽds

= S(t)Ay +

∫ t

0

S(t− s)R(s)Ẽds.

We introduce the following assumptions:

(T1): A is the infinitesimal generator of a strongly continuous semigroup
(S(t))t≥0 on E.
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(T2): For all t ≥ 0, B(t) is closed linear operator from D(A) to E and R(t) ∈
L(Ẽ, E). For any y ∈ E, the map t→ R(t)y is bounded, differentiable and
its derivative R′(t)y is bounded and uniformly continuous on R+.

Theorem 1. ( [23,30]) Assume that (T1) and (T2) hold. Then there exists a unique
resolvent operator for the Cauchy problem (2).

Definition 2 ( [16,41,42]). Let u: N → E be a bounded sequence. u is called almost
automorphic sequence, if for each real sequence {j′i}, there exists a subsequence
{j′i} ⊂ {ji} such that

û(j) = lim
n→∞

u(j + jn)

is well defined for each t ∈ R and

lim
n→∞

u(j + jn) = û(j),

for all j ∈ N. Represent this class of all sequences as AA(N, E).

Definition 3. [1] A bounded piecewise continuous function f ∈ PC(R+, E) is said
to be almost automorphic if

(A1): sequence of impulsive moments {tj} is a almost automorphic sequence,
(A2): for every sequence of real numbers {σn}, there exists a subsequence

{σnj} such that

G(t) = lim
n→∞

f(t+ σnj
)

is well defined for each t ∈ R and

lim
n→∞

G(t− σnj
) = f(t)

for each t ∈ R.
Denote by AAPC(R, E) the set of all such functions.

Lemma 1. [41] AAPC(R, E) is a Banach space with the norm

∥f∥PC = sup
t∈R

|f(t)|.

Definition 4. [1,41] A bounded piecewise continuous function f ∈ PC(R+× Ẽ, E)
is called almost automorphic if

(A1): sequence of impulsive moments {tj} is a almost automorphic sequence
(A2): for every sequence of real numbers {σn}, there exists a subsequence

{σnj} such that

lim
n→∞

f(t+ σnj
, y) = g(t, y)

is well defined for each t ∈ R and

lim
n→∞

g(t− σnj
, y) = f(t, y)
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for each t ∈ R and each y ∈ E.

Denote by AAPC(R× E,E) the set of all such functions.

The following definition, which is the Bi-almost automorphicity, is a crucial
ingredient in our approach.

Definition 5 ( [43]). A bounded piecewise continuous function f ∈ PC(R+×R+×
Ẽ, E)) is Bi-almost automorphic if

(A1): sequence of impulsive moments {tj} is an almost automorphic sequence
(A2): for every sequence of real numbers {σn}, there exists a subsequence

{σnj
} such that

lim
n→∞

f(t+ σnj
, s+ σnj

, y) = G(t, s, y)

is well defined for each t ∈ R and

lim
n→∞

G(t− σnj
, s− σnj

, y) = f(t, s, y)

for each t ∈ R and each y ∈ E.

Definition 6. [41] A piecewise continuous function f ∈ PC(R+, E) is said to be
asymptotically almost automorphic if it can be decomposed as

f(t) = G(t) + Υ(t),

where

G(t, y) ∈ AAPC(R+, E), Υ(t, y) ∈ PC0(R+, E).

The space of these kinds of functions is denoted by AAAPC(R+, E).

Definition 7. [41] A piecewise continuous function f ∈ PC(R+ × Ẽ, E)) is said
to be asymptotically almost automorphic if it can be decomposed as

f(t, y) = G(t, y) + Υ(t, y),

where

G(t, y) ∈ AAPC(R+ × Ẽ, E), Υ(t, y) ∈ PC0(R+ × Ẽ, E).

This class of functions is denoted by AAAPC(R+ × Ẽ, E).

We state a lemma inspired by the paper of J. Cao et al. [19] about the composition
result.

Lemma 2. [20] Let y, ν ∈ AAAPC(R+, E), K = {ν(t) : t ∈ R+} × {y(t) : t ∈ R+}
and

f ∈ AAAPC(R+ × E × E,E) ∩ CK(R+ × E × E,E),

then f(·, y(·), ν(·)) ∈ AAAPC(R+, E).



900 N. REZOUG, A. SALIM, M. BENCHOHRA

The proof of the above lemma is similar to the proof of Lemma 2.5 of [19].
Now, we introduce the Kuratowski measure of noncompactness χ defined by

χ(Θ) = inf{ ∆ > 0 : Θ has a finite cover by sets of diameter ≤ ∆},

for a bounded set Θ in any space E. Some basic properties of χ(·) are given in the
following lemma. For more details, please see [8].

Lemma 3. ( [8]) Let E be a Banach space and Θ1,Θ2 ⊂ E be bounded, and the
following properties are satisfied:

(j1) Θ is pre-compact if and only if χ(Θ) = 0,
(j2) χ(Θ) = χ(Θ) = χ(ConvΘ), where Θ and convΘ are the closure and the

convex hull of Θ, respectively,
(j3) χ(Θ1) ≤ χ(Θ2) when Θ1 ⊂ Θ2,
(j4) χ(Θ1 +Θ2) ≤ χ(Θ1) + χ(Θ2),
(j5) χ(kΘ) = |k|χ(Θ) for any k ∈ R,
(j6) χ(Θ2 +Θ1) ≤ χ(Θ2) + χ(Θ2) where Θ2 +Θ1 = {y + ν : y ∈ Θ, ν ∈ Θ2},
(j7) χ(Θ2 ∪Θ1) ≤ max (χ(Θ2), χ(Θ2)) ,
(j8) if Γ : E → E is a Lipschitz continuous map with constant k, then χ(Γ(Θ)) ≤

kχ(Θ) for all bounded subset Θ of E.

Lemma 4. ( [21]) Let E be a Banach space, Θ ⊂ E be bounded. Then there exists
a countable set Θ0 ⊂ Θ, such that

χ(Θ) ≤ 2χ(Θ0).

Lemma 5. ( [31]) Let V be a Banach space, and let Θ = {yn} ⊂ C([c, d], E) be
a bounded and countable set for constants −∞ < c < d < +∞. Then Ψ(v(t)) is
Lebesgue integral on [c, d], and

χ
({∫ d

c

yn(t)dt : n ∈ N
})

≤ 2

∫ d

c

χ(Θ(t))dt.

Now, we recall a useful compactness criterion.

Lemma 6. [22][Corduneanu]
A set C ⊂ PCb(R+, E) is relatively compact if the following conditions hold

(i): C is bounded in PCb(R+, E),
(ii): C is a locally equicontinuous family of function, i.e., for any constant
d > 0, the functions in C are equicontinuous in [0, d],

(iii): the set C(t) := {y(t) : y ∈ C} is relatively compact on any compact
interval of R+,

(iv): the functions from C are equiconvergent, i.e For each ε > 0 ,there exists
d(ε) > 0 such that |y(t)− y(+∞)| < ε for all t ≥ d(ε) and for all y ∈ C.

Finally, we will make use of Mönch’s fixed point theorem
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Theorem 2. (Mönch fixed point) [39]. Suppose that Ω is a closed convex subset
of X; 0 ∈ Ω. If the map N : Ω → X is continuous and of Mönch type, namely, Q
satisfies the following property

Θ ⊂ Ω,Θ is countable, Θ ⊂ Conv (N(Θ) ∪ {0}) =⇒ Θ is compact,

then, N has a fixed point in Ω.

3. The Main Results

Before starting our main results, we recall the definition of the mild solution of
(1).

Definition 8. A function y ∈ PCb(R+, E) is called a mild solution to the problem
(1) if y satisfies the integral equation

y(t) = S(t)y0+
∑

0<tj<t

S(t−tj)Jj(y(tj))+t0S(t−s)f (s, y(s),My(s)) ds, t ∈ R+. (3)

The following assumptions are needed to establish our results.

(H1): The resolvent operator given by Theorem 1 satisfies the following con-
dition:

∥S(t− s)∥L(E) ≤ ηe−λ(t−s) where η > 0 and λ > 0.

(H2): The function f : R+ × E × E → E satisfies:
(i): For a.e. t ∈ R+, the function f(t, ·, ·) : R+×E×E → E is continuous,

and for each (y, ν) ∈ E × E, the function f(·, y, ν) : R+ × E × E is
strongly measurable.

(i): The function f(t, y, ν) asymptotically almost automorphic i.e., f(t, y, ν) =
G(t, y, ν) + Υ(t, y, ν) with

G(t, y, ν) ∈ AAPC(R× E × E,E), Υ(t, y, ν) ∈ C0(R+ × E × E,E),

and G(t, y, ν) is uniformly continuous on any bounded subset K ⊂
E × E uniformly for t ∈ R.

(ii): There exists a function ℏ ∈ L
1
p1 (R+,R+), for a constant p1 ∈ (0, 1)

such that:

|f(t, y, ν)| ≤ ℏ(t)(|y|+ |ν|) for a.e t ∈ R+ and each y, ν ∈ E.

(iii): There exists a function ρ ∈ L
1
p2 (R+,R+), for a constant p2 ∈ (0, 1)

such that:

χ(f(t,Ω1,Ω2)) ≤ ρ(t) (χ(Ω1) + χ(Ω2)) , t ∈ R+,

for any bounded countable subsets Ω1,Ω2 ⊂ PCb(R+, E).
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(H3): The function H : D × E → E have the decomposition H = Ha + Hρ
0

in which Ha is Bi-almost automorphic functions which satisfies Bi-almost
automorphic in (t, s) uniformly on bounded subsets of E and is ϱ-bounded.
Moreover,

sup
t∈R

∫ t

−∞
ϱ(t, s)ds = ϱ∗ < +∞.

Also, the Bi-almost automorphic functions Ha is (ϕ, ϕ̂)-Lipschitz (see [20]),
with

sup
t∈R

∫ t

−∞
ϕ(t, s)ds = ϕ∗ < +∞;

and for every compact interval [a, b] ⊂ R, the following limit holds

lim
t→+∞

∫ b

a

ϕ(t, s)ds = 0,

we also assume that there exists a function π : R × R → R+ such that
|H(t, s, 0)| ≤ π(t, s),

lim
t→+∞

∫ 0

−∞
π(t, s)ds = 0

and Hθ
0 ∈ Cθ0(D × E,E), with∫ d

0

θ(t, s)ds = 0, for a.e d > 0.

and

sup
t∈R+

∫ t

0

θ(t, s)ds = q < +∞

(i): There exists a positive function υ(t, s) ∈ L1(D,R+) such that:

|H(t, s, y)| ≤ υ(t, s)(1 + |y|), for a.e t ∈ R+ and each y ∈ E.

(ii): There exists a positive function ϑ(t, s) ∈ L1(D,R+) such that for any bounded countable
Ω ⊂ PCb(R+, E)

χ(H(t, s,Ω) ≤ ϑ(t, s)χ(Ω), t ∈ R+.

(H4): The impulse functions Jj : E → E for j = 1, 2, 3 . . . , is a sequence of
almost asymptotically automorphic function and satisfies:
(i): There exist positive constant numbers σj and ςj such that

|Jj(y)| ≤ σj |y|+ ςj , for a.e t ∈ R+ and each y ∈ E.

(ii): There exist θj > 0 ; j = 1, 2, . . . . such that for any bounded countable
Ω ⊂ PCb(R+, E)

χ(Jj(Ω)) ≤ θjχ(Ω).

In the proofs of our results, we need the following auxiliary result.
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Lemma 7. [20] Let f = G+Υ ∈ AAAPC(R+×E×E,E) with G ∈ AAPC(R, E),Υ ∈
PC0(R+, E). Then

E1(t) :=

∫ t

0

S(t− s)f(s)ds ∈ AAAPC(R+, E).

Lemma 8. [20] Suppose the functions H : R×R×E → E satisfies condition (H3).
Then, the integral operators E2 such that

E2y(t) =

∫ t

0

H(t, s, y(s))ds, t ∈ R+,

maps AAAPC(R+, E) into AAAPC(R+, E).

Theorem 3. Assume that the hypotheses (H1) − (H4) are satisfied. Then the
problem (1) has an asymptotically almost automorphic mild solution if

ηmax

(
ςj

1− e−λϖ
+

σj
1− e−λϖ

+ (1 + υ∗)∥ℏ∥
L

1
p1
,

θj
1− e−λϖ

+ 4(1 + 2ω∗)∥ρ∥
L

1
p2

)
≤ 1.

(4)

Proof. Let ℧κ =
{
y ∈ PCb(R+, E) ∩AAA(R+, E) : ∥y∥ ≤ κ

}
. Define an oper-

ator Q on ℧κ by

(Qy)(t) = S(t)y0+
∑

0<tj<t

S(t− tj)Jj(y(tj))+t0S(t−s)f (s, y(s),My(s)) ds, t ∈ R+.

(5)
We next show that Q has a fixed point in ℧κ. We divide the proof into several
steps.
Step 1. For every y ∈ ℧κ, Qy ∈ PCb(R+, E).
For t ∈ R+, from the hypotheses (H1)-(H4), we get

|(Qy)(t)| ≤ ∥S(t)∥L(E) |y0|+
∑

0<tj<t

∥S(t− tj)∥L(E) |Jj(y(tj))|

+

∫ t

0

∥S(t− s)∥L(E) ℏ(s) (|y(s)|+
s
0 υ(s, τ)(1 + |y(τ)|)dτ) ds

≤ η |y0|+ η
∑

0<tj<t

σj |y(tj)|+ ςj

+ η

∫ t

0

e−λ(t−s)ℏ(s) (|y(s)|+s0 υ(s, τ)(1 + |y(τ)|)dτ) ds

≤ η|y0|+ η
∑

0<tj<t

e−λ(t−tj )(σj |y(tj)|+ ςj)

+ η

∫ t

0

e−λ(t−s)ℏ(s)
(
sup
s∈R+

|y(s)|+ υ∗(1 + sup
s∈R+

|y(s)|))
)
ds
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≤ η|y0|+ η
∑

0<tj<t

e−λ(t−tj )(σj |y(tj)|+ ςj)

+ η

∫ t

0

e−λ(t−s)ℏ(s)
(
(1 + υ∗)(1 + sup

s∈R+

|y(s)|))
)
ds

≤ η|y0|+ η(σj∥y∥PCb + ςj)
∑

0<tj<t

e−λ(t−tj)

+ η(1 + υ∗)

∫ t

0

e−λ(t−s)ℏ(s)ds∥y∥PCb

≤ η|y0|+
η(σj∥y∥PCb + ςj)

1− e−λϖ

+ η(1 + υ∗)∥ℏ∥
L

1
p1

(∫ t

0

e−
λ

1−p1
(t−s)ds

)1−p1

(1 + ∥y∥PCb)

≤ η|y0|+
η(σj∥y∥PCb + ςj)

1− e−λϖ

+ η(1 + υ∗)∥ℏ∥
L

1
p1

(
1− e−

λt
1−p1

)
(1 + ∥y∥PCb)

≤ η|y0|+
ηςj

1− e−λϖ
+ η

(
σj

1− e−λϖ
+ (1 + υ∗)∥ℏ∥

L
1
p1

)
(1 + ∥y∥PCb),

which implies that Qy ∈ PCb(R+, E).

Step 2. For every y ∈ ℧κ, Qy ∈ AAAPC(R+, E).
Claim 1. Proving that (Py)(t) belongs to AAAPC(R+, E),
where

(Py)(t) = S(t)y0 +
t
0 S(t− s)f (s, y(s),My(s)) ds, t ∈ R+.

Let

E(t) = S(t)y0,

then

|E(t)| = |S(t)y0| ≤ |S(t)y0| ≤ ηe−λt|y0|.

Since λ > 0, we get lim
t→+∞

|(E(t)| = 0. That is

E ∈ PC0(R+, E). (6)

Applying Lemma 8 and Lemma 2, we infer that My(t) and f(·, y(·),My(t)(·)) be-
long to AAAPC(R+, E). By Lemma 7 and 6, we obtain that P is AAAPC(R+, E)-
valued.

Claim 2. Proving that
∑

0<tj<t

S(t− tj)Jj(y(tj)) belongs to AAAPC(R+, E).

From the assumption (H4), Jj(y(tj)) ∈ AAAPC(R+, E). By definition, it can be
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expressed as
Jj(y(tj)) = Jj1(y(tj)) + Jj2(y(tj))

such that Jj1(y(tj)) ∈ AAA(R+, E),Jj2(y(tj)) ∈ PC0(R+, E) Then:∑
0<tj<t

S(t− tj)Jj(y(tj)) =
∑

0<tj<t

S(t− tj)Jj1(y(tj)) +
∑

0<tj<t

S(t− tj)Jj2(y(tj))

= ℘a(t) + ℘0(t).

Since Jj1 ∈ AA(R+, E), for every real sequence {tj}, there exists a subsequence
{tjn} such that

lim
n→∞

Jj1(y(tj + tjn)) = Jj1(y(tj))

is well defined for each t ∈ R and

lim
n→∞

Jj1(y(tj − tjn)) = Jj1(y(tj)),

Now, we have

℘a(t+ tjn) =
∑

0<tj<t+tjn

S(t+ tjn − tj)Jj1(y(tj)) =
∑

0<tj<t

S(t− tj)Jj1(y(tj + tjn)),

then

lim
n→∞

℘a(t+tjn) = lim
n→∞

∑
0<tj<t

S(t−tj)Jj1(y(tj+tjn)) =
∑

0<tj<t

S(t−tj)Jj1(y(tj)) = ℘a(t),

Similarly

℘a(t− tjn) =
∑

0<tj<t−tjn

S(t− tjn − tj)Jj1(y(tj))) =
∑

0<tj<t

S(t− tj)Jj1(y(tj − tjn))),

then

lim
n→∞

℘a(t− tjn) = lim
n→∞

∑
0<tj<t

S(t− tj)Jj1(y(tj− tjn))) =
∑

0<tj<t

S(t− tj)Jj1(y(tj)),

then,

℘a(t) =
∑

0<tj<t

S(t− tj)Jj1(y(tj))

belongs to AAAPC(R+, E).
Next, we show that ℘0(t) ∈ C0(R+, E). Since Jj2 ∈ PC0(R+, E), one can choose a
T > 0 such that

|Jj2| ≤ ε.

This enables us to conclude that for all t > T,

℘0(t) =

∣∣∣∣∣∣
∑

0<tj<t

S(t− tj)Jj2(y(tj))

∣∣∣∣∣∣ ≤
∑

0<tj<t

∥S(t− tj)∥L(E) |Jj2(y(tj))|

≤ η
∑

0<tj<t

e−λ(t−tj) |Jj2(y(tj))|
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≤ η |Jj2|
∑

0<tj<t

e−λ(t−tj)

≤ η |Jj2|
1− e−λϖ

≤ ε

So, ℘0(t) ∈ PC0(R+, E). Finally by (6), we prove our claim thatQy ∈ AAAPC(R+, E).

Step 3. We prove that Q
(
℧κ
)
⊂ ℧κ.

If this condition fails, then for every positive constant κ > 0 and t ≥ 0 , there
exists a function ŷ ∈ ℧κ but Q(ŷ) /∈ ℧κ, i.e |(Qŷ)(t)| > κ. Thus, by the Hölder
inequality, the conditions (H1)−(H4), based on the above estimations, we can easily
demonstrate that

|(Qŷ)(t)| ≤ η|y0|+
ηςj

1− e−λϖ
+ η

(
σj

1− e−λϖ
+ (1 + υ∗)∥ℏ∥

L
1
p1

)
(1 + κ).

Thus,

κ < η|y0|+
ηςj

1− e−λϖ
+ η

(
σj

1− e−λϖ
+ (1 + υ∗)∥ℏ∥

L
1
p1

)
(1 + κ).

Dividing on both sides by κ and taking the lower limit as κ→ +∞ , we can obtain
that

1 <
ηςj

1− e−λϖ
+ η

(
σj

1− e−λϖ
+ (1 + υ∗)∥ℏ∥

L
1
p1

)
.

This contradicts (4). Hence, for some positive number κ, we must haveQ(℧κ) ⊂ ℧κ.
Step 4. We show that Q is continuous ℧κ.
To demonstrate the continuity of Q, we assume that there exists a sequence yn, y
in ℧κ and yn → y as n→ +∞.
Case 1. If t ∈ [0, d], d > 0, and yn ∈ ℧κ, we have

|(Qyn)(t)− (Qy)(t)|
≤0<tj<t S(t− tj) |Jj(y(tj))− Jj(yn(tj))|

+η

∫ t

0

∣∣∣∣f (s, yn(s),∫ s

0

H(s, τ , yn(τ))dτ

)
− f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)∣∣∣∣ ds.
By the Lebesgue dominated convergence theorem accompanying with (H2)(i), we
get

∥Qyn −Qy∥ → 0 as n→ +∞.

Case 2. If t ∈ (d,+∞), d > 0, by (H2)(i), we can see that

|Jj(yn(tj))− Jj(y(tj))| ≤
(1− e−λϖ)εj

2
for t ≥ d. (7)
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and∣∣∣∣f (t, yn(t),∫ t

0

H(t, s, yn(s))ds

)
− f

(
t, y(t),

∫ t

0

H(t, s, y(s))ds

)∣∣∣∣ ≤ λε

2η
for t ≥ d. (8)

Hence, according to the dominated convergence theorem and (8), we obtain that
for every t ≥ 0,

|(Qyn)(t)− (Qy)(t)|
≤

∑
0<tj<t

S(t− tj) |Jj(yn(tj))− Jj(y(tj))|

+t0∥S(t− s)∥L(E)

∣∣∣∣f (s, yn(s),∫ s

0

H(s, τ , y(τ))dτ

)
− f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)∣∣∣∣ ds
≤ 1− e−λϖ

2

∑
0<tj<t

εje
−λ(t−tj) +

λε

2η

∫ t

0

e−λ(t−s)ds

≤ ε

2
+
η

λ

λε

2η
(1− e−λt)

≤ ε

2
+
ε

2
= ε.

(9)

Then the inequality (9) reduces to

∥Q(yn)−Q(y)∥PCb → 0 as n→ ∞.

This implies that Q is continuous in ℧κ.
Next, we demonstrate that the operator Q is equi-continuous on every compact
interval [0, d] of [0,+∞), for d > 0 and is equi-convergent in y ∈ ℧κ.
Step 5. Q(℧κ) is equicontinuous.
Let 0 < d < +∞ be an arbitrary constant. Generally, let 0 ≤ τ1 ≤ τ2 ≤ d, for any
y ∈ ℧κ, we know that

|(Qy)(τ2)− (Qy)(τ1)|

=

∣∣∣∣∣∣S(τ2)y0 +
∑

0<tj<τ2

S(τ2 − tj)Jj(y(tj))

+ τ2
0 S(s− τ2)f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)
ds

− S(τ1)y0 +
∑

0<tj<τ1

S(τ1 − tj)Jj(y(tj))

+

∫ τ1

0

S(t− s)f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)
ds

∣∣∣∣
≤ |S(τ2)y0 − S(τ1)y0|

+

∣∣∣∣∣∣
∑

0<tj<τ2

S(τ1 − tj)Jj(y(tj))−
∑

0<tj<τ1

S(τ2 − tj)Jj(y(tj))

∣∣∣∣∣∣
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+

∣∣∣∣∫ τ1

0

(S(τ2, s)− S(τ1, s))f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)
ds

+

∫ τ2

τ1

S(τ2, τ)f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)
ds

∣∣∣∣
≤ |S(τ2)y0 − S(τ1)y0|

+
∑

0<tj<τ1

∥S(τ1 − tj)− S(τ2 − tj)∥L(E) |Jj(y(tj))|

+
∑

τ1<tj<τ2

∥S(τ1 − tj)∥L(E) |Jj(y(tj))|

+τ1
0 ∥S(τ2, τ)− S(τ1, τ)∥B(V ) ℏ(s) (|y(s)|+s0 υ(s, τ)(1 + y(τ)|)dτ) ds

+ ητ2
τ1
e−λ(t−s)ℏ(s) (|y(s)|+s0 υ(s, τ)(1 + y(τ)|)dτ) ds.

It follows from the Hölder’s inequality that

|(Qy)(τ2)− (Qy)(τ1)| ≤ ∥S(τ2)− S(τ1)∥L(E) |y0|

+ (σjϱ+ ςj)
∑

0<tj<τ1

∥I− S(τ2 − τ1)∥L(E)

+ η(σjϱ+ ςj)
∑

τ1<tj<τ2

e−λ(t−tj)

+ (1 + υ∗)ϱτ1
0 ∥S(τ2 − s)− S(τ1 − s)∥B(V ) ℏ(s)ds

+ η∥ℏ∥
L

1
p1
(1 + υ∗)ϱ∥ℏ∥

L
1
p1

(∫ t

0

e−
λ

1−p1
(t−s)ds

)1−p1

.

It follows that

|(Qy)(τ2)− (Qy)(τ1)| ≤ ∥S(τ2)− S(τ1∥L(E) |v0|

+ (σjϱ+ ςj)
∑

0<tj<τ1

∥S(τ1 − tj)− S(τ2 − tj)∥L(E)

+
η(σjϱ+ ςj)(τ2 − τ1)

ϖ
+ (1 + υ∗)ϱτ1

0 ∥S(τ2 − s)− S(τ1 − s)∥B(V ) ℏ(s)ds

+
η∥ℏ∥

L
1
p1
(1 + υ∗)ϱ(1− p1)

1−p1

λ1−p1

(
e−

λ
1−p1

(t−τ2) − e−
λ

1−p (t−τ1)
)1−p1

.

The right-hand side tends to zero as τ2 → τ1. This proves the equicontinuity of
Q(℧κ).
Step 6. ℧κ(t) =

{
(Qy)(t) : y ∈ ℧κ

}
is a relatively compact subset of E in each

t ∈ R+.
Let H be a subset of ℧κ such that H ∈ conv(Q(M) ∪ {0}). In addition, by

Lemma 4, we know that there is a countable set {y}n=+∞
n=0 ⊂ Θ such that χ(Q(Θ)) ≤
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2χ(Q({y}n=+∞
n=0 )) for any bounded set Θ. Thus for {yn}+∞

n=0 ⊂ H, for the appropriate
choice of H, for every t ∈ [0, d], by utilizing Lemma 5 and the properties of the
measure χ, we obtain

χ(Q(H(t)))

≤ 2χ(Q({yn(t)}∞n=0))

≤ 2χ

S(t)y0 + ∑
0<tj<t

S(t− tj)Jj(yn(tj))

+ t
0S(t− s)f (s, yn(s),

s
0H(s, τ , yn(τ))dτ) ds

}∞
n=0

)
≤

∑
0<tj<t

S(t− tj)χ(Jj(yn(tj)))

+ 2χ
({
t
0S(t− s)f (s, yn(s),

s
0H(s, τ , yn(τ)dτ) ds

}∞
n=0

)
≤

∑
0<tj<t

S(t− tj)θjχ((yn(tj)))

+ 2χ
(
t
0S(t− s)f (s, {yn(s)}∞n=0 ,

s
0H(s, τ , {yn(τ)}∞n=0)dτ) ds

)
≤

∑
0<tj<t

S(t− tj)θj sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4ηt0e
−λ(t−s)ρ(t)

(
sup
s∈[0,t]

χ({yn(s)}∞n=0) + 2s0ϑ(s, τ) sup
τ∈[0,s]

χ({yn(τ)}∞n=0))dτ

)
ds

≤
∑

0<tj<t

S(t− tj)θj sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4ηt0e
−λ(t−s)ρ(t)

(
sup
s∈[0,t]

χ({yn(s)}∞n=0) + 2 sup
τ∈[0,s]

χ({yn(s)}∞n=0)
s
0ϑ(s, τ)dτ

)
ds

≤ η sup
τ∈[0,s]

θj
∑

0<tj<t

e−λ(t−tj) sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4η(1 + 2ϑ∗)t0e
−λ(t−s)ρ(s) sup

s∈[0,t]

χ({yn(s)}∞n=0)ds

≤
∑

0<tj<t

S(t− tj)θj sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4η(1 + 2ϑ∗)t0e
−λ(t−s)ρ(s)dsχ({yn}∞n=0)

≤ ηθj
1− e−λϖ

sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4η(1 + ϑ∗)∥ρ∥
L

1
p2

(∫ t

0

e−
λ

1−p2
(t−s)ds

)1−p2

χ({yn}∞n=0)
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≤ ηθj
1− e−λϖ

sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4η(1 + 2ϑ∗)∥ρ∥
L

1
p2

(
1− e−

λt
1−p2

)
χ({yn}∞n=0)

≤ ηθj
1− e−λϖ

sup
τ∈[0,s]

χ({yn(s)}∞n=0)

+ 4η(1 + 2ϑ∗)∥ρ∥
L

1
p2
χ({yn}∞n=0),

which ensures that

χ((Q(H)(t)) ≤
(

ηθj
1− e−λϖ

+ 4η(1 + 2ω∗)∥ρ∥
L

1
p2

)
χ(H(t)).

Then

χ(H) ≤ χ(Q(Θ)(t)) ≤
(

ηθj
1− e−λϖ

+ 4η(1 + 2ω∗)∥ρ∥
L

1
p2

)
χ(H).

That is to say (
ηθj

1− e−λϖ
+ 4η(1 + 2ω∗)∥ρ∥

L
1
p2

)
χ(H(t)) ≤ 0.

From (10), we observe that χ(H) = 0.
Step 7. Q(℧κ) is equiconvergent.
Let y ∈ ℧κ. For t ∈ R+, we have

|(Qy)(t)| ≤ |S(t)y0|+
∑

0<tj<t

∥S(t− tj)∥L(E) |Jj(y(tj))|

+ t
0S(t− s)f

(
s, y(s),

∫ s

0

H(s, τ , y(τ))dτ

)
ds

≤ η |y0| e−λt + η
∑

0<tj<t

e−λ(t−tj )(σj |y(tj)|+ ςj)

+ η

∫ t

0

e−λ(t−s)ℏ(s) (|y(s)|+s0 υ(s, τ)|y(τ)|dτ) ds

≤ η|y0|e−λt +
η(σj(1 + ∥y∥PCb) + ςj)

1− e−λϖ

+ η(1 + υ∗)∥ℏ∥
L

1
p1

(∫ t

0

e−
λ

1−p1
(t−s)ds

)1−p1

ds(1 + ∥y∥PCb)

≤ η|y0|e−λt +
η(σj(1 + ∥y∥PCb) + ςj)

1− e−λϖ

+ η(1 + υ∗)∥ℏ∥
L

1
p1

(
1− e−

λt
1−p1

)
(1 + ∥y∥PCb)
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≤ η|y0|e−λt +
ηςj + κσj
1− e−λϖ

+ (1 + υ∗)∥ℏ∥
L

1
p1

(
1− e−

λt
1−p1

)
(1 + κ).

Then, we get

|(Qy)(t)| → ηςj + κσj
1− e−λϖ

+ (1 + υ∗)∥ℏ∥
L

1
p1
(1 + κ) as t→ +∞.

Hence, as t→ +∞, we have |(Qy)(t)− (Qy)(+∞)| → 0.
Thus, from the above results ℧κ is a relatively compact set. By Lemma 2, we know
that Q has a fixed point in ℧κ . The proof is complete.

4. Example

To end this work, we apply our abstract results to the study of an integro-
differential equation with impulsive effects. Consider the system

∂∂tψ(t, ξ) = ∂2∂ξ2ψ(t, ξ) +

∫ t

0

f(t− s)∂2∂s2ψ(t, ξ)ds

+2−t sin

(
1

2 + cos t+ cos
√
2t

)(
e−ψ(t,ξ) +

∫ t

0

a(t)e−(t−s)(1 + ψ(t, s))ds

)
+2−t

(
ψ(t, ξ) +

∫ t

0

a(t)e−(t−s)(1 + ψ(t, s))ds

)
, t ∈ R+, t ̸= tj , j = 1, 2, 3 . . . , ξ ∈ [0, 1],

∆ψ(tj , ξ) = (1− e−λϖ) ln(1 + 2−j−2)ψ(tj , ξ) + 2−j−2(1− e−λϖ) sin(ψ(tj , ξ)), j = 1, 2, 3 . . . ,
ψ(t, 0) = ψ(t, 1) = 0, ψ(0, ξ) = ψ0(ξ), t ∈ R+, ξ ∈ [0, 1],

(10)

where tj = sin

(
1

2 + cos j + cos
√
2j

)
and the function a ∈ AAPC(R) such that

|a| ≤ 3− 4(ln 2)2

8(ln 2)2
. Here f : R → R is bounded uniformly continuous and

continuously differentiable. Set E = L2(0, 1) and let A be be the Laplace operator

(Aψ)(ξ) = ∂2∂s2ψ(ξ),

then A : D(A) = H2(0, 1) ∩ H1
0 (0, 1) → L2(0, 1). Note that, the operator A has

eigenvalues {−n2π2}+∞
1 and generates a C0-semigroup (S(t))t≥0 on E such that

∥S(t)∥L(E) ≤ ηe−λt,

with η = 1, λ = π2 for all t ≥ 0 .
We define the operator B(t) : B : E → E as follows:

B(t)ψ = f(t)Aψ for t ≥ 0 and ψ ∈ D(A).

Furthermore we set

ψ(t)(ξ) = ψ(t, ξ) for t ∈ R+ and ξ ∈ [0, 1].

ψ(0) = ψ(0, ξ) for t ∈ R+ and ξ ∈ [0, 1].



912 N. REZOUG, A. SALIM, M. BENCHOHRA

Then the system (10) takes the following abstract form ψ′(t) = Aψ(t) +

∫ t

0

B(t− s)ψ(s)ds+ f

(
t, ψ(t),

∫ t

0

H(t, s, ψ(s))ds

)
, t ≥ 0,

ψ(0) = ψ0,
(11)

where the nonlinear function f : R+ × E × E → E given by

f

(
t, ψ(t),

∫ t

0

H(t, s, ψ(s))ds

)
= 2−t sin

(
1

2 + cos t+ cos
√
2t

)
×

(
e−ψ +

∫ t

0

a(t)e−(t−s)(1 + ψ(t, s))ds

)
+ 2−t

(
ψ(t) +

∫ t

0

a(t)e−(t−s)(1 + ψ(t, s))ds

)
.

Let

G (t, ψ(t), φ(t)) = 2−t sin

(
1

2 + cos t+ cos
√
2t

)
(sinψ(t) + φ(t)) ,

Υ(t, ψ(t), φ(t)) = 2−t(ψ(t) + φ(t)),

and

H(t, s, ψ(s)) = a(t)e−(t−s)(1 + ψ(t, s)).

Then it is easy to verify that G,Υ : R× E × E → E are continuous
and G(t, ψ(t), φ(t)) ∈ AA(R× E × E → E) and

|Υ(t, ψ(t), φ(t))| ≤ 2−t(|ψ|+ |φ|),

which implies Υ(t, ψ(t), φ(t)) ∈ C0(R+ × E × E → E) and

f(t, ψ(t), φ(t)) = G(t, ψ(t), φ(t)) + Υ(t, ω(t), ϑ(t)) ∈ AAAPC(R+ × E × E,E).

Observe that

|f(t, ψ(t), φ(t))| ≤ 2−t(|ψ(t)|+ |φ(t)|).
Moreover, for a bounded subset Ω1,Ω2 of E, and from properties of measure of
noncompactness χ, we have

χ(f(t,Ω1,Ω2)) ≤ 2−t (χ(Ω1) + χ(Ω2)) .

Moreover, let p1 = p2 =
1

2
, then, the assumptions (H2) hold with

ℏ(t) = ρ(t) = 2−t.

Similarly, H clearly satisfies the following:

|H(t, s, ψ2)−H(t, s, ψ1)| ≤ |a(t)| e−(t−s) |ψ2 − ψ1| .
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Now, by the property of measure of noncompactness for bounded subset Ω of E,
we have

χ(H(t, s,Ω)) ≤ |a(t)| e−(t−s)χ(Ω).

In addition

∥a∥PC sup
t∈R

∫ t

−∞
e−(t−s)ds = ∥a∥PC < +∞.

and for every compact interval [c, d] ⊂ R, we have

lim
t∈+∞

∫ b

a

a(t)e−(t−s)ds = lim
t∈+∞

∥a∥PC(e
−(t−d) − e−(t−c)) = 0,

and

H(t, s, 0) = a(t)e−(t−s).

Then the assumptions (H1) hold with

ϱ(t, s) = ϕ(t, s) = θ(t, s) = π(t, s) = a(t)e−(t−s) and ϕ̂(t, s) = b(t)e−(t−s),

b the limit functions given in Definition 3 with f = a, G = b.
Moreover,

|Jj(ψ)| ≤ (1− e−λϖ) ln(1 + 2−j)|ψ(t)|+ 2−j−2(1− e−λϖ).

Now, by the property of measure of noncompactness for bounded subset Ω of E,
we have

χ(Jj(Ω)) ≤ 2−j−2(1− e−λϖ)χ(Ω).

Furthermore, from Theorem 3, we obtain

∆ = ηmax

(
ςj

1− e−λϖ
+

σj
1− e−λϖ

+ (1 + υ∗)∥ℏ∥
L

1
p1
,

θj
1− e−λϖ

+ 4(1 + 2ϑ∗)∥ρ∥
L

1
p2

)
≤ max

(
1

2
+

4(1 + |a|)
(ln 2)2

,
1

4
+

16(1 + 2|a|)
(ln 2)2

)
≤ 1

4
+

4

(ln 2)2
max (1 + |a|, 4(1 + 2|a|))

≤ 1

4
+

16(1 + 2|a|)
(ln 2)2

≤ 1.

So, all the conditions of Theorem 3 are satisfied. Hence by the conclusion of The-
orems 3, it follows that the problem (1) has at least one an asymptotically almost
automorphic mild solution ψ ∈ ℧κ.
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5. Conclusions

In the present research, we have investigated existence for the piecewise asymp-
totically almost automorphic mild solutions of impulsive integro-differential equa-
tions with instantaneous impulses in Banach space. To achieve the desired results
for the given problems, the fixed-point approach was used, namely Mönch’s fixed
point theorem, combined with resolvent operators from the Grimmer perspective
and the concept of measures of non-compactnes. An example is provided to demon-
strate how the major results can be applied. Our results in the given configuration
are novel and substantially contribute to the literature on this field of study. We feel
that there are multiple potential study avenues such as coupled systems, problems
with infinite delays, problems with inclusions and many more due to the limited
number of publications on integro-differential equations and inclusions, particularly
with impulses. We hope that this article will serve as a starting point for such an
undertaking.
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Québec., 5 (1981), 69-79.
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