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ABSTRACT 

This study focuses on the novel conformable methods employed to obtain new numerical solutions for the Cahn-

Allen equation with conformable fractional derivatives. One of the two distinct methods put forth is the Cq-HATM, 

a hybrid technique that integrates the q-homotopy analysis transform method with the Laplace transform, utilizing 

the definition of conformable derivative. The CHPETM is a hybrid technique that combines the homotopy 

perturbation method with the Elzaki transform (ET). New numerical solutions of the conformal fractional 

differential Cahn-Allen equation were obtained using CHPETM and Cq-HATM. The computer simulations have 

been conducted in order to provide validation for the efficacy and reliability of the proposed methods. Upon 

performing a comparative analysis between the exact solutions and the solutions obtained through the novel 

methods, it becomes evident that both of these approaches exhibit simplicity, efficacy, and proficiency in 

addressing nonlinear conformable time-fractional coupled systems.  

Keywords- Cahn-Allen equation, conformable homotopy perturbation Elzaki transform method, conformable 

Elzaki transform 

 

ÖZ 

Bu çalışma, uyumlu kesirli türevli Cahn-Allen denkleminin yeni sayısal çözümlerini elde etmek için kullanılan 

yeni uyumlu yöntemlere odaklanmaktadır. Öne sürülen iki farklı yöntemden biri, uyumlu kesirli türev tanımını 

kullanarak, q-homotopi analizi dönüşüm yöntemi ile Laplace dönüşümünün birleşiminden oluşan hibrit bir yöntem 

olan Uq-HADY' dir. UHPEDM, homotopi pertürbasyon yöntemininin Elzaki dönüşümüyle birleşiminden oluşan 

hibrit bir yöntemdir. Uyumlu kesirli türevli Cahn-Allen denkleminin yeni nümerik çözümleri UHPEDM ve Uq-

HADY kullanılarak elde edilmiştir. Önerilen metodların etkinliğinin ve güvenilirliğinin doğrulanmasını sağlamak 

amacıyla bilgisayar simülasyonları yapılmıştır. Kesin çözümler ile yeni yöntemlerden elde edilen çözümler 

arasında karşılaştırma analizi yapıldığında, bu yaklaşımların her ikisinin de doğrusal olmayan uyumlu zaman-

kesirli bağlı sistemleri ele almada basitlik, etkinlik ve yeterlilik sergiledikleri ortaya çıkmaktadır.  

Anahtar Kelimeler-Cahn-Allen denklemi, uyumlu homotopi pertürbasyon Elzaki dönüşüm metodu, uyumlu 

Elzaki dönüşümü  
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I. INTRODUCTION 

Extensive study has been conducted in the topic of fractional calculus, leading to its formal definition by 

numerous esteemed scientists. The researchers have formulated novel conceptualizations of fractional calculus 

(FC), which subsequently laid the foundational framework for the field of fractional analysis. Fractional 

differential equations (FDEs) are frequently employed in the construction of nonlinear models. The utilization of 

FC has been utilized to analyze and explore diverse topics, such as chaos theory, financial models, disordered 

environments, and optics. The application of solutions generated from FDEs plays a crucial role in the discovery 

and understanding of nonlinear occurrences in the natural world. A diverse range of analytical and numerical 

methods are employed in order to get precise solutions for fractional differential equations that incorporate 

nonlinear phenomena, due to their inherent complexity. [1-11]. 

Khalil et al. have recently introduced a novel conceptualization of fractional derivative and fractional integral 

in their scientific publication. The authors have successfully demonstrated that the newly presented definition 

exhibits the fundamental characteristics of the classical derivative as described in classical analysis, while also 

adding a limit form that closely approaches the definition of the classical derivative. The author introduces a novel 

conception of the fractional derivative in their scholastic contribution. The definition presented incorporates a 

variety of mathematical concepts, including the product rule, quotient rule, chain rule, fractional Rolle's theorem, 

and fractional mean value theorems. The utilization of the conformable fractional derivative is regarded as a key 

and very advantageous approach. Furthermore, it increases our ability to articulate the actions exhibited by tangible 

entities. The utilization of the conformable fractional derivative gives an innovative approach for addressing 

intricate problem domains. Fractional order models are commonly employed in the field of engineering and applied 

sciences due to their ability to offer a more precise representation of real-world phenomena. Conformable 

fractional derivatives have been employed by a multitude of academics across several academic fields. The 

utilization of the conformable fractional operator serves as a viable approach to tackle specific limitations that are 

present in existing fractional operators. The subject matter being examined spans a range of mathematical concepts, 

such as the mean value theorem, the chain rule, the product rule for differentiating two functions, the derivative of 

the quotient of two functions, and Rolle's theorem [12]. 

The Elzaki transform method has been utilized for solving the ordinary differential equations. Differential 

transform method (DTM) in conjunction with ET has been employed to address a range of nonlinear differential 

equations. The Homotopy Perturbation Elzaki Transform Method (HPETM) was initially introduced by Elzaki 

and Hilal in their original work. Furthermore, the HPETM has successfully solved three nonlinear partial 

differential equations (PDEs). Elzaki and Kim employed a novel hybrid approach that combines the ET with the 

modified variational iteration method to tackle the radial diffusivity and shock wave equations in their research. 

Aggarwal et al. employed the method of ET to obtain solutions for the first kind Volterra integral equations. 

HPETM is applied to construct a solution for the fractional Navier-Stokes equations [13-18]. 

However, it is imperative to recognize that the fractional order has the ability to exhibit both time and space. 

The topic under consideration pertains to the advancing field of fractional partial differential equations (FPDEs) 

that encompass operators with varying orders of fractional differentiation. Numerous rigorous numerical methods 

have been devised and documented in scholarly publications, with substantial contributions from respected experts 

within the discipline. A multitude of approaches have been proposed in academic literature to tackle mathematical 

conundrums. This collection of techniques includes Adomian Decomposition Method (ADM), Homotopy 

Analysis Method (HAM), Homotopy Perturbation Method (HPM), Collocation Method, Sumudu Transform 

Method (STM), DTM, and Variational Iteration Method (VIM) [19-38]. 

Yasar and Giresunlu employed the homotopy analysis method to obtain the fractional order analytical solution 

to the Cahn–Allen equation (CAE) [44]. The time-fractional CAE was examined using the fractional sub-equation 

method to provide an approximation solution for the S-H equation [45]. Yasar et al. employed the (G’/𝐺)-expansion 

method to obtain a series solution for the space-time CAE [46]. Hariharan and Kannan employed the Haar wavelet 

method to provide a numerical solution for the CAE [47]. Tascan and Bekir discovered both solitary and periodic 

wave solutions for the CAE [48]. The modified handy equation technique is utilized to provide novel feasible 

solutions for the CAE, and the resulting outcomes are also consistent with the penalties proposed by Tariq and 

Akram [49]. Bekir [50] utilized the double exp-function method to solve the CAE and obtain solutions for one-

soliton and two-soliton cases. Guner et al. investigate three methods for analyzing the time-fractional order CAE 

[51]. 

The primary objective of this project is to acquire innovative numerical solutions for the Cahn-Allen equation 

with conformable fractional derivative (CFD). This will be achieved by employing the conformable q-homotopy 

analysis transform method (Cq-HATM). The secondary objective of the study is to acquire innovative numerical 

solutions for the Cahn-Allen equation using CFD. The objective will be accomplished by the utilization of the 

conformable homotopy perturbation Elzaki transform method (CHPETM). 
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The subsequent enumeration presents a detailed inventory of the other constituents of the study. The following 

section of the article provides a thorough explanation of the fundamental principles that underlie conformable 

fractional calculus and the Elzaki transform in Section 2. Section 3 introduces novel numerical approaches that are 

capable of conforming to specific requirements. Section 4 of the document presents an illustrative example of the 

conformable time-fractional Cahn-Allen equation. The findings are presented in Section 5. 

II. PRELIMINARIES 

This section presents a set of foundational definitions. 

Definition 2.1. [12, 39-41] Let a function 𝑔: [0,∞) → ℝ. Then, CFD of 𝑔 order 𝛼 is defined as  

𝑇𝛼(𝑔)(𝑥) = lim
𝜀→0

𝑔(𝑥 + 𝜀𝑥1−𝛼) − 𝑔(𝑥)

𝜀
, 𝛼 ∈ (0, 1]. (2) 

for all 𝑥 > 0. 

Theorem 2.1. [12, 39-41] Assume that 𝛼 ∈ (0, 1] and The functions 𝑔 and ℎ exhibit 𝛼 −differentiability at a point 

𝑥 > 0., The following conditions exist: 

(𝑖) 𝑇𝛼(𝑎𝑔 + 𝑏ℎ) = 𝑎𝑇𝛼(𝑔) + 𝑏𝑇𝛼(ℎ), for all 𝑎, 𝑏 ∈  ℝ, (3) 

(𝑖𝑖)𝑇𝛼(𝑥
𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ, (4) 

(𝑖𝑖𝑖)𝑇𝛼(𝜆) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, 𝑓(𝑡) = 𝜆, (5) 

(𝑖𝑣)𝑇𝛼(𝑔ℎ) = 𝑔𝑇𝛼(ℎ) + ℎ𝑇𝛼(𝑔), (6) 

(𝑣)𝑇𝛼 (
𝑔

ℎ
) =

ℎ𝑇𝛼(𝑔) − 𝑔𝑇𝛼(ℎ)

ℎ2
. (7) 

Definition 2.2. [42] Assume that 𝛼 ∈ (0, 1],  ℎ: [0,∞) → ℝ  is function. The conformable fractional Elzaki 

transform (CFET) of order 𝛼 of ℎ is defined as  

𝐸𝛼𝑐 [ℎ(𝑡)] = 𝑇𝛼(𝑣) = ∫ 𝑝𝐾𝛼(−𝑝, 𝑡)ℎ(𝑡)𝑑𝛼𝑡,

∞

0

 (8) 

where 𝐾𝛼(−𝑝, 𝑡) = 𝐸𝛼 (−
1

𝑝
, 𝑡) , 𝑝 > 0. 

Definition 2.3. [42] Assume that 𝛼 ∈ (0, 1], ℎ: [0,∞) → ℝ  is function. The CFET for the CFD of the function 

ℎ(𝑡) is defined as  

𝐸𝛼𝑐 [𝑇𝛼ℎ(𝑡)](𝑝) =
1

𝑝
𝐸𝛼𝑐 [ℎ(𝑡)](𝑝) − 𝑝ℎ(0). (9) 

III. THE NOVEL NUMERICAL TECHNIQUES 

This section presents an overview of Cq-HATM and CHPETM. 

 

A. Conformable q-homotopy analysis transform method  

 

A new method is presented. Consider the conformable time-fractional order nonlinear partial differential 

equation (CTFNPDE) to give the main idea of Cq-HATM: 

𝑇𝛼𝑤(𝑥, 𝑡) +𝑡 𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑡 > 0, 𝛼 ∈ (𝑛 − 1, 𝑛], (10) 

   where 𝐴 is linear, , 𝐻 is nonlinear operators, ℎ(𝑥, 𝑡) is the nonhomogeneous term, and 𝑇𝛼𝑡  is a CFD of order 𝛼. 
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Now, by performing conformable Laplace transform (CLT) on Eq. (10) and using initial condition, then 

we get  

𝑠ℒ𝛼[𝑤(𝑥, 𝑡)] − ∑ 𝑤(𝑥, 0)

𝑘−1

𝑚=0

+ ℒ𝛼[𝐴𝑤(𝑥, 𝑡)] + ℒ𝛼[𝐻𝑤(𝑥, 𝑡)] = ℒ𝛼[ℎ(𝑥, 𝑡)].  (11) 

If we simplify the Eq. (11), then we have 

ℒ𝛼[𝑤(𝑥, 𝑡)] −
1

𝑠
𝑤(𝑥, 0) +

1

𝑠
ℒ𝛼[𝐴𝑤(𝑥, 𝑡)] +

1

𝑠
ℒ𝛼[𝐻𝑤(𝑥, 𝑡)] −

1

𝑠
ℒ𝛼[ℎ(𝑥, 𝑡)] = 0. (12) 

We define the nonlinear operator by the assist of HAM for real function 𝜑(𝑥, 𝑡; 𝑞) as follows  

𝑁[𝜑(𝑥, 𝑡; 𝑞) ] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) ] −
1

𝑠
𝜑(𝑥, 𝑡; 𝑞) (0+) +

1

𝑠
(ℒ𝛼[𝐴𝜑(𝑥, 𝑡; 𝑞)] + ℒ𝛼[𝐻𝜑(𝑥, 𝑡; 𝑞)]  

−ℒ𝛼[ℎ(𝑥, 𝑡)]), (13) 

where 𝑞𝜖 [0,
1

𝑛
]. 

We establish a homotopy in the following: 

(1 − 𝑛𝑞)ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻
+(𝑥, 𝑡)𝐻[𝜑(𝑥, 𝑡; 𝑞)], (14) 

where, ℎ ≠ 0 is an auxiliary parameter and ℒ𝛼 demonstrates conformable Laplace transform. For 𝑞 = 0 and 𝑞 =
1

𝑛
, the outcomes in Eq. (14) are respectively provided: 

𝜑(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡). (15) 

              Hence, by incrementing 𝑞  from 0  to 
1

𝑛
,  then the solution 𝜑(𝑥, 𝑡; 𝑞)  converges from 𝑤0(𝑥, 𝑡)  to the 

solution 𝑤(𝑥, 𝑡). Employing the Taylor theorem around 𝑞 and expanding 𝜑(𝑥, 𝑡; 𝑞) and then, we obtain 

𝜑(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) +∑𝑤𝑚(𝑥, 𝑡)𝑞
𝑚

∞

𝑖=1

, (16) 

where  

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0. (17) 

Eq. (16) converges at 𝑞 =
1

𝑛
  for the appropriate 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, we have 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (18) 

If we differentiate the zeroth order deformation Eq. (14) 𝑚 −times with respect to 𝑞 and we divide by 

𝑚!, respectively,  then for 𝑞 = 0, we obtain 

ℒ𝛼[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻
+(𝑥, 𝑡)ℛ𝑚(𝑤⃗⃗ 𝑚−1), (19) 

where the vectors are defined by 

𝑤⃗⃗ 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … , 𝑤𝑚(𝑥, 𝑡)}. (20) 
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When we apply to the inverse CLT to Eq. (19), then we obtain 

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎℒ𝛼
−1[𝐻+(𝑥, 𝑡)ℛ𝑚(𝑤⃗⃗ 𝑚−1)], (21) 

where 

ℛ𝑚(𝑤⃗⃗ 𝑚−1) = ℒ𝛼[𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚
𝑛
)
1

𝑠
𝑤0(𝑥, 𝑡) +

1

𝑠
ℒ𝛼(𝐴𝑤𝑚−1(𝑥, 𝑡) + 𝐻𝑚−1

+ (𝑥, 𝑡)  

−ℎ(𝑥, 𝑡)), (22) 

and  

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

             (23) 

where, 𝐻𝑚
+  is homotopy polynomial and presented as 

𝐻𝑚
+ =

1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0   and 𝜑(𝑥, 𝑡; 𝑞) = 𝜑0 + 𝑞𝜑1 + 𝑞

2𝜑2 +⋯. (24) 

By utilizing Eqs. (21)-(22),then we obtain  

𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚
𝑛
)
1

𝑠
𝑤0(𝑥, 𝑡) + hℒ𝛼

−1 [(
1

𝑠
ℒ𝛼[𝑅𝑤𝑚−1(𝑥, 𝑡) 

 

 

+𝐻𝑚−1(𝑥, 𝑡) − 𝑓(𝑥, 𝑡)])]. (25) 

By using q-HATM, the series solution is  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

(
1

𝑛
)
𝑚

. (26) 

 

III. CONFORMABLE ELZAKI ADOMIAN DECOMPOSITION METHOD 

 

The analysis of the CTFNPDE in Eq. (10) is performed. 

Now, by performing conformable Elzaki transform (CET) on Eq. (10) and using initial condition, then 

we have  

1

𝑣
𝐸𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑣𝑤(𝑥, 0) + 𝐸𝛼𝑐 [𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡)] = 𝐸𝛼𝑐 [ℎ(𝑥, 𝑡)].  (27) 

If we simplify the Eq. (27), then we get 

𝐸𝛼𝑐 [𝑤(𝑥, 𝑡)] = 𝑣2𝑤(𝑥, 0) + 𝑣 𝐸𝛼𝑐 [ℎ(𝑥, 𝑡)] − 𝑣 𝐸𝛼𝑐 [𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡)]. (28) 

On applying inverse CET to Eq. (28), then we have 

𝑤(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) − ( 𝐸𝛼𝑐 )
−1
{𝑣 𝐸𝛼𝑐 [𝐴𝑤(𝑥, 𝑡) + 𝐻𝑤(𝑥, 𝑡)]}. (29) 

Now, HPM is utilized, then it is obtained as 

𝑤(𝑥, 𝑡) = ∑𝑝𝑛𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

. (30) 
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Also, the nonlinear term has been decomposed as  

𝐻𝑤(𝑥, 𝑡) = ∑𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

, (31) 

where the homotopy polynomial 𝐻𝑛(𝑤) is given by    

𝐻𝑛(𝑤0, 𝑤1, … , 𝑤𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝐻 (∑𝑝𝑖𝑤𝑖

∞

𝑖=0

)]

𝑝=0

, 𝑛 = 0,1,2, … 
(32) 

Eqs. (30)-(31) are substituted in Eq. (29), then we have 

∑𝑝𝑛𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝐺(𝑥, 𝑡) − 𝑝{(𝐸𝛼
𝑐)−1 {𝑣2𝐸𝛼

𝑐 [𝐴∑𝑝𝑛𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

+∑𝑝𝑛𝐻𝑛(𝑤)

∞

𝑛=0

]}} 

               

(33) 

where 𝐺(𝑥, 𝑡) is the term consisting of the initial condition and the external source term. 

If we compare the identical powers of p, the resulting iterations are as follows: 

𝑝0: 𝑤0(𝑥, 𝑡) = 𝐺(𝑥, 𝑡),  

𝑝1: 𝑤1(𝑥, 𝑡) = −𝐸
−1{𝑣2𝐸[𝐴𝑤0(𝑥, 𝑡) + 𝐻0(𝑤)]}  

𝑝2: 𝑤2(𝑥, 𝑡) = −𝐸
−1{𝑣2𝐸[𝐴𝑤1(𝑢, 𝑡) + 𝐻1(𝑤)]}  

𝑝3: 𝑤3(𝑥, 𝑡) = −𝐸
−1{𝑣2𝐸[𝐴𝑤2(𝑢, 𝑡) + 𝐻2(𝑤)]} 

 

 

⋮ (34) 

Ultimately, the solution 𝑢(𝑥, 𝑡) is approximated as follows. 

          𝑤(𝑥, 𝑡) = lim
𝑝→1

∑𝑝𝑛𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ (35) 

IV. RESULTS 

This section seeks to provide graphic depictions of the conformable time-fractional Cahn-Allen equation. 

 

Example 3.1. [43] Consider the conformable time-fractional Cahn-Allen equation (CTFCAE)  

{  𝐷𝑡
𝛼𝑤(𝑥, 𝑡) − 𝑤𝑥𝑥(𝑥, 𝑡) + 𝑤

3(𝑥, 𝑡) − 𝑤(𝑥, 𝑡) = 0  , 𝑡 > 0, 0 < 𝛼 ≤ 1 (36) 

with the initial conditions  

𝑤(𝑥, 0) =
1

1 + 𝑒
−𝑥

√2

. (37) 

Case (i) Cq-HATM solution 

 CLT is employed to Eq. (37), and by applying Eq. (38), the resulting expression is produced as 

ℒ𝛼[𝑤(𝑥, 𝑡)] −
1

𝑠
𝑤(𝑥, 0) +

1

𝑠
ℒ𝛼[−𝑤𝑥𝑥 + 𝑤

3 −𝑤] = 0. (38) 
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The nonlinear operators are defined by employing Eq. (38): 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = ℒ𝛼[𝜑(𝑥, 𝑡; 𝑞)] −
1

𝑠
(

1

1 + 𝑒
−𝑥

√2

) +
1

𝑠
ℒ𝛼 [−

𝜕2𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ 𝜑3(𝑥, 𝑡; 𝑞) 

−𝜑(𝑥, 𝑡; 𝑞)]. 

(39) 

The 𝑚− 𝑡ℎ order deformation equations are defined by the application of the proposed algorithm: 

ℒ𝛼[𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ𝑚(𝑤𝑚−1), (40) 

where 

          ℛ𝑚(𝑤𝑚−1) = ℒ𝛼[𝑤𝑚−1 ] −
1

𝑠
(1 −

𝑘𝑚
𝑛
) . (

1

1 + 𝑒
−𝑥

√2

) 
 

+
1

𝑠
ℒ𝛼 [−

𝜕2𝑤𝑚−1
𝜕𝑥2

+ ∑ (∑𝑤𝑗 . 𝑤𝑟−𝑗

𝑟

𝑗=0

)𝑤𝑚−1−𝑟 −𝑤𝑚−1

𝑚−1

𝑟=0

]. 

(41) 

By utilizing the inverse CLT to Eq. (40), we obtain 

          𝑤𝑚 = 𝑘𝑚𝑤𝑚−1 + ℎℒ𝛼
−1[ℛ𝑚(𝑤𝑚−1)]. (42) 

By employing initial conditions, we are able to drive 

 𝑤0(𝑥, 𝑡) =
1

1 + 𝑒
−𝑥

√2

, (43) 

To get the value of 𝑤1(𝑥, 𝑡), we substitute 𝑚 = 1 into Eq. (42), resulting in the following expression:  

𝑤1(𝑥, 𝑡) = ℎ

(

 
 −3𝑒

−𝑥√2
2

2(1 + 𝑒
−𝑥√2
2 )

2

)

 
 𝑡𝛼

𝛼
, (44) 

 In a similar vein, by substituting 𝑚 = 2 into Eq. (42), the resulting value for 𝑤2(𝑥, 𝑡) can be obtained: 

𝑤2(𝑥, 𝑡) = (𝑛 + ℎ)𝑤1 + ℎ
𝑡2𝛼

8𝛼2

9(𝑒
−𝑥√2
2 − 1)ℎ𝑒

−𝑥√2
2

2 (1 + 𝑒
−𝑥√2
2 )

3 . (45) 

Similarly, by substituting 𝑚 = 3 into Eq. (42), the resulting value for 𝑤3(𝑥, 𝑡) can be obtained: 

𝑤3(𝑥, 𝑡) = (𝑛 + ℎ)𝑤2 − 27ℎ
2

𝑒
−𝑥√2
2

16𝛼2(1 + 𝑒
−𝑥√2
2 )4

 

 

 

+[
−4(𝑛 + ℎ)(𝑒−𝑥√2 − 1)𝑡2𝛼

6
+ (𝑒−𝑥√2 − 4𝑒

−𝑥√2
2 + 1)ℎ

𝑡3𝛼

3𝛼
]. 

(46) 
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By employing this approach, it is possible to identify the remaining terms. The solutions of the CTFCAE  

are determined through the Cq-HATM: 

 𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

. (47) 

By substituting 𝛼 = 1, 𝑛 = 1, ℎ = −1 into Eq. (47), we have that the resulting outcome, denoted as  

∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑀
𝑚=1 to the exact solution 𝑤(𝑥, 𝑡) =

1

1+𝑒
(
−𝑥√2
2 −

3𝑡
2 )

 of the CTFCAE when 𝑀 → ∞.  

Case (ii) CHPEDM solution 

By employing the CET to Eq. (36) and utilizing Eq. (37), the resulting expression is obtained. 

 
1

𝑠
𝐸𝛼
𝑐[𝑤(𝑥, 𝑡)] − 𝑠𝑤(𝑥, 0) + 𝐸𝛼

𝑐[−𝑤𝑥𝑥 +𝑤
3 − 𝑤] = 0, (48) 

Rearranging Eq. (48), then we obtain 

 𝐸𝛼
𝑐[𝑤(𝑥, 𝑡)] = 𝑠2

1

1 + 𝑒
−𝑥

√2

− 𝑠𝐸𝛼[−𝑤𝑥𝑥 + 𝑤
3 −𝑤], (49) 

By utilizing the inverse CET on Eq. (48), we are able to derive the following result: 

 𝑤(𝑥, 𝑡) =
1

1 + 𝑒
−𝑥

√2

− (𝐸𝛼
𝑐)−1[𝑠𝐸𝛼

𝑐[−𝑤𝑥𝑥 +𝑤
3 − 𝑤]], 

 

(50) 

           Let us consider the assumption that the answer to the infinite series can be expressed in the following 
form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

. (51) 

Utilizing HPM, now, if we rewrite Eq. (50), then it is obtained as 

∑ 𝑝𝑚𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

= (
1

1 + 𝑒
−𝑥

√2

) 

+𝑝 {𝐸𝛼
−1 [𝑠𝐸𝛼 (−∑ 𝑝𝑚(𝑤𝑚)𝑥𝑥

∞

𝑚=0

+ ∑ 𝑝𝑚𝐻𝑚(𝑤)

∞

𝑚=0

− ∑ 𝑝𝑚𝑤𝑚

∞

𝑚=0

)]}, 

(52) 

The symbols 𝐻𝑚(𝑤) represent He's polynomials, that are utilized to represent nonlinear variables.  

Some components of 𝐻𝑚(𝑤) are as follows. 

𝐻0(𝑤) = 𝑤0
3, (53) 

𝐻1(𝑤) = 3𝑤0
3𝑤1, (54) 

𝐻2(𝑤) = 3𝑤0
3𝑤2 + 3𝑤1

2𝑤0, (55) 

If the powers of 𝑝 are compared, they are obtained in the same manner. 
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𝑝0: 𝑤0(𝑥, 𝑡) = 1 + 𝑒
−𝑥

√2  , 𝐻0(𝑤) = (1 + 𝑒
−𝑥

√2)3, 

 

(56) 

𝑝1: 𝑤1(𝑥, 𝑡) =
3𝑒

−𝑥√2
2 𝑡𝛼

2𝛼 (1 + 𝑒
−𝑥√2
2 )

2 , 𝐻1(𝑤) =
3(1 + 𝑒

−𝑥

√2)2. 3𝑒
−𝑥√2
2 𝑡𝛼

2(1 + 𝑒
−𝑥√2
2 )2𝛼

, 

 

(57) 

𝑝2: 𝑤2(𝑥, 𝑡) =
9(𝑒

−𝑥√2
2 − 1)𝑡𝛼𝑒

−𝑥√2
2

8𝛼2(1 + 𝑒
−𝑥√2
2 )3

, 𝐻2(𝑤) =
27𝑒

−𝑥√2
2 (3𝑒

−𝑥√2
2 − 1)𝑡2𝛼

8𝛼2(1 + 𝑒
−𝑥√2
2 )5

, 

(58) 

By continuing in a similar manner, the outcomes for CTFCAE can be derived. 

 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯  

  = 1 + 𝑒
−𝑥

√2 +
3𝑒

−𝑥√2
2 𝑡𝛼

2𝛼 (1 + 𝑒
−𝑥√2
2 )

2 +
9(𝑒

−𝑥√2
2 − 1)𝑡𝛼𝑒

−𝑥√2
2

8𝛼2(1 + 𝑒
−𝑥√2
2 )3

. 
(59) 

Fig. 1 displays the 3D graphical representations of Cq-HATM, the exact solution, and the absolute error  

for 𝑤(𝑥, 𝑡). 

  
 

Figure 1. (a) Nature of Cq-HATM solution 𝑤(𝑥, 𝑡) (b) Nature of exact solution 𝑤(𝑥, 𝑡) (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝑞−𝐻𝐴𝑇𝑀| at  

ℎ = −1, 𝑛 = 1, 𝛼 = 1 for CTFCAE. 

Fig. 2 presents the three-dimensional graphical depictions of CHPETM, the exact solution, and the absolute error 

for 𝑤(𝑥, 𝑡). 
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Figure 2. (a) Nature of CHPETM solution 𝑤(𝑥, 𝑡) (b) Nature of exact solution 𝑤(𝑥, 𝑡) (c) Nature of absolute error=|𝑤𝑒𝑥𝑎𝑐𝑡 − 𝑤𝐶𝐻𝑃𝐸𝑇𝑀| at  

𝛼 = 1 for CTFCAE. 

 

Figure 3 shows the two-dimensional graphical representations of Cq-HATM and CHPETM for 𝑤(𝑥, 𝑡) solutions 

for different 𝛼 values. 

 

  

Figure 3. The comparison of the Cq-HATM solutions for 𝑤(𝑥, 𝑡) (b) The comparison of the CHPETM solutions for 𝑤(𝑥, 𝑡) at  ℎ = −1, 𝑛 =
1, 𝑥 = 0.5 with different 𝛼. 

 

Table 1 shows the numerical solutions of w(x, t) obtained from the solution of CTFCAE with Cq-HATM for 

different x, t and α values. 

 
Table 1. Numerical solution of 𝑤(𝑥, 𝑡) by Cq-HATM for CTFCAE with different 𝑥, 𝑡 and 𝛼 at  𝑛 = 1, ℎ = −1. 

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗 𝜶 = 𝟏 

1 0.001 2.1 × 10−3 1.3 × 10−3 7.6 × 10−4 4.0 × 10−4 1.4 × 10−10 
 0.002 3.5 × 10−3 2.2 × 10−3 1.3 × 10−3 7.0 × 10−4 7.1 × 10−11 
 0.003 4.6 × 10−3 2.9 × 10−3 1.7 × 10−3 9.7 × 10−4 1.3 × 10−10 
 0.004 5.6 × 10−3 3.6 × 10−3 2.2 × 10−3 1.2 × 10−3 4.7 × 10−11 
 0.005 6.6 × 10−3 4.2 × 10−3 2.6 × 10−3 1.4 × 10−3 2.1 × 10−10 
2 0.001 1.5 × 10−3 9.3 × 10−4 5.4 × 10−4 2.8 × 10−4 1.3 × 10−10 

 0.002 2.4 × 10−3 1.5 × 10−3 9.3 × 10−4 5.0 × 10−4 1.0 × 10−10 
 0.003 3.2 × 10−3 2.1 × 10−3 1.2 × 10−3 6.9 × 10−4 1.9 × 10−10 
 0.004 4.0 × 10−3 2.5 × 10−3 1.5 × 10−3 8.7 × 10−4 2.7 × 10−10 
 0.005 4.6 × 10−3 3.0 × 10−3 1.8 × 10−3 1.0 × 10−3 1.9 × 10−10 
3 0.001 9.2 × 10−4 5.6 × 10−4 3.3 × 10−4 1.7 × 10−4 2.3 × 10−15 
 0.002 1.5 × 10−3 9.4 × 10−4 5.6 × 10−4 3.0 × 10−4 3.7 × 10−14 
 0.003 1.9 × 10−3 1.2 × 10−3 7.7 × 10−4 4.2 × 10−4 1.8 × 10−13 
 0.004 2.4 × 10−3 1.5 × 10−3 9.6 × 10−4 5.2 × 10−4 5.9 × 10−13 
 0.005 2.8 × 10−3 1.8 × 10−3 1.1 × 10−3 6.3 × 10−4 1.4 × 10−12 
4 0.001 5.1 × 10−4 3.1 × 10−4 1.8 × 10−4 9.5 × 10−5 3.6 × 10−15 
 0.002 8.3 × 10−4 5.2 × 10−4 3.1 × 10−4 1.6 × 10−4 5.8 × 10−14 
 0.003 1.0 × 10−3 7.0 × 10−4 4.2 × 10−4 2.3 × 10−4 2.9 × 10−13 
 0.004 1.3 × 10−3 8.6 × 10−4 5.3 × 10−4 2.9 × 10−4 9.3 × 10−13 
 0.005 1.5 × 10−3 1.0 × 10−3 6.2 × 10−4 3.4 × 10−4 2.2 × 10−12 
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5 0.001 2.6 × 10−4 1.6 × 10−4 9.5 × 10−5 5.0 × 10−5 3.6 × 10−15 
 0.002 4.3 × 10−4 2.7 × 10−4 1.6 × 10−4 8.7 × 10−5 5.8 × 10−14 
 0.003 5.7 × 10−4 3.6 × 10−4 2.2 × 10−4 1.2 × 10−4 2.9 × 10−13 
 0.004 6.9 × 10−4 4.5 × 10−4 2.7 × 10−4 1.5 × 10−4 9.3 × 10−13 
 0.005 8.1 × 10−4 5.2 × 10−4 3.2 × 10−4 1.8 × 10−4 2.2 × 10−12 

 
Table 2 presents the numerical solution of the function 𝑤(𝑥, 𝑡), which was derived from the solution of the 

CTFCAE using the CHPETM. The table displays the results for various values of 𝑥, 𝑡, and 𝛼. 

 
Table 2. Numerical solution of 𝑤(𝑥, 𝑡) by CHPETM for CTFCAE with different 𝑥, 𝑡 and 𝛼.  

𝒙 𝒕 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟖 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟎. 𝟗 𝜶 = 𝟏 

1 0.001 2.1 × 10−3 1.3 × 10−3 7.6 × 10−4 4.0 × 10−4 1.4 × 10−10 
 0.002 3.5 × 10−3 2.2 × 10−3 1.3 × 10−3 7.0 × 10−4 7.1 × 10−11 
 0.003 4.6 × 10−3 2.9 × 10−3 1.7 × 10−3 9.7 × 10−4 1.3 × 10−10 
 0.004 5.6 × 10−3 3.6 × 10−3 2.2 × 10−3 1.2 × 10−3 4.7 × 10−11 
 0.005 6.6 × 10−3 4.2 × 10−3 2.6 × 10−3 1.4 × 10−3 2.1 × 10−10 
2 0.001 1.5 × 10−3 9.3 × 10−4 5.4 × 10−4 2.8 × 10−4 1.3 × 10−10 

 0.002 2.4 × 10−3 1.5 × 10−3 9.3 × 10−4 5.0 × 10−4 1.0 × 10−10 
 0.003 3.2 × 10−3 2.1 × 10−3 1.2 × 10−3 6.9 × 10−4 1.9 × 10−10 
 0.004 4.0 × 10−3 2.5 × 10−3 1.5 × 10−3 8.7 × 10−4 2.7 × 10−10 
 0.005 4.6 × 10−3 3.0 × 10−3 1.8 × 10−3 1.0 × 10−3 1.9 × 10−10 
3 0.001 9.2 × 10−4 5.6 × 10−4 3.3 × 10−4 1.7 × 10−4 2.3 × 10−15 
 0.002 1.5 × 10−3 9.4 × 10−4 5.6 × 10−4 3.0 × 10−4 3.7 × 10−14 
 0.003 1.9 × 10−3 1.2 × 10−3 7.7 × 10−4 4.2 × 10−4 1.8 × 10−13 
 0.004 2.4 × 10−3 1.5 × 10−3 9.6 × 10−4 5.2 × 10−4 5.9 × 10−13 
 0.005 2.8 × 10−3 1.8 × 10−3 1.1 × 10−3 6.3 × 10−4 1.4 × 10−12 
4 0.001 5.1 × 10−4 3.1 × 10−4 1.8 × 10−4 9.5 × 10−5 3.6 × 10−15 
 0.002 8.3 × 10−4 5.2 × 10−4 3.1 × 10−4 1.6 × 10−4 5.8 × 10−14 
 0.003 1.0 × 10−3 7.0 × 10−4 4.2 × 10−4 2.3 × 10−4 2.9 × 10−13 
 0.004 1.3 × 10−3 8.6 × 10−4 5.3 × 10−4 2.9 × 10−4 9.3 × 10−13 
 0.005 1.5 × 10−3 1.0 × 10−3 6.2 × 10−4 3.4 × 10−4 2.2 × 10−12 
5 0.001 2.6 × 10−4 1.6 × 10−4 9.5 × 10−5 5.0 × 10−5 3.6 × 10−15 
 0.002 4.3 × 10−4 2.7 × 10−4 1.6 × 10−4 8.7 × 10−5 5.8 × 10−14 
 0.003 5.7 × 10−4 3.6 × 10−4 2.2 × 10−4 1.2 × 10−4 2.9 × 10−13 
 0.004 6.9 × 10−4 4.5 × 10−4 2.7 × 10−4 1.5 × 10−4 9.3 × 10−13 
 0.005 8.1 × 10−4 5.2 × 10−4 3.2 × 10−4 1.8 × 10−4 2.2 × 10−12 

 
Table 3 shows the comparison of absolute errors of Cq-HATM, CHPETM and NITM. 

 
Table 3. Absolute errors obtained with Cq-HATM and CHPETM compared to NITM [43] for CTFCAE when α=1. 

𝒙 𝒕 𝑵𝑰𝑻𝑴 [𝟒𝟑] 𝑪𝒒 − 𝑯𝑨𝑻𝑴 𝑪𝑯𝑷𝑬𝑻𝑴 

1 0.001 3.3 × 10−11 2.6 × 10−14 2.6 × 10−14 
 0.002 2.6 × 10−10 4.1 × 10−13 4.1 × 10−13 
 0.003 8.9 × 10−10 2.1 × 10−12 2.1 × 10−12 
 0.004 2.1 × 10−9 6.7 × 10−12 6.7 × 10−12 
 0.005 4.1 × 10−9 1.6 × 10−11 1.6 × 10−11 
2 0.001 4.9 × 10−11 1.7 × 10−14 1.7 × 10−14 

 0.002 3.9 × 10−10 2.8 × 10−13 2.8 × 10−13 
 0.003 1.3 × 10−9 1.4 × 10−12 1.4 × 10−12 
 0.004 3.1 × 10−9 4.5 × 10−12 4.5 × 10−12 
 0.005 6.2 × 10−9 1.1 × 10−11 1.1 × 10−11 
3 0.001 4.1 × 10−11 2.3 × 10−15 2.3 × 10−15 
 0.002 3.3 × 10−10 3.7 × 10−14 3.7 × 10−14 
 0.003 1.1 × 10−9 1.8 × 10−13 1.8 × 10−13 
 0.004 2.6 × 10−9 5.9 × 10−13 5.9 × 10−13 
 0.005 5.1 × 10−9 1.4 × 10−12 1.4 × 10−12 
4 0.001 2.6 × 10−11 3.6 × 10−15 3.6 × 10−15 
 0.002 2.0 × 10−10 5.8 × 10−14 5.8 × 10−14 
 0.003 7.0 × 10−10 2.9 × 10−13 2.9 × 10−13 
 0.004 1.6 × 10−9 9.3 × 10−13 9.3 × 10−13 
 0.005 3.2 × 10−9 2.2 × 10−12 2.2 × 10−12 
5 0.001 1.4 × 10−11 3.6 × 10−15 3.6 × 10−15 
 0.002 1.1 × 10−10 5.8 × 10−14 5.8 × 10−14 
 0.003 3.9 × 10−10 2.9 × 10−13 2.9 × 10−13 
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 0.004 9.3 × 10−10 9.3 × 10−13 9.3 × 10−13 
 0.005 1.8 × 10−9 2.2 × 10−12 2.2 × 10−12 

 

V. RESULTS AND DISCUSSION 

Figure 1 exhibits the three-dimensional representations of the numerical solutions acquired by the Cq-

HATM, alongside the exact solutions and the absolute errors between the Cq-HATM solutions and the exact 

solutions for the CTFCAE. Figure 2 exhibits the graphical representations in three dimensions that illustrate the 

numerical solutions acquired by the CHPETM for the CTFCAE. Furthermore, the figure 2 also presents the exact 

solutions and the absolute errors between the CHPETM solutions and the exact solutions. Figure 3 shows the 2D 

comparison of the solutions obtained with methods Cq-HATM and CHPETM for the CTFCAE. Table 1 displays 

the numerical solutions of w(x,t) obtained using Cq-HATM for several values of 𝛼, specifically 𝛼 = 0.75, 𝛼 =
0.8, 𝛼 = 0.85, 𝛼 = 0.9, and 𝛼 = 1, for CTFCAE. In addition, Table 2 presents the numerical solutions of 𝑤(𝑥, 𝑡) 
acquired through the use of CHPETM for various values of 𝛼, namely 𝛼 = 0.75, 𝛼 = 0.8, 𝛼 = 0.85, 𝛼 = 0.9, and 

𝛼 = 1, for CTFCAE. Table 3 presents the absolute errors of the NITM solutions in the literature, Cq-HATM 

solutions and CHPETM solutions for the CTFCAE. Table 3 demonstrates that the two recently developed methods 

exhibit lower errors compared to NITM. 

VI. CONCLUSION 

This work investigates the CTFCAE using two novel numerical approaches, specifically Cq-HATM and 

CHPETM.  The numerical findings have provided confirmation of the reliability of these newly developed methods. 

The newly introduced techniques for addressing nonlinear fractional partial differential equations have been found 

to hold significant benefits and exhibit a high level of efficacy. 
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