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ABSTRACT

This study focuses on the novel conformable methods employed to obtain new numerical solutions for the Cahn-
Allen equation with conformable fractional derivatives. One of the two distinct methods put forth is the Cg-HATM,
a hybrid technique that integrates the g-homotopy analysis transform method with the Laplace transform, utilizing
the definition of conformable derivative. The CHPETM is a hybrid technique that combines the homotopy
perturbation method with the Elzaki transform (ET). New numerical solutions of the conformal fractional
differential Cahn-Allen equation were obtained using CHPETM and Cqg-HATM. The computer simulations have
been conducted in order to provide validation for the efficacy and reliability of the proposed methods. Upon
performing a comparative analysis between the exact solutions and the solutions obtained through the novel
methods, it becomes evident that both of these approaches exhibit simplicity, efficacy, and proficiency in
addressing nonlinear conformable time-fractional coupled systems.

Keywords- Cahn-Allen equation, conformable homotopy perturbation Elzaki transform method, conformable
Elzaki transform

Oz

Bu ¢alisma, uyumlu kesirli tiirevli Cahn-Allen denkleminin yeni sayisal ¢oziimlerini elde etmek i¢in kullanilan
yeni uyumlu yéntemlere odaklanmaktadir. One siiriilen iki farkli yontemden biri, uyumlu Kesirli tiirev tanimimi
kullanarak, g-homotopi analizi doniisiim yontemi ile Laplace dontisiimiiniin birlesiminden olusan hibrit bir yéntem
olan Ug-HADY" dir. UHPEDM, homotopi pertiirbasyon yontemininin Elzaki déntisiimiiyle birlesiminden olusan
hibrit bir yontemdir. Uyumlu kesirli tiirevli Cahn-Allen denkleminin yeni niimerik ¢oziimleri UHPEDM ve Ug-
HADY kullanilarak elde edilmistir. Onerilen metodlarmn etkinliginin ve giivenilirliginin dogrulanmasini saglamak
amactyla bilgisayar simiilasyonlar1 yapilmigtir. Kesin ¢oziimler ile yeni yontemlerden elde edilen ¢6ziimler
arasinda kargilagtirma analizi yapildiginda, bu yaklagimlarmn her ikisinin de dogrusal olmayan uyumlu zaman-
kesirli bagl sistemleri ele almada basitlik, etkinlik ve yeterlilik sergiledikleri ortaya ¢ikmaktadir.

Anahtar Kelimeler-Cahn-Allen denklemi, uyumlu homotopi pertiirbasyon Elzaki diniisiim metodu, uyumlu
Elzaki doniisiimii
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I. INTRODUCTION

Extensive study has been conducted in the topic of fractional calculus, leading to its formal definition by
numerous esteemed scientists. The researchers have formulated novel conceptualizations of fractional calculus
(FC), which subsequently laid the foundational framework for the field of fractional analysis. Fractional
differential equations (FDEs) are frequently employed in the construction of nonlinear models. The utilization of
FC has been utilized to analyze and explore diverse topics, such as chaos theory, financial models, disordered
environments, and optics. The application of solutions generated from FDEs plays a crucial role in the discovery
and understanding of nonlinear occurrences in the natural world. A diverse range of analytical and numerical
methods are employed in order to get precise solutions for fractional differential equations that incorporate
nonlinear phenomena, due to their inherent complexity. [1-11].

Khalil et al. have recently introduced a novel conceptualization of fractional derivative and fractional integral
in their scientific publication. The authors have successfully demonstrated that the newly presented definition
exhibits the fundamental characteristics of the classical derivative as described in classical analysis, while also
adding a limit form that closely approaches the definition of the classical derivative. The author introduces a novel
conception of the fractional derivative in their scholastic contribution. The definition presented incorporates a
variety of mathematical concepts, including the product rule, quotient rule, chain rule, fractional Rolle's theorem,
and fractional mean value theorems. The utilization of the conformable fractional derivative is regarded as a key
and very advantageous approach. Furthermore, it increases our ability to articulate the actions exhibited by tangible
entities. The utilization of the conformable fractional derivative gives an innovative approach for addressing
intricate problem domains. Fractional order models are commonly employed in the field of engineering and applied
sciences due to their ability to offer a more precise representation of real-world phenomena. Conformable
fractional derivatives have been employed by a multitude of academics across several academic fields. The
utilization of the conformable fractional operator serves as a viable approach to tackle specific limitations that are
present in existing fractional operators. The subject matter being examined spans a range of mathematical concepts,
such as the mean value theorem, the chain rule, the product rule for differentiating two functions, the derivative of
the quotient of two functions, and Rolle's theorem [12].

The Elzaki transform method has been utilized for solving the ordinary differential equations. Differential
transform method (DTM) in conjunction with ET has been employed to address a range of nonlinear differential
equations. The Homotopy Perturbation Elzaki Transform Method (HPETM) was initially introduced by Elzaki
and Hilal in their original work. Furthermore, the HPETM has successfully solved three nonlinear partial
differential equations (PDEs). Elzaki and Kim employed a novel hybrid approach that combines the ET with the
modified variational iteration method to tackle the radial diffusivity and shock wave equations in their research.
Aggarwal et al. employed the method of ET to obtain solutions for the first kind Volterra integral equations.
HPETM is applied to construct a solution for the fractional Navier-Stokes equations [13-18].

However, it is imperative to recognize that the fractional order has the ability to exhibit both time and space.
The topic under consideration pertains to the advancing field of fractional partial differential equations (FPDES)
that encompass operators with varying orders of fractional differentiation. Numerous rigorous numerical methods
have been devised and documented in scholarly publications, with substantial contributions from respected experts
within the discipline. A multitude of approaches have been proposed in academic literature to tackle mathematical
conundrums. This collection of techniques includes Adomian Decomposition Method (ADM), Homotopy
Analysis Method (HAM), Homotopy Perturbation Method (HPM), Collocation Method, Sumudu Transform
Method (STM), DTM, and Variational Iteration Method (VIM) [19-38].

Yasar and Giresunlu employed the homotopy analysis method to obtain the fractional order analytical solution
to the Cahn-Allen equation (CAE) [44]. The time-fractional CAE was examined using the fractional sub-equation
method to provide an approximation solution for the S-H equation [45]. Yasar et al. employed the (G’/G)-expansion
method to obtain a series solution for the space-time CAE [46]. Hariharan and Kannan employed the Haar wavelet
method to provide a numerical solution for the CAE [47]. Tascan and Bekir discovered both solitary and periodic
wave solutions for the CAE [48]. The modified handy equation technique is utilized to provide novel feasible
solutions for the CAE, and the resulting outcomes are also consistent with the penalties proposed by Tarig and
Akram [49]. Bekir [50] utilized the double exp-function method to solve the CAE and obtain solutions for one-
soliton and two-soliton cases. Guner et al. investigate three methods for analyzing the time-fractional order CAE
[51].

The primary objective of this project is to acquire innovative numerical solutions for the Cahn-Allen equation
with conformable fractional derivative (CFD). This will be achieved by employing the conformable g-homotopy
analysis transform method (Cq-HATM). The secondary objective of the study is to acquire innovative numerical
solutions for the Cahn-Allen equation using CFD. The objective will be accomplished by the utilization of the
conformable homotopy perturbation Elzaki transform method (CHPETM).
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The subsequent enumeration presents a detailed inventory of the other constituents of the study. The following
section of the article provides a thorough explanation of the fundamental principles that underlie conformable
fractional calculus and the Elzaki transform in Section 2. Section 3 introduces novel numerical approaches that are
capable of conforming to specific requirements. Section 4 of the document presents an illustrative example of the
conformable time-fractional Cahn-Allen equation. The findings are presented in Section 5.

Il. PRELIMINARIES
This section presents a set of foundational definitions.
Definition 2.1. [12, 39-41] Let a function g: [0, ) — R. Then, CFD of g order « is defined as

glx+ex™) —g(x)
€

Te(9)() = lim e (1], @

for all x > 0.

Theorem 2.1. [12, 39-41] Assume that a € (0, 1] and The functions g and h exhibit @ —differentiability at a point
x > 0., The following conditions exist:

(i) T,(ag + bh) = aT,(g) + bT,(h),foralla,b € R, (3)

(ii)T,(xP) = pxP~1,forallp € R, (4)

(iii)T,(A) = 0, for all constant functions, f(t) = 4, (5)

()T, (gh) = gTo(h) + hT,(g), (6)
g hTa (g) - gTa(h)

W1 (3) == ™

Definition 2.2. [42] Assume that @ € (0,1], h:[0,0) - R is function. The conformable fractional Elzaki
transform (CFET) of order a of h is defined as

[ee]

Ealh(D)] = To(v) = f PKZ(=p, DR(E)dqt, ®)

0
= _1
where K, (—p,t) = Ea( p,t),p > 0.
Definition 2.3. [42] Assume that a € (0, 1], h: [0,00) - R is function. The CFET for the CFD of the function
h(t) is defined as

cEalToh(D](p) = — Ea[h()](0) — ph(0). 9)

"=

11l. THE NOVEL NUMERICAL TECHNIQUES
This section presents an overview of Cq-HATM and CHPETM.

A. Conformable g-homotopy analysis transform method

A new method is presented. Consider the conformable time-fractional order nonlinear partial differential
equation (CTFNPDE) to give the main idea of Cq-HATM:

T,w(x, t) + Aw(x, t) + Hw(x, t) = h(x,t),t > 0,a € (n — 1,n], (10)

where A is linear, , H is nonlinear operators, h(x, t) is the nonhomogeneous term, and T, is a CFD of order a.
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Now, by performing conformable Laplace transform (CLT) on Eqg. (10) and using initial condition, then

we get
k-1
sLyw(x, t)] — w(x,0) + L [Aw(x, t)] + L [Hw(x, t)] = L, [h(x, t)]. (11)
m=0
If we simplify the Eq. (11), then we have
1 1 1 1
Lolw(x, )] — ;W(x, 0)+ ;La [Aw(x, )] + ;La [Hw(x,t)] — EL"‘ [A(x,t)] = 0. (12)

We define the nonlinear operator by the assist of HAM for real function ¢ (x, t; q) as follows

1 1
Nlp(x, t;q) ] = Lolo(x, t;q) ] — ot q) (09 + 5 & [Ap(x, t; Q)] + Lo[Ho(x, t; q)]

—Lo[h(Cx, DD, (13)

where ge [0, %]
We establish a homotopy in the following:
(1 —nq)Lalo(x, t;q) — wo(x, )] = hqH™ (x, )H[(x, t; @)], (14)
where, h = 0 is an auxiliary parameter and £, demonstrates conformable Laplace transform. Forg = 0 and q =

%, the outcomes in Eq. (14) are respectively provided:

o(x,t;0) = wy(x, t), @ (x, t; %) = w(x,t). (15)

Hence, by incrementing g from 0 to % then the solution ¢(x,t; q) converges from wy(x,t) to the
solution w(x, t). Employing the Taylor theorem around q and expanding ¢ (x, t; g) and then, we obtain

D006 D) = wolx, ) + D wn(x,0q™, (16)
i=1
where
1 0Mp(x,t;q)
Wi (%, t) = mlagm lg=o0- 17

Eq. (16) converges at g = % for the appropriate w,(x, t), n and h. Then, we have

m

w(x,t) = wy(x, t) + i Wy, (x, t) (%) . (18)

If we differentiate the zeroth order deformation Eq. (14) m —times with respect to g and we divide by
ml, respectively, then for g = 0, we obtain

Lo[Wi (x,6) = kW1 (x, O] = RH* (3, )Ry (Wi -1), (19)
where the vectors are defined by

Wi = {wo(x, ), wy (x, 1), ..., W, (x, )} (20)
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When we apply to the inverse CLT to Eq. (19), then we obtain
Wi (%, ) = KWy (6, 8) + hLe ™ [H* (o, )R (Win-1)], (21)

where

N k.\1 1
:Rm(Wm—l) = ['a [Wm—l(xl t)] - (1 - Tm) ;WO (xv t) + ;La(Awm—l(xl t) + Hr-:.‘t—l(x: t)

—h(x, 1)), (22)
and
0, m<1,
ke = {n, m> 1. (23)

where, H,, is homotopy polynomial and presented as

1 0™ (xt;q)
m! aqm

Hy, = lg=o and @(x,t;q) = @o + q@1 + q° @, + . (24)

By utilizing Egs. (21)-(22),then we obtain

W (6, 8) = (K + W)Wy 1 (6, £) — (1 - %’")%Wo(x, £) + hL, [GL(X [Rwy,_ (x, )

+Hp 1 (x,8) = f(x, OD]- (25)
By using g-HATM, the series solution is

m

w(x,t) = i Wy, (x, t) (%) . (26)
m=0

I11. CONFORMABLE ELZAKI ADOMIAN DECOMPOSITION METHOD

The analysis of the CTFNPDE in Eq. (10) is performed.

Now, by performing conformable Elzaki transform (CET) on Eq. (10) and using initial condition, then
we have

% Eqlw(x, )] —vw(x,0) + E [Aw(x,t) + Hw(x, t)] = E,[h(x, t)]. (27)

If we simplify the Eq. (27), then we get
E lw(x, )] = v2w(x, 0) + v E [h(x,t)] — v E [Aw(x, t) + Hw(x, t)]. (28)

On applying inverse CET to Eqg. (28), then we have

wix,t) = €, t) — ( Eq) (v EolAw(x, ©) + Hw(x, 0)]}. (29)

Now, HPM is utilized, then it is obtained as
w(x, t) = Z p"wy (x, t). (30)
n=0
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Also, the nonlinear term has been decomposed as
Hw(x,t) = ) p"Ha(w), (31)
n=0

where the homotopy polynomial H, (w) is given by

10 < (32)
H,(wy, Wy, ..., W) = m@ H Zp‘wi ,n=20,12,..

i=0 p=0
Eqgs. (30)-(31) are substituted in Eq. (29), then we have
} (33)

D P t) = 60— p (B {vZE;
n=0

AN prwa (6 + ) pH (W)
n=0 n=0

where G (x, t) is the term consisting of the initial condition and the external source term.

If we compare the identical powers of p, the resulting iterations are as follows:
P wo(x, t) = G(x,t),
pliw; (x,t) = —E~Y{w2E[Aw,y(x, ) + Hy(W)]}
p2:wy(x,t) = —E"H{v2E[Aw; (u, ) + H; (W)}

p3ws(x, t) = —E"Yw2E[Aw,(u, t) + H,(W)]}

(34)
Ultimately, the solution u(x, t) is approximated as follows.
W E) = lim ) pw (£ = woCx, )+ Wy (1, €) + wi (e, ) + - (35)
p—?

n=0

IV.RESULTS

This section seeks to provide graphic depictions of the conformable time-fractional Cahn-Allen equation.

Example 3.1. [43] Consider the conformable time-fractional Cahn-Allen equation (CTFCAE)
{ DEW(x,t) — Wi (x, ) + W3(x, ) —w(x,t) =0, t>0, 0<ac<l1 (36)

with the initial conditions

1
w(x,0) = —— (37
1+ev2

Case (i) Cq-HATM solution
CLT is employed to Eq. (37), and by applying Eq. (38), the resulting expression is produced as

L,w(x, )] - %W(x, 0) + %La[—wxx +w3—w]=0. (38)
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The nonlinear operators are defined by employing Eq. (38):

+ @3(x,t;9)

1 ) 1 [_azq)(x,t;q)
O0x? (39)

1
NipQ, t; )] = Lalp(x, t; )] = ¢ (—__x +- Ly
1+eV2

—o(xt;q)].
The m — th order deformation equations are defined by the application of the proposed algorithm:
LW (x,t) — kyyWp—1 (x,£)] = hRy(Wyp—1), (40)

where

1 km 1
R (Wp—1) = La[Wm—l 1- E(l - 7) ( —_x)
1+ev2

1| we, v (41)
+El:a —W‘l‘ Z ZWj.Wr_j Whm—1—r — Wm—1|-
=0 \j=0
By utilizing the inverse CLT to Eq. (40), we obtain
Wi = kam—l + hLa_l[Rm(Wm—l)]- (42)

By employing initial conditions, we are able to drive

wo(x, t) = ——% (43)

1+ev2

To get the value of w, (x, t), we substitute m = 1 into Eq. (42), resulting in the following expression:

[
o 6) = h| ——2 - 44
Wy X, - V3 2 a' ( )
2<1+e 2 )

In a similar vein, by substituting m = 2 into Eq. (42), the resulting value for w, (x, t) can be obtained:

—x\2 —x\2
9(6‘ 2 —1) he 2

2a

Wy (x, t) = (TL + h)Wl + h@ V2 3 (45)

2 (1 +e 2 )

Similarly, by substituting m = 3 into Eq. (42), the resulting value for w; (x, t) can be obtained:
—xV2
2
— _ 2
ws(x,t) = (n+ h)w, — 27h .

16a?(1+e 2z )*

—4(n + h)(e V% — 1)¢2* —xv2 t3a (46)
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By employing this approach, it is possible to identify the remaining terms. The solutions of the CTFCAE
are determined through the Cg-HATM:

m

w(x, t) = wol(x, t) + i Wi, (x, t) (%) . 47

By substituting « = 1,n = 1, h = —1 into Eq. (47), we have that the resulting outcome, denoted as

1
(%)
1+e 2 2

m
M wn(x,t) (%) to the exact solution w(x, t) = of the CTFCAE when M — oo,

Case (ii) CHPEDM solution
By employing the CET to Eq. (36) and utilizing Eq. (37), the resulting expression is obtained.

1
EE,Q[W(x, )] — sw(x,0) + ES[—wy, + w3 —w] =0, (48)
Rearranging Eq. (48), then we obtain

1
Ecg [w(x, t)] = s? - == SEa[_Wxx +w? - W], (49)
1+eV2
By utilizing the inverse CET on Eqg. (48), we are able to derive the following result:

W, €) = ——x — (B [sBE [ + W — wl],
1+ev2 (50)

Let us consider the assumption that the answer to the infinite series can be expressed in the following
form:

w(x, t) = Z Wy, (x, t). (51)
m=0

Utilizing HPM, now, if we rewrite Eq. (50), then it is obtained as

i P Wi, 1) = ( ! )

- vz
m=0 1+e (52)

+p {E; ! |sEa (— i P (Wim)xx + i P Hm (W) — i pmwm>”,
m=0 m=0 m=0

The symbols H,,,(w) represent He's polynomials, that are utilized to represent nonlinear variables.

Some components of H,,(w) are as follows.

Ho(w) = wq?, (53)
Hl(W) = 3W03W1, (54)
Hz(w) = 3W03W2 + 3W12W0, (55)

If the powers of p are compared, they are obtained in the same manner.
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-x -x
plwo(x,t) =1+evZ, Hy(w) = (1 + ev2)3,

36520 301+ e V7). 36500
e 2t +ev2)“.3e 2 t
pl: Wl(x' t) = 2 Hl(W) = _ \/— )
—x\V2 —XV2
2a(1+e 2 ) 21+e 2 )%a
922 — 1yree St 27652 (36732 — 1yp2e
e 2 —1)t%e 2 e 2 e 2z —1Dt
2. _ _
p 'WZ(x't) - —X\/E !HZ(W) - —X\/i )
8a?2(1+e 2 )3 8a?(1+e 2 )S

By continuing in a similar manner, the outcomes for CTFCAE can be derived.

wix,t) = Z Wy, (3, 6) = W (x, £) + wy (x, ) + wy(x, £) + -

m=0

—x\2 -x\2 —xV2
= 3e 2z t¢ 9(e” 2 —1t%e 2

=1+eV2+ >
—xVZ —xv2
2a<1+e—2 ) 8a2(1+e 2 )

(56)

(57)

(58)

(59)

Fig. 1 displays the 3D graphical representations of Cq-HATM, the exact solution, and the absolute error

for w(x, t).

Figure 1. (@) Nature of Cg-HATM solution w(x, t) (b) Nature of exact solution w(x, t) (c) Nature of absolute error=|wemct - wcq_,mm| at

h=-1,n=1,a =1 for CTFCAE.

Fig. 2 presents the three-dimensional graphical depictions of CHPETM, the exact solution, and the absolute error

for w(x, t).
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0010~

0.005—

e

Figure 2. (a) Nature of CHPETM solution w(x, t) (b) Nature of exact solution w(x, t) (c) Nature of absolute error=|we,qc: — Wepperm| at
a =1 for CTFCAE.

Figure 3 shows the two-dimensional graphical representations of Cqg-HATM and CHPETM for w(x, t) solutions
for different a values.

[EF

wiep) 0]

— 404

— 504

— G0~

— 604

alpha=0.73 alpha=0.83 alpha=0.8 .
—— alpha=09 — alpha=1 N iﬁﬁﬁjg alpha=0.75

alpha=0.85 alpha=1

Figure 3. The comparison of the Cq-HATM solutions for w(x;, t) (b) The comparison of the CHPETM solutions for w(x,t) at h = —1,n =
1,x = 0.5 with different a.

Table 1 shows the numerical solutions of w(x, t) obtained from the solution of CTFCAE with Cg-HATM for
different x, t and a values.

Table 1. Numerical solution of w(x, t) by Cq-HATM for CTFCAE with different x,t andaat n =1, h = —1.

X t a=0.75 a=0.8 a =0.85 a=0.9 a=1

1 0.001 21x1073 1.3x 1073 7.6 X 107* 4.0x107* 1.4 x 10710
0.002 3.5%x 1073 2.2%x1073 1.3x 1073 7.0 x 107* 7.1 x 1071t

0.003 46 x1073 2.9 %1073 1.7 x 1073 9.7 x 107* 1.3 x 10710

0.004 5.6 X 1073 3.6 x 1073 2.2%x1073 1.2x 1073 4.7 x 10711

0.005 6.6 x 1073 4.2%x1073 2.6 x 1073 1.4 x 1073 2.1x 10710

2 0.001 1.5x 1073 9.3 x 1074 5.4 x 107* 2.8x107* 1.3x 10710
0.002 2.4 %1073 1.5x 1073 9.3x 107* 5.0 x 107* 1.0 x 10710

0.003 3.2x1073 2.1x1073 1.2x 1073 6.9 x 107* 1.9 x 10710

0.004 40x 1073 25x 1073 1.5x 1073 8.7 x 107* 2.7 x 10710

0.005 46x 1073 3.0x 1073 1.8x 1073 1.0x 1073 1.9 x 10710

3 0.001 9.2x107* 5.6 X 107* 33x107* 1.7 x 107* 2.3x 10718
0.002 1.5x 1073 9.4 x 107* 5.6 x 107* 3.0x 107* 3.7 x 1071

0.003 1.9 x 1073 1.2x 1073 7.7 x 1074 4.2 x107% 1.8x 10713

0.004 2.4 %1073 1.5%x 1073 9.6 x 107* 52x107* 5.9 x 10713

0.005 2.8x 1073 1.8x 1073 1.1x1073 6.3x107* 1.4 x 10712

4 0.001 51x107* 3.1x107* 1.8x107* 9.5%x 1075 3.6 x 10715
0.002 8.3 x 107 5.2 x107* 3.1x107* 1.6 x 107 5.8 x 10714

0.003 1.0 x 1073 7.0 x 107* 4.2 x107* 2.3x107* 29x 10713

0.004 1.3x 1073 8.6 x107* 53 x107* 29x107* 9.3x 10713

0.005 1.5%x 1073 1.0 x 1073 6.2 x107* 34 x107* 2.2x 10712
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5 0.001 2.6 x107* 1.6 x 107 9.5 x 10~° 5.0 x 10~° 3.6 x 10715
0.002 43x107* 2.7 x107* 1.6 x 107* 8.7 x 1075 5.8 x 10714
0.003 5.7 x107* 3.6 x107* 22x107* 1.2x107* 2.9x 10713
0.004 6.9 x 107* 45x%x107* 2.7 X107* 1.5x 107* 9.3x 10713
0.005 8.1x10™* 5.2 %107 3.2x107* 1.8x107* 2.2x10712

Table 2 presents the numerical solution of the function w(x,t), which was derived from the solution of the
CTFCAE using the CHPETM. The table displays the results for various values of x, t, and a.

Table 2. Numerical solution of w(x, t) by CHPETM for CTFCAE with different x, t and a.

X a=0.75 a=0.8 a=0.85 a=0.9 a=1

1 0.001 2.1x1073 1.3x 1073 7.6 x 1074 4.0x 107* 1.4 x 10710
0.002 3.5x 1073 2.2%x1073 1.3x 1073 7.0 x 1074 7.1 x 1011

0.003 46 %1073 29x 1073 1.7 x 1073 9.7 x 107* 1.3 x 10710

0.004 5.6 x 1073 3.6 x1073 2.2x1073 1.2x 1073 47 x 10711

0.005 6.6 x 1073 42 %1073 2.6 X 1073 1.4 %1073 2.1 x 10710

2 0.001 1.5x 1073 9.3 x107* 54 x 107* 2.8x107* 1.3 x 10710
0.002 2.4 %1073 1.5x 1073 9.3x107* 5.0x 107* 1.0 x 10710

0.003 3.2x 1073 2.1x 1073 1.2x 1073 6.9 x 1074 1.9 x 10710

0.004 4.0x 1073 2.5%x 1073 1.5%x 1073 8.7 x 107* 2.7 x 10710

0.005 4.6 x 1073 3.0 x 1073 1.8x 1073 1.0 x 1073 1.9 x 10710

3 0.001 9.2 x 1074 5.6 x 107* 3.3x107* 1.7 x 1074 2.3x 10715
0.002 1.5x 1073 9.4 x107* 5.6 x 1074 3.0x107* 3.7x 107

0.003 1.9 %1073 1.2x 1073 7.7 x 1074 42 x107* 1.8x 10713

0.004 2.4 x 1073 1.5%x 1073 9.6 X 107* 52 % 107* 59x 10713

0.005 2.8x 1073 1.8x 1073 1.1x 1073 6.3 x 1074 1.4 x 10712

4 0.001 5.1x%x107* 3.1x107* 1.8x 107* 9.5 x 1073 3.6 x 10715
0.002 8.3x107* 52 x107* 3.1x107* 1.6 x 1074 58 x 1071

0.003 1.0 x 1073 7.0 x 1074 42 x 1074 2.3x107* 2.9 x 10713

0.004 1.3x 1073 8.6 x 107* 53 x107* 29x107* 9.3x 10713

0.005 1.5%x 1073 1.0 x 1073 6.2 x 107* 3.4 x%x107* 2.2 x 10712

5 0.001 2.6 X 1074 1.6 x 107% 9.5 x 1073 5.0 x 1073 3.6 x 10715
0.002 43x107* 2.7 x107% 1.6 x 1074 8.7 x 1075 58 x 107

0.003 5.7 x 1074 3.6 x 1074 2.2 %1074 1.2 x 1074 29x%x 10713

0.004 6.9 x 1074 45x 107 2.7 x 1074 1.5%x 1074 9.3x 10713

0.005 8.1 x 1074 52 x107% 3.2x 1074 1.8x 1074 2.2 X 10712

Table 3 shows the comparison of absolute errors of Cg-HATM, CHPETM and NITM.

Table 3. Absolute errors obtained with Cq-HATM and CHPETM compared to NITM [43] for CTFCAE when a=1.

x t NITM [43] Cq — HATM CHPETM

1 0.001 33x10"1 2.6 x 10~ 2.6 x 10~
0.002 2.6 x 10710 41x 10713 41x 10713

0.003 8.9 x 10710 2.1 x 10712 2.1 x 10712

0.004 2.1x107° 6.7 x 10712 6.7 x 10712

0.005 41x107° 1.6 x 10~11 1.6 x 10711

2 0.001 49 x 1071t 1.7 x 10714 1.7 x 10714
0.002 3.9x 10710 28x10713 28x10°13

0.003 1.3 x 107° 1.4 x 10712 1.4 x 10712

0.004 3.1x107° 45 x 10712 45 x 10712

0.005 6.2x107° 1.1x10™11 1.1x 101

3 0.001 41 x 1071t 23 %1071 2.3 %1071
0.002 3.3x10°1° 3.7x 1071 3.7 x 1071

0.003 1.1 x 107° 1.8 x 10713 1.8 x 10713

0.004 2.6 x107° 59x 10713 59x 10713

0.005 5.1x107° 1.4 x 10712 1.4 x 10712

4 0.001 2.6 x 10711 3.6 x 10715 3.6 x 1071°
0.002 2.0x 10710 5.8 x 1071 5.8 x 107

0.003 7.0 x 10710 29x10°13 29x10°13

0.004 1.6 x 10~° 9.3 x 10713 9.3 x 10713

0.005 3.2%x107° 2.2x 10712 2.2x 10712

5 0.001 1.4 x 10711 3.6 x 10715 3.6 x 1071°
0.002 1.1 x 10710 5.8 x 1071 5.8 x 107

0.003 3.9x10°1° 29x10°13 29x10°13
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0.004 9.3 x 1071 9.3 x 10713 9.3 x 10713
0.005 1.8x107° 2.2 x 10712 2.2 x 10712

V. RESULTS AND DISCUSSION

Figure 1 exhibits the three-dimensional representations of the numerical solutions acquired by the Cg-
HATM, alongside the exact solutions and the absolute errors between the Cg-HATM solutions and the exact
solutions for the CTFCAE. Figure 2 exhibits the graphical representations in three dimensions that illustrate the
numerical solutions acquired by the CHPETM for the CTFCAE. Furthermore, the figure 2 also presents the exact
solutions and the absolute errors between the CHPETM solutions and the exact solutions. Figure 3 shows the 2D
comparison of the solutions obtained with methods Cqg-HATM and CHPETM for the CTFCAE. Table 1 displays
the numerical solutions of w(x,t) obtained using Cq-HATM for several values of «, specifically « = 0.75,a =
0.8, = 0.85,a = 0.9, and a = 1, for CTFCAE. In addition, Table 2 presents the numerical solutions of w(x, t)
acquired through the use of CHPETM for various values of a, namely @ = 0.75,a = 0.8, @ = 0.85,a = 0.9, and
a =1, for CTFCAE. Table 3 presents the absolute errors of the NITM solutions in the literature, Cq-HATM
solutions and CHPETM solutions for the CTFCAE. Table 3 demonstrates that the two recently developed methods
exhibit lower errors compared to NITM.

VI. CONCLUSION

This work investigates the CTFCAE using two novel numerical approaches, specifically Cq-HATM and
CHPETM. The numerical findings have provided confirmation of the reliability of these newly developed methods.
The newly introduced techniques for addressing nonlinear fractional partial differential equations have been found
to hold significant benefits and exhibit a high level of efficacy.
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