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A B S T R A C T  
 

This article presents a comparative study of the prediction of time series for the Consumer 

Price Index (CPI) using a recurrent neural network (RNN). For this, three models are 

designed for recurrent networks, with changes in backpropagation applied to allow them to 

incorporate the ARX (auto-regressive with external input) and NARX (nonlinear auto-

regressive with external input) models. We also present a third architecture, re-fed with the 

hidden layer, called ARXI, which is a special case of the Elman Network. Training is 

carried out for all networks and tests the ability to generalize them (identification stage), in 

order to select the best architectures of recurrent networks for prediction of the CPI. 

Following this stage, the models are validated by testing the extrapolation capacity of the 

networks, i.e., the presented data were not used during the training phase and obtain 

responses that indicate the capacity to predict the CPI at various times in the future 

(validation phase). We conclude that the NARX network shows the best performance and 

that the hybrid system proposed in [1] constitutes an excellent tool when minimal networks 

are required that make a series of perdition satisfactorily. 

© 2017 Forecast Research Laboratory. All rights reserved. 
 

 

1. Introduction 

A growing demand for forecasts and the trend analysis of variables has recently been observed in many 

professional areas. Many companies and government agencies are seeking to develop computational tools that 

provide automatic predictions for the values of certain variables that are being tracked; this helps in defining strategic 

policies within these organizations, and in the process of decision making and planning in the short to medium term. 

These prediction methods vary greatly and depend on data availability, the quality of models and the types of 

assumptions made, among other things. In general, these predictions are not straightforward, and this has attracted 

many researchers to this field.  

The Artificial Neural Networks (ANN) have been used increasingly for the prediction of time series in various 

lines of business, economic and financial [2,3] chaotic time series prediction [4], energy consumption [5] among 

others. ANNs can learn from examples, recognize a hidden pattern in historical observations and use them to predict 

future values. Moreover, they are able to deal with incomplete information or noisy data and can be very effective, 

especially in situations where you cannot set the rules or steps that lead to the solution of a problem. 

The task of designing architecture of an ANN to simulate problems of predicting time series isn’t a simple task, 

since the inclusion of recurrences in the models increases the complexity of learning algorithms used in these 

networks. Thus, recurrent neural networks haven’t yet been fully exploited due to its tedious and training for their 

complex structures [6] discusses several approaches that seek heuristics to limit the complexity of design, computer 

time, parameterization and selection of ANNs, which causes additional problems of decision and a trial and error 

approach for modeling the network. 
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Some researchers are seeking methods for the automatic design of artificial neural networks (ANNs) using 

evolutionary strategies; however, there are few studies that seek to generate architectures based on recurrent artificial 

neural networks (RANNs). The authors of [7] have proposed a method that uses evolutionary algorithms for the 

automatic design of ANN architectures; their paper presents an evaluation of eight combinations of evolutionary 

strategies for 16 sets of public domain data, and the methodology gives excellent results for direct neural networks. 

Methods for the automatic construction of RANNs have been hampered by the fact that the training algorithms for 

such networks are more complex than those used for direct networks. 

In [1], a biologically plausible methodology was proposed which is capable of generating recurrent artificial neural 

networks with an optimal number of neurons and adequate topology. With this objective in mind, three biological 

metaphors were used: genetic algorithms (GA), Lindenmayer systems (L-systems) and ANNs. The methodology 

attempts to imitate the natural process of the growth and evolution of the nervous system, using L-systems as a recipe 

for the development of neurons and their connections, and GA to develop and optimize the architecture of a nervous 

system suitable for a specific task. The technique was tested on three simple, known problems (XOR, Parity and 

Tomita’s Languages [8]) where recurrent network topologies can be used. A more complex problem involving the 

learning of time series was also studied. The results show that the proposal is very promising and can generate direct 

and recurrent neural network architectures with an optimal number of neurons and connections, good generalization 

capacity, less error and high tolerance to noise. 

We are currently seeking improvements to the methodology proposed in [1], through a deepening of the theoretical 

and methodological aspects: firstly, the study of mechanisms that can imitate the biological process of the 

development of neurons, considering aspects of the biological plausibility of the chromosomal coding [9], according 

to evolutionary strategies that can evolve and select the best connection architecture for the ANNs generated; and 

secondly the possibility of exploring RANNs with different architectures. In this respect, a detailed study of the 

various possibilities of recurrent connections is necessary, given the complexity of training algorithms for these 

architectures. 

With these goals in mind, Section 2 presents three architectures used to predict the Consumer Price Index: the 

ARX and NARX networks, and a third architecture, where the intermediate layer has recurrences, referred to here as 

ARXI. Section 3 describes simulation results for the prediction of a time series that provides the Consumer Price 

Index, and finally, the conclusions are presented in Section 4. 

 

2. Nonlinear Presentations 

The prediction of time series has been performed with the use of traditional models Auto Regressive and/or moving 

average. These are parametric models through which the forecasting of future observations is obtained from the linear 

combination of past values and, when appropriate, with the noise components of the series of interest weighted by a 

set of parameters. Dynamical systems are nonlinear, this way these applications should be chosen models with 

nonlinearity, since they produce some dynamic schemes that linear systems cannot represent. 

The ANNs are good examples of widespread linear representation which are currently increasingly used for 

prediction of time series, due to its capacity to add knowledge in its structure, with examples, a predictor based on 

neural network is able to estimate the future behaviour of a series only from its past samples. A prediction model of 

this type is called non-parametric, since there is no need to know the parameters the process that generates the signal. 

The process model is estimated using a learning algorithm where the samples are presented to the neural network 

and their weights are updated according with the prediction error. The following are some representations based on 

nonlinear ANNs, as well as changes in the algorithm "back propagation” for each case. 

 

2.1. Presentation 1 - ARX network 

This section presents architecture of recurrent neural network with the output feedback, Figure 1. This ANN is 

based on the ARX model [10], which is nothing more than an MLP network, whose inputs consists of  the outputs 

recurrences with delays. This neural network is equivalent to the ARX model (autoregressive with exogenous inputs), 

given by equation (1). Where 𝑥(𝑛) is the system input and 𝑦(𝑛) the output, where the function 𝑓(. ) is a nonlinear 

function, usually unknown 𝑥(𝑛), 𝑦(𝑛) correspond to the input and output at time n, while 𝑑𝑦 > 0, is the order of the 

input buffer. When this function is approximated by a “perceptron” multilayer network, the resulting topology is 

called ARX recurrent network, which is a special case of the network shown in section 2.3. 
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𝑦(𝑛) = 𝑓[𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 𝑑𝑦) + 𝑥(𝑛)]                      (1) 

 

For deductions of the models presented in this section and in subsequent, consider that “A” is the number of units 

of input layer, as determined by the length of input vectors for training, “C” is the number of units of output layer 

and “B” is the number of units in the hidden layer. The input and hidden layers, each have an extra unit used as a 

limit, so the units of these layers are sometimes indexed by the intervals (0, ...., A) and (0, ..., B).  Denote the levels 

of activation of units in the input layer by 𝑥𝑗 the hidden layer by ℎ𝑗 and the output layer by 𝑜𝑗. The weights connecting 

of the input layer to hidden layer are denoted by 𝑤1𝑖𝑗, where ‘i’ index the input units and ‘j’ index the hidden units. 

Similarly, the weights connecting the hidden layer to output layer are denoted by 𝑤2𝑖𝑗 with i and j indexing the 

hidden units to output units. 

The modifications made in the "backpropagation" algorithm to the ARX model for the recurrent neural model 

were as follows: the outputs in intermediate layer are now given by equation (2). It was included the contributions of 

the recurrences given by the sum of 𝑚 = 0 to C for the terms 𝑜𝑚(𝑡 − 1) in it. 

 

ℎ𝑘(𝑡) =
1

1+𝑒
− ∑ 𝑜𝑚(𝑡−1)𝐶

𝑚=0  × 𝑤3(𝑡)𝑚𝑘+∑ 𝑥𝑛𝑗(𝑡) × 𝑤1(𝑡)𝑗𝑘
𝐴
𝑗=0

                     (2) 

 

For 𝑡 > 0, ℎ0 = 1, which is the bias value. The term 𝑜𝑚(𝑡 − 1) refers to each output that is feedback to the input 

layer, “C” is the number of neurons in the output layer, in 𝑡 =  0 the value of 𝑜𝑚(𝑡 − 1) = 0. The updating of the 

weights of the feedback is given by equation (3): 
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After mathematical deductions came the conclusion that the updates of the weights of intermediate layer to an 

output layer are given by equations (4) and (5). The development of equation (3) is given by equations (6) to (21). 

 

Figure 1. Network ARX model approximation the (1) 
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P is given by equation (20) 
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The equation (3) is given by 
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2.2. Representation 2 - Network with recurrent hidden layer 

What is intended in the present section is to present the formulation of an algorithm based on generalized delta 

rule for a network with recurrent hidden layer, the network architecture is shown in Figure 2. This same is a special 

case of the Elman network, in the sense that exogenous input, shows no delays 𝑥(𝑛), but presents the context unit 

replenished with delays 𝑣𝑞(𝑛 − 1). The outputs in the hidden layer are now given by equation (22). 
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Figure 2. Network with recurrent hidden layer 
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for 𝑡 >  0, ℎ (0)  =  1, which is the bias value. The terms of ℎ𝑝(𝑡 − 1) are equal to the feedback ℎ𝑘(𝑡 − 1), for 𝑡 =

 0 has a value of ℎ𝑝(𝑡 − 1) = 0. The updating of the weights is given by: 
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Updating the weights of the hidden layer and output layer are given by equations (4) and (5). The update of the 

weights of the feedback is calculated by equation (24). The development of equation (23) is shown by equations (24) 

to (38). 
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2.3. Representation 3 - NARX network 

The model studied in this section is the NARX model that is nothing more than an MLP whose input is the output 

fed back to itself with time delays and an exogenous input, also with delays. In this architecture, the estimated outputs 

of the network are introduced again to entries, this representation is equivalent to the statistical NARX model 

(Nonlinear Autoregressive model with exogenous input), given by: 

 

𝑦(𝑛) = 𝑓[𝑦(𝑛 − 1), … , 𝑦(𝑛 − 𝑑𝑦), 𝑢(𝑛 − 1), … , 𝑢(𝑛 − 𝑑𝑢 + 1)]                (39) 

 

Where the function 𝑓(. ) is a nonlinear function, usually unknown 𝑢(𝑛) and 𝑦(𝑛) correspond to the input 

and output at time n, while du > 0 and  du ≤ dy, are orders of memory input and output. When this function is 

approximated by a multilayer perceptron network, the resulting topology is called NARX recurrent network. Figure 

3 illustrates a NARX recurrent network. The same illustrates a NARX network with one hidden layer and a global 

feedback loop. In this research we considered the use of the NARX network in parallel mode of identification. 

 

 

Figure 3. NARX network (Source [3]) with input and output delays 

 

3. Experiments 

The experiments performed to test the models presented in Section 2 were based on a time series representing the 

CPI between January 1998 and December 2009 (source: Central Bank of Brazil; data are shown in Table 1). The CPI 

quantifies the cost of products at different times; in other words, it is a measure of the price level of goods and services 

purchased by households over time and is useful for calculating inflation. 
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Table 1. CPI period Jan-1998 to December 2009 normalized values 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998 0.0126 0.0014 0.0033 0.0023 0.0014 0.0041 -0.0025 -0.0052 -0.0017 0.0020 -0.0019 0.0009 

1999 0.0064 0.0141 0.0095 0.0052 0.0008 0.0065 0.0120 0.0048 0.0019 0.0092 0.0112 0.0060 

2000 0.0101 0.0005 0.0051 0.0025 0.0040 -0.0001 0.0191 0.0086 0.0004 0.0002 0.0040 0.0062 

2001 0.0064 0.0040 0.0056 0.0086 0.0041 0.0052 0.0136 0.0054 0.0012 0.0071 0.0085 0.0070 

2002 0.0079 0.0014 0.0042 0.0071 0.0028 0.0055 0.0103 0.0076 0.0066 0.0114 0.0314 0.0194 

2003 0.0232 0.0137 0.0106 0.0112 0.0069 -0.0016 0.0034 0.0013 0.0076 0.0021 0.0033 0.0043 

2004 0.0108 0.0028 0.0046 0.0031 0.0071 0.0078 0.0059 0.0079 0.0001 0.0010 0.0037 0.0063 

2005 0.0085 0.0043 0.0070 0.0088 0.0079 -0.0005 0.0013 -0.0044 0.0009 0.0042 0.0057 0.0046 

2006 0.0065 0.0001 0.0022 0.0034 -0.0019 -0.0040 0.0006 0.0016 0.0019 0.0014 0.0024 0.0063 

2007 0.0069 0.0034 0.0048 0.0031 0.0025 0.0042 0.0028 0.0042 0.0023 0.0013 0.0027 0.0070 

2008 0.0097 0.0056 0.0045 0.0072 0.0087 0.0077 0.0053 0.0014 -0.0009 0.0047 0.0056 0.0052 

2009 0.0083 0.0021 0.0061 0.0047 0.0039 0.0012 0.0034 0.0020 0.0018 0.0001 0.0026 0.0024 

Initially, a study was carried out of the generalization capacity of the architectures proposed in Section 2 and of 

the MLP network, selected for this part of the data in Table 1, for generalization (identification) and partly to test the 

extrapolation capacity of the networks (validation). Thus, values of the CPI from the period Jan 1998 to Dec 2002 

were chosen for training the ANNs and analysing the ability to generalize from them, which is the identification stage 

of the system. The parameters used in the training algorithms were as follows: one neuron in the input layer, four in 

the intermediate layer and one in the output layer, a learning rate of 1.98 and 240,000 epochs. Figure 4 shows these 

results. It is notable that the best performance in generalization was obtained by the NARX network and secondly by 

ARX (a special case of NARX); the MLP generalizes with lower quality. The NARX network showed good 

performance, fast convergence and better generalization than the other models, although the ARX network showed 

comparable performance. This occurs because the input vectors of NARX models are built through a delay line with 

derivation slid over the input signal with a delay line, with derivation formed by the feedback of the output signal of 

the network [11]. 

For validation of the models we tested the NARX network for various parameters, initially it was simulated a 

network with the following number of neurons one (1) in the input layer, six (6) in the hidden layer and one (1) in 

the output, learning rate of 1.98 and 240000 epochs. The figure 5 illustrates the results considering three steps ahead, 

i.e. considered in the validation data for the years 2003, 2004 and 2005 that were not used in the identification stage 

(generalization). It was considered that these results were satisfactory for an error of 0.0001. However, we moved 

some parameters of the training were achieved several experiments in order to obtain a better validation of the model 

NARX. Was isolated one of the best solutions were obtained considering the following parameters:  number of 

neurons one (1) in the input layer, eight (8) in the hidden layer and one (1) in the output, learning rate of 30.98 and 

240000 epochs. The figure 6 illustrates the results, noticed that as we increase the number of neurons in the hidden 

layer from 6 to 8 that network performance improves considerably, i.e. the NARX model presented in section 2.3, 

works as an excellent predictor (red line).  

The figure 7 shows the validation tests for the network ARX, with the same parameters of the NARX network 

presented earlier, i.e., eight (8) neurons in the hidden  layer, we noticed a good performance of the network, but the 

network NARX still  is superior. Aiming to find a minimal network capable of predicting the CPI, we used the hybrid 

system proposed by [1,12], thus a larger universe of networks were tested by the evolutionary algorithm, driven by 

the fitness function, search now smaller networks capable of predicting well the CPI, the figure 8 shows the results 

of a network with one (1) neuron in the input layer, two (2) in the hidden layer and one (1) in the output, learning 

rate of 1.98 and 240000 epochs. 
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Figure 4. Stage of identification - generalization capability network 

 

Figure 5. NARX network validation N=3 steps 

 

Figure 6. NARX network validation N=3 steps   

 

Figure 7. ARX network validation N=1 step 
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Figure 8. NARX network model generalization / hybrid system 

 

4. Conclusions 

The experiments indicate that the NARX network, besides showing good performance in the problem of predicting 

the CPI, offered faster convergence and a better generalization capability than the other networks. This occurs 

because the input vectors of NARX models are built through a delay line with derivation slid over the input signal 

with a delay line with derivation formed by the feedback of the output signal of the network [11]. The performance 

of the ARX network is similar to that of NARX for the problem studied; however, the network described in Section 

2.2 did not show a good generalization capability in the simulations, and was discarded from studies of future 

predictions. The MLP also did not generalize well for the problem under study. The hybrid system in [1] is an 

excellent option for testing a population of networks that can generalize the problem well, without the intervention 

of the designer. Furthermore, it is possible to direct the search, as in the case of the simulation shown in Figure 8, 

where we sought a minimum network which was able to generalize well, as this is sometimes necessary. The fitness 

function used in the hybrid system proposed in [1] directs the search by considering the following aspects: the neurons 

in the hidden layer, the production rules, recurrent connections and residual error. 
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