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Abstract. In this article, we consider the definition of the Fibonacci poly-

nomial sequence with the second-order linear recurrence relation, where co-
efficients and initial conditions depend on the variable t. And then, we in-

troduce the functional binomial matrix depending on the coefficients of the

second-order linear recurrence relation. In the following, we study the spectral
properties of the functional binomial matrix using the Fibonacci polynomial

sequence and we obtain a diagonal decomposition for it using the Vandermunde

matrix. Finally, by applying some linear algebra tools we obtain a number of
combinatorial identities involving the Fibonacci polynomial sequence.

1. Introduction

The Fibonacci sequence and the Lucas sequence are among the most well-known
second-order linear recurrence sequences that are of particular importance in num-
ber theory and combinatorics (see [17]):

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, (1)

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1. (2)

Usually, second-order linear recurrence relations are generalized with two ideas, first
by preserving the recurrence relation and second by preserving the initial conditions.
The most prominent examples of Fibonacci-Like sequences are given as follows:

• The Jacobsthal sequence [11] is defined by the recurrence relation

Jn = Jn−1 + Jn−2 (n ≥ 2), J0 = 1, J1 = 1. (3)
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• The Jacobsthal-Lucas sequence [11] is defined by the recurrence relation

jn = jn−1 + 2jn−2 (n ≥ 2), j0 = 2, j1 = 1. (4)

• Singh et al. [26] defined Fibonacci-Like sequence

Sn = Sn−1 + Sn−2 (n ≥ 2), S0 = 2, S1 = 2. (5)

• Horadam [11], Kalman [14], Stanimirović [27] and Gupta [10] generalized
the Fibonacci sequence by considering a new initial condition and a new
recurrence relation:

Fn = AFn−1 +BFn−2 (n ≥ 2), F0 = a, F1 = b, (6)

where A,B, a and b are positive integers.

A natural way to generalize the Fibonacci sequence is to use the Fibonacci poly-
nomials. For over a century, both Fibonacci and Lucas polynomials have appeared
in the literature in the study of several subjects such as algebra, geometry, com-
binatorics, approximation theory, statistics, and number theory [23]. Fibonacci
polynomials were studied in 1883 by Catalan and Jacobsthal [8, 13]. Many works
dealt with different properties of these polynomials and their applications. Fi-
bonacci polynomials appear in different frameworks. Fibonacci polynomials are
special cases of Chebyshev polynomials and have been studied on a more advanced
level by many mathematicians. Large classes of Fibonacci-Like polynomials can
be defined with the help of recurrence relations and the properties of the resulting
Fibonacci numbers can be studied [17].
The most prominent examples of Fibonacci polynomials sequences are given as
follows:

• The polynomials Fn(t) studied by Catalan [8] are defined by the recurrence
relation:

Fn(t) = tFn−1(t) + Fn−2(t) (n ≥ 2), F0(t) = 1, F1(t) = t. (7)

• The Fibonacci polynomials studied by Jacobsthal [13] were defined by

Jn(t) = Jn−1(t) + tJn−2(t) (n ≥ 2), J0(t) = 1, J1(t) = 1. (8)

• The Pell polynomials [12] are defined by

Pn(t) = 2tPn−1(t) + Pn−2(t) (n ≥ 2), P0(t) = 0, P1(t) = 1. (9)

• The Lucas polynomials [5] are defined by

Ln(t) = tLn−1(t) + Ln−2(t) (n ≥ 2), L0(t) = 2, L1(t) = t. (10)

Many authors have studied Fibonacci polynomials with different ideas [4,19,21,22,
26]. But recently Kaygisiz and Sahin [15] have presented new generalizations of Lu-
cas numbers with matrix representation using generalized Lucas polynomials. Also,
Lee and Asci [18] have defined a new generalization of Fibonacci polynomial called
(A,B)-Fibonacci polynomial with the help of Pascal matrix. They obtain combina-
torial identities and, using Riordan’s method, obtain Pascal matrix factorizations
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including (A,B)-Fibonacci polynomials. In this paper, we present generalization
of the Fibonacci and Lucas polynomials by changing the initial terms and the re-
currence relation.
In [7], Carlits (for a = b = 1) and in [1], Akkuse studied the (n + 1) × (n + 1)

matrix Bn =
[
ai+j−nbn−j

(
i

n−j

)]
0≤i,j≤n

, and derived many interesting results on

spectral and powers of these matrices. In this paper, introducing a generalized
functional matrix Bn[x(t), y(t)] which call it the generalized functional binomial
matrix of two variables x(t) and y(t) (both variables are dependent on t), we find
the eigenvalues, eigenvectors and characteristic polynomial of it. We also obtain a
decomposition for the matrix Bn[x(t), y(t)] and some identities for the polynomials
Fibonacci sequence.

Definition 1. The functional binomial matrix of two variables of order (n+ 1)×
(n+ 1) is defined by

Bn[x(t), y(t)] =

[
x(t)i+j−ny(t)n−j

(
i

n− j

)]
0≤i,j≤n

. (11)

Example 1. The functional binomial matrix of two variables of order 4 × 4 is as
follows

B3[x(t), y(t)] =


0 0 0 1

0 0 y(t) x(t)

0 y(t)2 2x(t)y(t) x(t)2

y(t)3 3y(t)2x(t) 3y(t)x(t)2 x(t)3

 .

In the following lemma, we can easily obtain a decomposition for the functional
binomial matrix of two variables, considering Bn[x(t), 1] = Bn[x(t)].

Lemma 1.
Bn[x(t), y(t)] = Bn[x(t)]diag

(
y(t)n, · · · , y(t), 1

)
.

For finding B−1
n [x(t), y(t)], it is enough to find B−1

n [x(t)]. Now, consider the

matrix Ĩ = [δi,n−j ]0≤i,j≤n, where δi,n−j is the Kronecker delta. It is easy to see

that Bn[x(t)] = Pn[x(t)]Ĩn+1, where Pn[x(t)] =
[(

i
j

)
x(t)i−j

]
0≤i,j≤n

is the Pascal

matrix with one variable, has the following properties (see [2, 3, 6, 16]):

(1) Pn[x(t)]Pn[y(t)] = Pn[x(t) + y(t)],
(2) Pn[x(t)]Pn[−x(t)] = Pn[0] = In+1 namely P−1

n [x(t)] = Pn[−x(t)].

Therefore

B−1
n [x(t)] = ĨPn[−x(t)] =

[(
n− i

j

)
(−x(t))n−i−j

]
0≤i,j≤n

.

According to above topics, we present the inverse of the functional binomial matrix

of two variables as follows B−1
n

[
x(t), y(t)

]
=
[
(−x(t))n−i−j(y(t))i−n

(
n−i
j

)]
0≤i,j≤n

.
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Example 2.

B−1
4 [x(t), y(t)] =


0 0 0 1

0 0 y(t) −x(t)

0 y(t)2 −2x(t)y(t) x(t)2

y(t)3 −3y(t)2x(t) 3y(t)x(t)2 −x(t)3

 .

2. The generalized Fibonacci polynomial and the functional binomial
matrix

According to relations (1)-(5), a natural and general definition (6) can be pre-
sented, where coefficients and initial conditions are positive integers. Now, with
the same idea and according to the recurrence relations (8)-(10), the following gen-
eral definition can be presented, where the coefficients of the recursive and initial
relation are considered as polynomials with integer coefficients.

Definition 2. Let A(t), B(t), a(t) and b(t) be polynomials with integer coefficients.
The generalized Fibonacci polynomials

{
Fn

(
a(t), b(t);A(t), B(t)

)}
n≥0

(we shall of-

ten drop the argument
(
a(t), b(t);A(t), B(t)

)
and simply write

{
Fn(t)

}
n≥0

are de-

fined by the recurrence relation

Fn(t) = A(t)Fn−1(t) +B(t)Fn−2(t) (n ≥ 2), (12)

F0(t) = a(t), F1(t) = b(t). (13)

For easy notation, we shall sometimes write A,B, a, b for A(t), B(t), a(t) and
b(t). We display some special cases of the sequence

{
Fn(t)

}
n≥0

, in Table 1.

Table 1. Some special cases of
{
Fn(t)

}
n≥0

Polynomial Type Fn

(
a, b;A,B

)
A(t) B(t) a(t) b(t)

generalized Fibonacci Fn(t) t 1 1 t
generalized Lucas Ln(t) t 1 2 t
generalized Pell Pn(t) 2t 1 0 1
Jacobsthal Jn(t) 1 t 1 1
1st kind Chebyshev Tn(t) 2t -1 1 t
2nd kind Chebyshev Un(t) 2t -1 1 2t
3th kind Chebyshev Vn(t) 2t -1 1 2t− 1
4th kind Chebyshev Wn(t) 2t -1 1 2t+ 1
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Theorem 1. The non-degenerated second-order recurrent sequence Fn(t), defined
in (12), satisfies the following generalization of the Binet formula

Fn(t) =

(
b− aβ

α− β

)
αn +

(
aα− b

α− β

)
βn (n ≥ 0), (14)

where α and β are the roots of the characteristic equation λ2 −Aλ−B = 0.

Corollary 1. For a = 0 and b ̸= 0, we have

Fn(t) =
b
(
αn − βn

)
α− β

(n ≥ 0), (15)

and for a ̸= 0 and b = 0, we have

Fn(t) =
−aαβ

(
αn−1 − βn−1

)
α− β

(n ≥ 0), (16)

and also for b = ka where k is a non-zero fixed number, we have

Fn(t) =
a
[
αn − βn − kαβ

(
αn−1 − βn−1

)]
α− β

(n ≥ 0). (17)

Corollary 2. For n ≥ 1 and k ≥ 0, we have

Fk(n+1)(t) = AkFkn(t)− (−B)kFk(n−1)(t),

where Ak satisfy Ak+1 = AAk +BAk−1 with the boundary conditions A0 = 2 and
A1 = A.

Proof. By the Binet formula (14) and since Ak = αk + βk and αβ = −B, we have

AkFkn(t)− (−B)kFk(n−1)(t) =

=
(
αk + βk

)[(b− aβ

α− β

)
αkn +

(
aα− b

α− β

)
βkn

]
−
(
αβ
)k[(b− aβ

α− β

)
αk(n−1) +

(
aα− b

α− β

)
βk(n−1)

]
=

(
b− aβ

α− β

)
αk(n+1) +

(
aα− b

α− β

)
βk(n+1)

= Fk(n+1)(t).

□

The following theorem is the main result of this paper which gives the relation
of the characteristic polynomial of the generalized binomial matrix of two variables
Bn[A,B] with the generalized Fibonacci sequence

{
Fn(t)

}
n≥0

.

Theorem 2. If
(
Fℓ(t)

n−i(t)F i
ℓ+1(t)

)
0≤i≤n

be a column vector of (n+1)-dimension,

then

Bn[A,B]
(
Fℓ(t)

n−iF i
ℓ+1(t)

)
0≤i≤n

=
(
Fn−i
ℓ+1 (t)F

i
ℓ+2(t)

)
0≤i≤n

. (18)
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Proof. Let Bn[A,B]
(
Fn−i
ℓ (t)F i

ℓ+1(t)
)
0≤i≤n

= [ai], we have

ai =

n∑
k=0

(
i

n− k

)
Ai+k−nBn−kFn−k

ℓ (t)F k
ℓ+1(t)

= Fn−i
ℓ+1 (t)

n∑
k=n−i

(
i

n− k

)(
BFℓ(t)

)n−k(
AFℓ+1(t)

)i+k−n
,

which substituting r = k − n+ i, we obtain

ai = Fn−i
ℓ+1 (t)

i∑
r=0

(
i

r

)(
BFℓ(t)

)i−r(
AFℓ+1(t)

)r
= Fn−i

ℓ+1 (t)
(
BFℓ(t) +AFℓ+1(t)

)i
= Fn−i

ℓ+1 (t)F
i
ℓ+2(t).

□

Example 3.

B3[A,B]
(
F 3−i
ℓ (t)F i

ℓ+1(t)
)
0≤i≤3

=


0 0 0 1

0 0 B A

0 B2 2AB A2

B3 3B2A 3BA2 A3




F 3
ℓ (t)

F 2
ℓ (t)Fℓ+1(t)

Fℓ(t)F
2
ℓ+1(t)

F 3
ℓ+1(t)



=


F 3
ℓ+1(t)

F 2
ℓ+1(t)Fℓ+2(t)

Fℓ+1(t)F
2
ℓ+2(t)

F 3
ℓ+2(t)

 .

Corollary 3.

Fn−i
ℓ+1 (t)F

i
ℓ+2(t) =

∑
i1,··· ,iℓ

(
i

n− i1

)(
i1

n− i2

)
· · ·
(

iℓ+1

n− iℓ

)
Ai+iℓ−nℓ+2

∑ℓ−1
r=1 irBnℓ−

∑ℓ
r=1 iran−iℓbiℓ .

Proof. By induction on ℓ and using (18), we have

Bℓ
n[A,B]

(
an−ibi

)
0≤i≤n

=
(
Fn−i
ℓ+1 (t)F

i
ℓ+2(t)

)
0≤i≤n

.

Now, if we consider the i-th rows, we get

Fn−i
ℓ+1 (t)F

i
ℓ+2(t) =

(
Bℓ
n[A,B]

(
an−sbs

)n
s=0

)
i
=

∑
i1,··· ,iℓ

ai,i1 · · · aiℓ−1,iℓa
n−iℓbiℓ
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=
∑

i1,··· ,iℓ

(
i

n− i1

)(
i1

n− i2

)
· · ·
(

iℓ−1

n− iℓ

)
Ai+iℓ−nℓ+2

∑ℓ−1
r=1 irBnℓ−

∑ℓ
r=1 iran−iℓbiℓ .

□

The matrix
[
Fn−i
j (t)F i

j+1(t)
]
0≤i,j≤n

is invertible.

Proof. If we divide the j-th column by Fn
j+1(t), we obtain the Vandermonde matrix[(

Fj(t)
Fj+1(t)

)n−i
]
which has nonzero determinant. □

Theorem 3. For the sequence
{
Fn(t)

}
n≥0

and k ≥ 2, we have(
xFk(t) +BFk−1(t)

)r(
xFk+1(t) +BFk(t)

)n−r

=
∑

r0,r1,··· ,rk

(
r

r0

)(
n− r

r1

)
· · ·
(
n− rk−1

rk

)
A(k−1)n−r0−r1−2

∑k
ℓ=2 rℓ−rk+1

×B
∑k

ℓ=0 rℓar0br−r0+r1
(
Ab+Ba

)n−r1−r
xn−rk . (19)

Proof. Using the binomial expansion, we have(
xF1(t) +BF0(t)

)r(
xF2(t) +BF1(t)

)n−r

=
∑
r0,r1

(
r

r0

)(
n− r

r1

)
Br0+r1ar0br−r0+r1

(
Ab+Ba

)n−r1−r
xn−r0−r1 . (20)

For all integers k ≥ 2, we prove equality (19) by induction. For k = 2, in (20),
we replace x by A + Bx−1 and multiply the result by xn, and the conclusion is
obtained. Assuming that (19) holds for the value k, we replace x by A+Bx−1 and
multiply the result by xn. The left side of the formula is as follows(

AFk(t)x+BFk−1(t)x+BFk(t)
)r(

AFk+1(t)x+BFk(t)x+BFk+1(t)
)n−r

=
(
Fk+1(t)x+BFk(t)

)r(
Fk+2(t)x+BFk+1(t)

)n−r
,

the right side of the formula is as follows∑
r0,r1,··· ,rk+1

(
r

r0

)(
n− r

r1

)
· · ·
(
n− rk−1

rk

)(
n− rk
rk+1

)
×Akn−r0−r1−2

∑k
ℓ=2 rℓ−rk+1B

∑k+1
ℓ=0 rℓar0br−r0+r1

(
Ab+Ba

)n−r1−r
xn−rk+1 .

This evidently completes the proof of (19). □

Corollary 4. For k ≥ 2, we have(
xFk(t) +BFk−1(t)

)r(
xFk+1(t) +BFk(t)

)n−r
(21)

=
∑

r1,··· ,rk

(
n− r

r1

)
· · ·
(
n− rk−1

rk

)
A(k+1)n−2

∑k−1
ℓ=1 rℓ−rB

∑k
ℓ=1 rℓxn−rk ,
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where F0(t) = 0 and F1(t) = A.

Lemma 2. For all k ≥ 1, we have

tr
(
Bk
n[A,B]

)
=

Fk(n+1)(t)

Fk(t)
, (22)

where F0(t) = 0 and F1(t) = A.

Proof. We multiply (21) by xr and sum over r. This gives
n∑

r=0

xr
(
xFk(t) +BFk−1(t)

)r(
xFk+1(t) +BFk(t)

)n−r
(23)

=
∑

r,r1,··· ,rk

(
n− r

r1

)
· · ·
(
n− rk−1

rk

)
A(k+1)n−2

∑k−1
ℓ=1 rℓ−rB

∑k
ℓ=1 rℓxn−rk+r.

The coefficient of xn on the right of (23) is tr
(
Bk
n[A,B]

)
and the coefficient of xn

on the left of (23) is∑
r+s+u=n

(
r

s

)(
n− r

u

)(
BFk−1(t)

)r−s(
Fk(t)

)s(
BFk(t)

)n−r−u(
Fk+1(t)

)u
=

∑
r+s≤n

Br

(
r

s

)(
n− r

s

)
F r−s
k−1 (t)F

2s
k (t)Fn−r−s

k+1 (t) = ckn.

Then
∞∑

n=0

cknx
n =

∞∑
r,s=0

(
r

s

)
BrF r−s

k−1 (t)F
2s
k (t)xr+s

∑
n=r+s

(
n− r

s

)(
Fk+1(t)x

)n−r−s

=

∞∑
r,s=0

Br

(
r

s

)
F r−s
k−1 (t)F

2s
k (t)xr+s

(
1− Fk+1(t)x

)−s−1

=

∞∑
s=0

BsF 2s
k (t)

(
1− Fk+1(t)x

)−s−1∑
r≥0

(
r

s

)(
Fk−1(t)x

)r+s

=

∞∑
s=0

BsF 2s
k (t)

(
1− Fk+1(t)x

)−s−1(
1− Fk−1(t)x

)−s−1

=
1(

1− Fk+1(t)x
)(
1−BFk−1(t)x

) × 1

1− BF 2
k (t)x

2(
1−Fk+1(t)x

)(
1−BFk−1(t)x

)
=

1(
1− Fk+1(t)x

)(
1−BFk−1(t)x

)
−BF 2

k (t)x
2
.

Here by the Binet formula (15), we have
∞∑

n=0

cknx
n =

1

1−
(
αk + βk

)
x+ (αβ)kx2
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=
1(

1− αkx
)(
1− βkx

)
=

1

αk − βk

(
αk

1− αkx
− βk

1− βkx

)
.

It follows that

ckn =
αk(n+1) − βk(n+1)

αk − βk
=

Fk(n+1)(t)

Fk(t)
.

□

Theorem 4. The eigenvalues of Bn[A,B] are

αn, αn−1β, · · · , αβn−1, βn,

and the characteristic polynomial of Bn[A,B] is

χn(τ) =

n∏
i=0

(
τ − αiβn−i

)
.

Proof. Let χn+1(τ) = det
(
τIn+1 − Bn[A,B]

)
and λ0, λ1, · · · , λn denote the eigen-

values of Bn[A,B]. Then by Lemma 2,

χ′
n+1(τ)

χn+1(τ)
=

n∑
k=0

1

τ − λℓ
=

∞∑
k=0

τ−k−1
k∑

j=0

λk
j

=

∞∑
k=0

τ−k−1tr
(
Bℓ
n[A,B]

)
=

∞∑
k=0

τ−k−1Fk(n+1)(t)

Fk(t)

=

∞∑
k=0

τ−k−1α
k(n+1) − βk(n+1)

αk − βk
=

∞∑
k=0

τ−k−1
n∑

j=0

αjkβ(n−j)k

=

n∑
j=0

1

τ − αjβn−j
.

It follows that

χn+1(τ) =
n∏

j=0

(
τ − αjβn−j

)
.

□

Theorem 5. For a = 0 and b ̸= 0, we have

χn+1(τ) =

n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

τn+1−ℓ,
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where
[
n+1
ℓ

]
Fn(t)

is defined as[
n+ 1

ℓ

]
Fn(t)

=

 1, ℓ = 0, n+ 1;

Fn+1(t)Fn(t)···Fn−ℓ+2(t)
F1(t)F2(t)···Fℓ(t)

, 0 < ℓ < n+ 1.

Proof. We use the following identity (see [20])

n∏
j=0

(1− qjτ) =

n+1∑
ℓ=0

(−1)ℓq
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
q

τ ℓ,

where
[
n+1
ℓ

]
q
is the q-binomial coefficient (Gaussian binomial), and is defined by[

m

r

]
q

=
(1− qm)(1− qm−1) · · · (1− qm−r+1)

(1− q)(1− q2) · · · (1− qr)
,

where m and r are non-negative integers. If r > m, this evaluates to 0 and for
r = 0,m, the value is 1.
Replacing q in the above equation by β

α and using the Binet formula (15), we have[
n+ 1

ℓ

]
q

= αℓ2−(n+1)ℓ

[
n+ 1

ℓ

]
Fn(t)

.

Therefore
n∏

j=0

(1− α−jβjτ) =

n+1∑
ℓ=0

(−1)ℓα
ℓ(ℓ−1)

2 β
ℓ(ℓ−1)

2 −nℓ

[
n+ 1

ℓ

]
Fn(t)

τ ℓ.

Substituting τ by αnτ−1 and using αβ = −B, we get

n∏
j=0

(τ − αn−jβj) =

n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

τn+1−ℓ,

which is the desired result. □

Example 4. The characteristic polynomials of χn+1(τ) for n = 0, 1, 2 are

χ1(τ) = τ − 1

χ2(τ) = τ2 −Aτ −B

χ3(τ) = τ3 − (B +A2)τ2 − (A2B +B2)τ +B3.

3. Diagonalization of the Functional Binomial Matrix

The results of this section are for a specific case of the recurrence relation (12)
with (13) for a(t) = 0, b(t) = 1 and coefficients A(t) and B(t) which are arbitrary
functions of t.
Let n ≥ 1 and Cn[A,B] be the companion matrix of the characteristic polynomial
χn(τ), where
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Cn[A,B] =
(
ci,j(A,B)

)
,

ci,i+1(A,B) = 1, i = 0, 1, · · · , n− 1;

cn,n−j(A,B) = −(−1)
(j+1)(j+2)

2 B
j(j+1)

2

[
n+1
j+1

]
Fn(t)

, j = 0, 1, · · · , n− 1;

ci,j(A,B) = 0, otherwise.

Rn[A,B] =
(
ri,j(A,B)

)
and Mn[A,B] =

(
mi,j(A,B)

)
, r0,j(A,B) = r1,j(A,B) = δn,j ,

ri,j(A,B) =
(
n
j

)(
BFi−1(t)

)n−j(
Fi(t)

)j
, i = 2, · · · , n, j = 0, 1, · · · , n, m0,j(A,B) = δn,j ,

mi,j(A,B) =
(
n
j

)(
BFi(t)

)n−j(
Fi+1(t)

)j
, i = 1, · · · , n, j = 0, 1, · · · , n.

Lemma 3. For every positive integer k, we have(
Bk
n[A,B]

)
nj

=

(
n

j

)(
BFk(t)

)n−j(
Fk+1(t)

)j
, j = 0, 1, · · · , n.

Proof. Let n be a fixed natural number. We will prove the assertion by induction
on k. The above equality is valid for k = 0. Now assume the results is valid for
k > 0. Then, since Bk+1

n [A,B] = Bk
n[A,B]Bn[A,B], we have(

Bk+1
n [A,B]

)
nj

=

n∑
i=0

(
Bk
n[A,B]

)
ni

(
Bn[A,B]

)
ij

=

n∑
i=0

(
n

i

)(
BFk(t)

)n−i(
Fk+1(t)

)i( i

n− j

)
Ai+j−nBn−j

=
(
BFk+1(t)

)n−j
n∑

i=0

(
n

n− j

)(
j

i+ j − n

)(
AFk+1(t)

)i−n+j(
BFk(t)

)n−i

=

(
n

j

)(
BFk+1(t)

)n−j
n∑

i=0

(
j

i+ j − n

)(
AFk+1(t)

)i+j−n(
BFk(t)

)n−i

=

(
n

j

)(
BFk+1(t)

)n−j
j∑

m=0

(
j

m

)(
AFk+1(t)

)m(
BFk(t)

)j−m

=

(
n

j

)(
BFk+1(t)

)n−j(
AFk+1(t) +BFk(t)

)j
=

(
n

j

)(
BFk+1(t)

)n−j(
Fk+2(t)

)j
.

□
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Theorem 6. Let F0(t) = 0 and F1(t) = 1. Then

n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

(
Fn−ℓ+1(t)

)n−j(
Fn−ℓ+2(t)

)j
= 0.

Proof. The characteristic polynomials of Bn[A,B] is

n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

τn+1−ℓ = 0.

Now by the Cayley-Hamilton Theorem [24], we get

n+1∑
k=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

Bn−ℓ+l
n [A,B] = 0, (24)

where 0 denotes the (n+1)× (n+1) zero matrix. So by Lemma 3 and substituting
this result into (24), we obtain

n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

(
Bn−ℓ+1
n [A,B]

)
nj

= 0.

Therefore
n+1∑
ℓ=0

(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

(
Fn−ℓ+1(t)

)n−j(
Fn−ℓ+2(t)

)j
= 0.

□

Theorem 7. Let a(t) = 0 and b(t) = 1. For all n, we have

Mn[A,B] = Cn[A,B]Rn[A,B] = Rn[A,B]Bn[A,B],

and so
Bn[A,B] = R−1

n [A,B]Cn[A,B]Rn[A,B].

Proof. At first, we prove Mn[A,B] = Cn[A,B]Rn[A,B]. In fact, multiplying the
first n rows of Cn[A,B] by Rn[A,B], clearly we get the first n rows of Mn[A,B].
For the last row, for each 0 ≤ j ≤ n, we have(
Cn[A,B]Rn[A,B]

)
nj

=

=

n∑
k=0

(
Cn[A,B]

)
n,n−k

(
Rn[A,B]

)
n−k,j

=

n∑
k=0

−(−1)
(k+1)(k+2)

2 B
k(k+1)

2

[
n+ 1

k + 1

]
Fn(t)

(
n

j

)(
BFn−k−1(t)

)n−j(
Fn−k(t)

)j
=

(
n

j

)
Bn−j

n+1∑
ℓ=1

−(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

(
Fn−ℓ(t))

n−j
(
Fn−ℓ+1(t)

)j
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=

(
n

j

)
Bn−j

((
Fn(t)

)n−j(
Fn+1(t)

)j
+

n+1∑
ℓ=0

−(−1)
ℓ(ℓ+1)

2 B
ℓ(ℓ−1)

2

[
n+ 1

ℓ

]
Fn(t)

(
Fn−ℓ(t)

)n−j(
Fn−ℓ+1(t)

)j)

=

(
n

j

)(
BFn(t)

)n−j(
Fn+1(t)

)j
,

which is clearly true by Theorem 6. This proves,

Mn[A,B] = Cn[A,B]Rn[A,B].

Since for each i, j with 0 ≤ i ≤ j ≤ n, we have(
Rn[A,B]Bn[A,B]

)
ij
=

n∑
k=0

(
Rn[A,B]

)
ik

(
Bn[A,B]

)
kj

=

n∑
k=0

(
n

k

)(
BFi−1(t)

)n−k(
Fi(t)

)k
Ak+j−nBn−j

(
k

n− j

)

=

(
n

j

) n∑
k=0

(
j

n− k

)
Ak+j−nB2n−j−k

(
Fi−1(t)

)n−k(
Fi(t)

)k
=

(
n

j

)(
BFi(t)

)n−j
j∑

ℓ=0

(
j

ℓ

)(
BFi−1(t)

)ℓ(
AFi(t)

)n−ℓ

=

(
n

j

)(
BFi(t)

)n−j(
BFi−1(t) +AFi(t)

)j
=

(
n

j

)(
BFi(t)

)n−j(
Fi+1(t)

)j
=
(
Mn[A,B]

)
ij
,

we get Mn[A,B] = Rn[A,B]Bn[A,B]. □

Example 5.

M3[A,B] =


0 0 0 1

B3 3B2A 3BA2 A3

A3B3 3B2A2(B + A2) 3BA(B + A2)2 (B + A2)3

B3(B + A2)3 3B2A(B + A2)2(2B + A2) 3BA2(B + A2)(2B + A2)2 A3(2B + A2)3

 ,

C3[A,B] =


0 1 0 0

0 0 1 0

0 0 0 1

−B6 −B3A(2B +A2) B(B +A2)(2B +A2) (2B +A2)A

 ,
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R3[A,B] =


1 0 0 0

0 0 0 1

B3 3B2A 3BA2 A3

A3B3 3B2A2(B +A2) 3BA(B +A2)2 (B +A2)3

 ,

and so
M3[A,B] = C3[A,B]R3[A,B].

Also,

R3[A,B] =


1 0 0 0

0 0 0 1

B3 3B2A 3BA2 A3

A3B3 3B2A2(B +A2) 3BA(B +A2)2 (B +A2)3

 ,

B3[A,B] =


0 0 0 1

0 0 B 1

0 B2 2BA A2

B3 3B2A 3BA2 A3

 ,

and therefore M3[A,B] = R3[A,B]B3[A,B].

Let Vn be the Vandermonde matrix which is defined by

Vn =



1 1 · · · 1 1

αn αn−1β · · · αβn−1 βn

α2n (αn−1β)2 · · · (αβn−1)2 β2n

...
...

. . .
...

...

αn2

(αn−1β)n · · · (αβn−1)n βn2


.

By the relation between the component matrix and the Vandermonde matrix, we
can obtain Theorems 8 and 9. For this purpose, we need the following lemma.

Lemma 4 ( [24], P. 4). If M be the following matrix

M =



0 m1 0 · · · 0

0 0 m2 · · · 0

...
...

...
. . .

...

0 0 0 · · · mn−1

p1 p2 p3 · · · pn


,
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then its eigenvalues are the roots of p1 + p2λ + · · · + pnλ
n−1 = λn and v1 =(

α, αλ, , αλ2, · · · , αλn−1
)T

is an eigenvector for the root λ.

Theorem 8. Let a(t) = 0 and b(t) = 1. Eigenvectors of the matrix Cn[A,B] are
Vn, and also eigenvectors of the matrix Bn[A,B] are En[A,B] = R−1

n [A,B]Vn.

Proof. According to Lemma 4, columns of Vn are eigenvectors of Cn[A,B]. □

Theorem 9. For a(t) = 0 and b(t) = 1, we have(
R−1

n [A,B]Vn

)−1

Bn[A,B]
(
R−1

n [A,B]Vn

)
= diag

(
αn, αn−1β, · · · , αβn−1, βn

)
.
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