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Abstract 

In the linear regression model, the multicollinearity problem arises when there is a linear 

relationship between independent variables. This situation causes the variance of the estimations 

of the model parameters obtained by the Least Squares Estimator method to increase and move 

away from the true value, resulting in unstable and incorrect results. Biased Estimator methods 

are developed to eliminate the adverse effects caused by multicollinearity. In this study, a test 

statistic is obtained to test the significance of the model coefficients for the Liu-Type Estimator 

using the test statistic method suggested in the study of Halawa and El-Bassiouni (2000). With a 

simulation study, the significance of the model coefficients of the Ridge, Liu, and Liu type biased 

estimators in different situations is tested; the type I errors and power values of the estimators are 

calculated; the results are compared. In addition, a real data application is performed to better 

understand the test procedure. 
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1. INTRODUCTION 

 

In the linear regression model, the Least Squares (LS) method is frequently used for estimating the 

regression parameters. Estimations obtained by LS method give reliable results in case of certain 

assumptions are met. One of these assumptions is that there is no relationship between independent 

variables. In the linear regression model, a multicollinearity problem arises when a complete or nearly 

complete linear relationship exists between one or more independent variables. This increases the variance 

and standard error of the LS estimator, causing the incorrect results of model estimations and different test 

statistics. One of the most common methods to solve the multicollinearity problem is biased estimators. 

 

Hoerl and Kennard (1970) proposed the Ridge estimator in their study on biased estimation methods and 

analyzed it according to the Mean Square Error (MSE) values [1]. Liski (1982) included the preference 

criteria between LS estimators and biased estimators according to their MSE values [2]. Liu (1993) 

proposed the Liu-Kejian estimator with a single bias parameter as an alternative to the Ridge estimator [3]. 

Akdeniz and Kaçıranlar (1995) defined this estimator as the Liu estimator [4]. Halawa and El-Bassiouni 

(2000) used the t-test statistic to test the significance of the regression model coefficient based on the ridge 

estimator. The simulation study compared the test statistic results obtained for LS and Ridge estimators [5]. 

Kibria (2003) compared some Ridge regression and LS estimators through a simulation study [6]. It has 

been observed that biased estimation methods with a single bias parameter do not give good results when 

multicollinearity is severe. For this reason, studies on biased estimation methods with two parameters have 

been conducted in the literature. Liu (2003) proposed the Liu-type estimator as a two-parameter biased 
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estimator using k and d parameters. He also showed that in the case of severe multicollinearity, it gives 

better results than the Ridge regression estimator according to the MSE criterion [7]. Ebegil, Gökpınar, and 

Ekni (2006) compared the Ridge and Liu estimators with simulation techniques by using the test statistic 

obtained in the work of Liski (1982, 1983) [2, 8, 9]. Özkale and Kaçıranlar (2007) proposed a new estimator 

by studying estimators with two bias parameters [10]. Subsequently, Sakallıoğlu and Kaçıranlar (2008) 

proposed a different two-bias parameter estimator, which they defined as a k-d class estimator [11]. Ebegil 

and Gökpınar (2012) used a test statistic established under a necessary and sufficient condition to compare 

LS and Liu-type estimators [12]. 

 

Gökpınar and Ebegil (2016) improved the work of Halawa and El-Bassiouni (2000) for the Ridge estimator 

and examined the k estimators that give the best results for the Ridge estimator. They compared the test 

statistics according to experimental type I error rates and power values of the test by performing simulation 

studies under different conditions. As a result, they tried to determine the best k values for the Ridge 

estimator [13]. Wilcox (2019) proposed a test statistic to test the significance of the parameters of the Ridge 

regression estimator in the case of varying variance [14]. In the study by Kibria and Melo (2021), a test 

statistic was obtained using the test statistic proposed in Halawa and El-Bassiouni (2000) for the Liu 

estimator. They simulated this test statistic under different situations and compared the performance of type 

I errors and the power of the test [5,15]. 

 

Although there are many studies in the literature on estimating the biasing parameters, there are few studies 

on testing the significance of the model coefficients obtained with these estimation methods. 

 

In this study, a test statistic for testing the significance of the regression coefficients of the Liu-type 

estimator was obtained using the test statistic proposed for the Ridge estimator in Halawa and El-Bassiouni 

(2000). With the simulation study, the significance tests of the regression coefficients of the Ridge, Liu, 

and Liu-type estimators under different conditions were performed, and the experimental type 1 error rates 

of the estimators were compared with the performance of the power of the test. A real data application was 

made on Hald's Portland Cement data [16].  

 

2. MATERIAL METHOD 

 
2.1. Regression Model 

 
When p is the independent variable, and n is the number of observations, the general form of the multiple 

regression model can be shown as in Equation (1) 

 
𝑌 = 𝑋𝛽 + 𝜀.                                                                                                                                                                 (1) 

         
Here Y is the dependent variable vector centered around the (𝑛𝑥1) dimensional mean, where 𝑞 = 𝑝 + 1, 𝑋 

is the (𝑛𝑥𝑞) dimensional observation matrix of non-stochastic independent variables, averaged and scaled 

to obtain (𝑋’𝑋) correlation form; 𝛽, is (𝑞𝑥1) dimensional vector of unknown parameters; 𝜀 is (𝑛𝑥1) 

dimensional zero mean 𝜎2𝐼 random error vector with variance. 

 

Since the 𝐶 = 𝑋’𝑋 matrix is a 𝑞𝑥𝑞 dimensional positive definite matrix, there is an orthonormal matrix 𝑃 

that diagonalizes the 𝐶 = 𝑋’𝑋 matrix in the form 𝑃’𝐶𝑃 = Ʌ. Here Ʌ is a (𝑞𝑥𝑞) dimensional diagonal matrix 

whose elements are the positive eigenvalues (𝜆1, … , 𝜆𝑞) of the (𝑋’𝑋) matrix [2,9]. 

 

Where 𝑍 = 𝑋𝑃 and 𝛼 = 𝑃′𝛽, the canonical form of the model in Equation (1) is obtained as in Equation 

(2) 

 

𝑌 = 𝑋𝑃𝑃′𝛽 + 𝜀 = 𝑍𝛼 + 𝜀.             (2) 

 
In regression analysis, the LS estimator is commonly used to estimate the parameters of the model given in 

Equation (1). The LS estimator for the model in Equation (1) is given in Equation (3) 
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�̂�𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌.                                                    (3) 

 
The hypothesis established to test the significance of the regression coefficients is as in Equation (4) 

 
𝐻0: 𝛽𝑖 = 0 
𝐻1: 𝛽𝑖 ≠ 0.   
 

           (4) 

The test statistic based on the LS estimator is given in Equation (5) 

 

𝑡𝑖(𝐿𝑆) =
�̂�𝑖(𝐿𝑆)

𝑆(�̂�𝑖(𝐿𝑆))
 .             (5) 

 

�̂�𝑖(𝐿𝑆)  is the i-th element of  �̂�𝐿𝑆, and  𝑆2(�̂�𝑖(𝐿𝑆)) is the i-th diagonal element of the variance estimate of   

�̂�𝐿𝑆. The related equation is given in Equation (6) 

 

𝑉𝑎𝑟(�̂�𝐿𝑆) = 𝜎2(𝑋′𝑋)−1. 
           (6) 

 
 
Here, when 𝜎2 is unknown, the estimation of 𝜎2 based on the LS estimator isused and given in Equation 

(7) 

 

�̂�2 =
(𝑌−𝑋 �̂�𝐿𝑆)

′
(𝑌−𝑋�̂�𝐿𝑆)

𝑛−𝑞−1
 .      (7) 

 
The test statistic given in Equation (5) has a t-distribution with (𝑛 − 𝑞 − 1) degrees of freedom under 𝐻0 

hypothesis. This test is referred to as the LS test.  

 

Some assumptions are needed to obtain reliable values with the LS estimation method. One of them is that 

no linear relationship should be between the independent variables. If there is a linear relationship between 

the independent variables in the model, the problem of multicollinearity arises. In this case, the inverse of 

the 𝑋’𝑋 matrix cannot be obtained; therefore, parameter estimation cannot be performed. In cases where 

the inverse is found, the estimations based on the regression model may be inconsistent and unstable since 

the variance will be too large. 

 

If multicollinearity is encountered in the regression model, among the biased estimators developed to 

eliminate this situation, Ridge and Liu estimators having a single bias parameter are used. When the severity 

of multicollinearity increases, a biased estimation method having two bias parameters, such as the Liu-type 

estimator, should be used. 

 
2.2. Test Statistics for Regression Coefficients Based on Ridge and Liu Estimation Methods 
 

The Ridge regression estimator is given in Equation (8) 

 

�̂�𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑌 ,   𝑘 ≥ 0.                                                                                                                             (8)                                                           

 
According to Hoerl and Kennard (1970), the k value that minimizes the MSE of the Ridge estimator is 

obtained from Equation (9) [1] 

�̂�𝐻𝐾 =
�̂�2

�̂�𝑚𝑎𝑥
2

 . (9)                                               
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�̂�𝑚𝑎𝑥
2  is expressed as the largest element of the  �̂�𝐿𝑆 estimator.   

 

The k value developed by Hoerl, Kennard, and Baldwin (1975) with a different method is given in Equation 

(10) [17] 

 

�̂�𝐻𝐾𝐵 =
𝑞�̂�2

�̂�𝐿𝑆′�̂�𝐿𝑆

 .           (10) 

                                                                                                       
 

To test the null hypothesis in Equation (4), the test statistic based on the Ridge estimator, which is a non-

exact t-type test, is given in Equation (11) [5]  

 

𝑡𝑖(𝑅) =
�̂�𝑖(𝑅)

𝑆(�̂�𝑖(𝑅))
 .    (11) 

 

�̂�𝑖(𝑅) is the 𝑖-th element of  �̂�𝑅 and 𝑆2(�̂�𝑖(𝑅)) is the 𝑖-th diagonal element of variance estimation of  �̂�𝑅, as 

given in Equation (12) 
 

Var(�̂�𝑅) = �̂�2(𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)(𝑋′𝑋 + 𝑘𝐼)−1. 
(12) 
 

 

When 𝜎2 is unknown, the estimation of 𝜎2 can be used based on the Ridge estimator given in Equation 

(13) 
 

�̂�2
𝑅 =

(𝑌 − 𝑋�̂�𝑅)′(𝑌 − 𝑋�̂�𝑅)

(𝑛 − 𝑞 − 1)
.    (13) 

 

The test statistic given in Equation (11) has a t-distribution with (𝑛 − 𝑞 − 1) degrees of freedom under 𝐻0 

hypothesis. The test statistic in Equation (11) based on �̂�𝐻𝐾 is named HK, and the test statistic in Equation 

(11) based on �̂�𝐻𝐾𝐵 is named the HKB test. 

 

Liu (1993) proposed the Liu estimator as an alternative to the Ridge estimator. The Liu estimator is given 

in Equation (14) [3] 
  

�̂�𝐿 = (𝑋′𝑋 + 𝐼)−1(𝑋′𝑌 + 𝑑�̂�𝐿𝑆) ,     0 ≤ 𝑑 ≤ 1.         (14) 

 

Here 𝑑 is defined as the bias parameter of the Liu estimator. Which of the Ridge and Liu estimators is more 

effective in estimating the regression coefficients depends on the unknown parameters 𝑘 and 𝑑. It is more 

practical in application to use their estimations instead of the unknown parameters. In this respect, many 

formulas have been developed for estimating the biasing parameter 𝑑, as in the estimation of the 𝑘 bias 

parameter of the Ridge estimator. Liu (1993) proposed the estimator in Equation (15) for the bias parameter 

𝑑, which minimizes the MSE value [3] 

 

�̂�𝐿 = 1 − �̂�2 [
∑

1

𝜆𝑖(𝜆𝑖+1)

𝑞
𝑖=1

∑
�̂�𝑖

2

(𝜆𝑖+1)2
𝑞
𝑖=1

] .                                                                                                                                               (15)    
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Here 𝜆𝑖 represents the positive eigenvalues of the (𝑋′𝑋) matrix,𝛼𝑖 (𝑖 = 1, . . , 𝑞) represents the 𝑖-th element 

of 𝛼, which expresses the (𝑞𝑥1) dimensional regression coefficient in the canonical form in Equation (2). 

 

To test the null hypothesis in Equation (4), the test statistic based on the Liu estimator, which is a non-exact 

t-type test, is given in Equation  (16) [15] 

 

𝑡𝑖(𝐿) =
�̂�𝑖(𝐿)

𝑆(�̂�𝑖(𝐿))
 .      (16) 

 

�̂�𝑖(𝐿) is the 𝑖-th element of �̂�𝐿;𝑆2(�̂�𝑖(𝐿)) is the 𝑖-th diagonal element of the variance estimate of �̂�𝐿, as given 

in Equation (17) 

 
                                

Var(�̂�𝐿) = �̂�
2 (𝑋′𝑋 + 𝐼)−1(𝑋′𝑋 + 𝑑𝐼)(𝑋′𝑋)−1(𝑋′𝑋 + 𝑑𝐼)(𝑋′𝑋 + 𝐼)−1. 

 
       (17) 

 

Here, when 𝜎2 is unknown, the estimation of 𝜎2 can be used based on the Liu estimator given in Equation 

(18) 

 

�̂�2
𝐿 =

(𝑌 − 𝑋�̂�𝐿)′(𝑌 − 𝑋�̂�𝐿)

(𝑛 − 𝑞 − 1)
 .          (18) 

  

The test statistic given in Equation (18) has a t-distribution with (𝑛 − 𝑞 − 1) degrees of freedom under 𝐻0 

hypothesis. This test statistic is called an L test statistic.  

 
2.3. Test Statistics for Regression Coefficients Based on Liu-Type Estimation Method 

 

When multicollinearity is severe, the Ridge and Liu estimators may be inadequate to address this problem. 

The bias parameter 𝑘 of the Ridge estimator is chosen as small in the implementation method. However, to 

eliminate severe multicollinearity, 𝑘 should be chosen large. In this case, while the MSE value decreases, 

the amount of bias increases. Therefore, a second parameter is needed to reduce the bias. Accordingly, the 

Liu-type estimator with two bias parameters developed by Liu (2003) is given in Equation (19) [7] 
 

�̂�𝐿𝑇 = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑌 − 𝑑�̂�∗) ,     𝑘 > 0 , −∞ < 𝑑 < ∞.         (19) 

 

Liu (2003)  showed the cases where β̂∗ is both an LS and a Ridge estimator in his study [7]. In this study, 

�̂�𝑅 is used instead of  β̂∗.   

 

Liu (2003) has proposed the parameter 𝑘 of the estimator in Equation (19) as in Equation (20) 
 

�̂�𝐿𝑇 =
𝜆max − 100 ∗ 𝜆𝑚𝑖𝑛

99
 .         (20) 

 

Here 𝜆max denotes the largest eigenvalue of the matrix 𝑋′𝑋 ,  λ𝑚𝑖𝑛 denotes the smallest eigenvalue of the 

matrix 𝑋′𝑋 . Accordingly, the calculated �̂� values are as in Equation (21) and Equation (22) [7] 
 

�̂�𝐿𝑇1 =

[
 
 
 
 ∑

(𝜆𝑖(�̂�𝑅
2 − �̂�𝐿𝑇�̂�𝑅

2))

(𝜆𝑖 + �̂�𝐿𝑇)
3

𝑞
𝑖=1

∑
(𝜆𝑖(𝜆𝑖�̂�𝑅

2 + �̂�𝑅
2))

(𝜆𝑖 + �̂�𝐿𝑇)
4

𝑞
𝑖=1

]
 
 
 
 

       (21) 
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�̂�𝐿𝑇2 =

[
 
 
 
 ∑

(�̂�𝑅
2 − �̂�𝐿𝑇�̂�𝑅

2)

(𝜆𝑖 + �̂�𝐿𝑇)
2

𝑞
𝑖=1

∑
(𝜆𝑖�̂�𝑅

2 + �̂�𝑅
2)

(𝜆𝑖 + �̂�𝐿𝑇)
2

𝑞
𝑖=1

]
 
 
 
 

 .         (22) 

 
 

Here, 𝜎2 represents the error variance in the multiple regression model, 𝜆𝑖 represents the positive 

eigenvalues of the (𝑋′𝑋) matrix, and 𝛼𝑖   (𝑖 = 1, . . , 𝑞) represents the 𝑖-th element of 𝛼, which expresses the 

(qx1) dimensional regression coefficient in the canonical form in Equation (2). Instead of  𝜎2 and  𝛼2 

parameters, the estimators �̂�𝑅
2 and �̂�𝑅

2 obtained from Ridge regression are used. 

 

Considering the test statistic approach proposed by Halawa and Bassiouni (2000) for the Ridge estimator 

in their study, the test statistic based on the Liu-type estimator, which is a non-exact t-type test, to test the 

null hypothesis in Equation (4) is given in Equation (23) 
 

𝑡𝑖(𝐿𝑇) =
�̂�𝑖(𝐿𝑇)

𝑆(�̂�𝑖(𝐿𝑇))
 .          (23) 

 
 

�̂�𝑖(𝐿𝑇) is the 𝑖-th element of �̂�𝐿𝑇, and  𝑆2(�̂�𝑖(𝐿𝑇)) is the 𝑖-th diagonal element of the variance estimate of   

�̂�𝐿𝑇 as given in Equation (24). According to this, 

 
 

Var(�̂�𝐿𝑇) = �̂�2 (𝑋′𝑋 + 𝑘𝐼)−1(𝐼 − 𝑑(𝑋′𝑋 + 𝑘𝐼)−1)(𝑋′𝑋)(𝐼 − 𝑑(𝑋′𝑋 + 𝑘𝐼)−1)(𝑋′𝑋 + 𝑘𝐼)−1. 
 

         (24) 

 
Here when 𝜎2 is unknown, the estimation of 𝜎2 can be used based on the Liu-type estimator in Equation 

(25) 
 

�̂�2
𝐿𝑇 =

(𝑌 − 𝑋�̂�𝐿𝑇)′(𝑌 − 𝑋�̂�𝐿𝑇)

(𝑛 − 𝑞 − 1)
 .               (25) 

  

 
The test statistic given in Equation (23) has a 𝑡-distribution with (𝑛 − 𝑞 − 1) degrees of freedom under 𝐻0 

hypothesis. The test statistic based on �̂�𝐿𝑇1 in Equation (23) is called the LT1 test statistic, and the test 

statistic based on �̂�𝐿𝑇2 is called the LT2 test statistic. 

 

3. SIMULATION STUDY 

 

In this section, the parameter estimation values of LS, Ridge, Liu, and Liu-type estimators will be analyzed 

through simulation studies. Considering the studies of Mcdonald and Galerneau (1975) and Kibria (2003), 

the independent variables were formed as in Equation (26) with 𝑖 = 1,2, . . . , 𝑛 and 𝑗 = 1,2, . . . , 𝑞  [18,6] 

 

𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑧𝑖𝑗 + 𝜌𝑧𝑖𝑞+1 .         (26) 

 
Here, 𝑧𝑖𝑗 is the standard normal random variable, and 𝜌2 is the correlation between any two independent 

variables. In this study, simulation studies were performed for 𝜌=0.85, 0.95, 0.99, 𝑛=20, 30, 50, 100, and 

𝑞=4, 6, 10. Each vector in Equation (27) is centered and scaled 

 
  𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1+. . . +𝛽𝑞𝑥𝑖𝑞 + 𝜀𝑖 .                                                                                                                                      (27) 
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The dependent variable 𝑦𝑖 is formed as in Equation (27), where 𝑖 = 1,2, . . . , 𝑛; 𝜀𝑖 is an independent normal 

distribution with mean 0 and variance 𝜎2 and is centered around its mean. The standard deviation of error 

values are taken as 𝜎=0.5,1,2. In the simulation study, 1000 repetitions were performed for each condition.  

 
In the simulation study, firstly, the experimental type I errors of the tests are calculated, and these values 

are given in Tables 1 and 9. 
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Table 1. Experimental Type I Error Rates of Tests with 𝜌=0.85 and 𝜎=0.5 

Test 𝑞=4 𝑞 =6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0492 0.0500 0.0504 0.0502 0.0491 0.0499 0.0501 0.0494 0.0500 0.0504 0.0499 0.0502 

HK 0.0528 0.0555 0.0573 0.0590 0.0502 0.0540 0.0542 0.0552 0.0484 0.0522 0.0523 0.0539 

HKB 0.0608 0.0763 0.0834 0.0861 0.0479 0.0619 0.0667 0.0710 0.0327 0.0485 0.0540 0.0572 

L 0.0830 0.1152 0.1289 0.1385 0.0614 0.1042 0.1346 0.1486 0.0473 0.0738 0.1109 0.1467 

LT1 0.2125 0.2314 0.2488 0.2650 0.0876 0.1082 0.0986 0.0979 0.0269 0.0724 0.0867 0.0839 

LT2 0.0221 0.0214 0.0206 0.0177 0.0376 0.0416 0.0425 0.0422 0.0075 0.0426 0.0457 0.0475 

 

Table 2. Experimental Type I Error Rates of Tests with 𝜌=0.95 and 𝜎=0.5 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0493 0.0502 0.0491 0.0499 0.0495 0.0497 0.0511 0.0508 0.0494 0.0498 0.0514 0.0510 

HK 0.0525 0.0563 0.0549 0.0562 0.0514 0.0528 0.0557 0.0553 0.0482 0.0518 0.0550 0.0539 

HKB 0.0590 0.0771 0.0818 0.0863 0.0457 0.0549 0.0612 0.0633 0.0322 0.0452 0.0515 0.0537 

L 0.0692 0.0895 0.0948 0.1036 0.0578 0.0862 0.1042 0.1164 0.0479 0.0650 0.0886 0.1152 

LT1 0.0963 0.1137 0.1219 0.1168 0.0716 0.0997 0.1185 0.1262 0.0934 0.0768 0.1007 0.1241 

LT2 0.0400 0.0467 0.0467 0.0469 0.0281 0.0435 0.0482 0.0493 0.0012 0.0331 0.0447 0.0499 
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Table 3. Experimental Type I Error Rates of Tests with 𝜌=0.99 and 𝜎=0.5 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0500 0.0496 0.0514 0.0493 0.0507 0.0510 0.0493 0.0507 0.0508 0.0498 0.0506 0.0491 

HK 0.0523 0.0549 0.0573 0.0553 0.0523 0.0532 0.0529 0.0546 0.0494 0.0523 0.0528 0.0523 

HKB 0.0541 0.0620 0.0665 0.0650 0.0436 0.0494 0.0511 0.0534 0.0328 0.0432 0.0472 0.0497 

L 0.0549 0.0593 0.0646 0.0623 0.0529 0.0611 0.0628 0.0676 0.0503 0.0542 0.0601 0.0661 

LT1 0.2871 0.3049 0.2998 0.3167 0.2998 0.2879 0.2871 0.2940 0.3379 0.3737 0.3621 0.3569 

LT2 0.0304 0.0465 0.0528 0.0542 0.0144 0.0421 0.0505 0.0577 0.0000 0.0297 0.0478 0.0615 

 

Table 4. Experimental Type I Error Rates of Tests with 𝜌=0.85 and 𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10  
𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0497 0.0488 0.0505 0.0506 0.0502 0.0504 0.0499 0.0503 0.0497 0.0492 0.0508 0.0501 

HK 0.0521 0.0521 0.0536 0.0555 0.0505 0.0530 0.0527 0.0543 0.0478 0.0505 0.0531 0.0527 

HKB 0.0513 0.0564 0.0594 0.0627 0.0438 0.0515 0.0538 0.0574 0.0321 0.0435 0.0492 0.0518 

L 0.0557 0.0662 0.0716 0.0760 0.0484 0.0629 0.0695 0.0760 0.0467 0.0489 0.0594 0.0712 

LT1 0.1917 0.2484 0.2585 0.2665 0.0847 0.1071 0.1061 0.1058 0.0227 0.0692 0.0907 0.0942 

LT2 0.0224 0.0201 0.0185 0.0201 0.0378 0.0411 0.0416 0.0424 0.0075 0.0412 0.0466 0.0475 
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Table 5. Experimental Type I Error Rates of Tests with 𝜌=0.95 and 𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0490 0.0501 0.0505 0.0495 0.0508 0.0497 0.0506 0.0492 0.0493 0.0488 0.0491 0.0507 

HK 0.0512 0.0535 0.0547 0.0537 0.0516 0.0535 0.0545 0.0540 0.0474 0.0503 0.0521 0.0528 

HKB 0.0495 0.0556 0.0589 0.0594 0.0435 0.0499 0.0526 0.0534 0.0319 0.0416 0.0473 0.0502 

L 0.0521 0.0594 0.0655 0.0650 0.0497 0.0558 0.0627 0.0677 0.0480 0.0478 0.0549 0.0677 

LT1 0.1103 0.1122 0.1211 0.1181 0.0592 0.0892 0.1033 0.1179 0.0973 0.0553 0.0665 0.0869 

LT2 0.0410 0.0461 0.0473 0.0468 0.0266 0.0424 0.0470 0.0478 0.0007 0.0295 0.0404 0.0469 

 

Table 6. Experimental Type I Error Rates of Tests with 𝜌=0.99 and 𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0493 0.0497 0.0506 0.0498 0.0490 0.0489 0.0497 0.0495 0.0494 0.0511 0.0507 0.0512 

HK 0.0515 0.0538 0.0554 0.0550 0.0501 0.0529 0.0530 0.0541 0.0480 0.0525 0.0531 0.0537 

HKB 0.0488 0.0529 0.0557 0.0561 0.0418 0.0476 0.0496 0.0511 0.0315 0.0437 0.0478 0.0495 

L 0.0498 0.0517 0.0542 0.0543 0.0484 0.0507 0.0527 0.0545 0.0488 0.0498 0.0524 0.0565 

LT1 0.2304 0.2150 0.2106 0.2168 0.2534 0.2268 0.2153 0.2012 0.3142 0.3606 0.3356 0.3155 

LT2 0.0235 0.0401 0.0461 0.0491 0.0085 0.0324 0.0419 0.0477 0.0000 0.0192 0.0354 0.0448 
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Table 7. Experimental Type I Error Rates of Tests with 𝜌=0.85 and 𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0508 0.0483 0.0505 0.0490 0.0497 0.0509 0.0500 0.0505 0.0496 0.0510 0.0498 0.0506 

HK 0.0514 0.0513 0.0539 0.0531 0.0503 0.0533 0.0537 0.0539 0.0481 0.0525 0.0517 0.0532 

HKB 0.0483 0.0511 0.0548 0.0551 0.0428 0.0495 0.0519 0.0531 0.0317 0.0435 0.0466 0.0500 

L 0.0503 0.0543 0.0595 0.0602 0.0454 0.0521 0.0551 0.0568 0.0457 0.0452 0.0472 0.0523 

LT1 0.1863 0.2398 0.2586 0.2725 0.0867 0.1071 0.1081 0.1096 0.0230 0.0732 0.0905 0.0964 

LT2 0.0250 0.0191 0.0190 0.0189 0.0389 0.0428 0.0427 0.0425 0.0077 0.0418 0.0454 0.0481 

 

Table 8. Experimental Type I Error Rates of Tests with 𝜌=0.95 and 𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0502 0.0508 0.0500 0.0498 0.0496 0.0485 0.0502 0.0492 0.0506 0.0489 0.0505 0.0508 

HK 0.0515 0.0536 0.0541 0.0543 0.0510 0.0521 0.0540 0.0530 0.0491 0.0506 0.0526 0.0532 

HKB 0.0482 0.0526 0.0534 0.0549 0.0428 0.0479 0.0506 0.0510 0.0326 0.0426 0.0460 0.0490 

L 0.0497 0.0535 0.0547 0.0563 0.0471 0.0485 0.0533 0.0548 0.0487 0.0453 0.0495 0.0526 

LT1 0.0860 0.1164 0.1185 0.1211 0.0571 0.0863 0.1066 0.1139 0.0860 0.0483 0.0653 0.0798 

LT2 0.0403 0.0465 0.0469 0.0469 0.0278 0.0417 0.0465 0.0471 0.0009 0.0296 0.0398 0.0459 
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Table 9. Experimental Type I Error Rates of Tests with 𝜌=0.99 and 𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0505 0.0512 0.0497 0.0516 0.0507 0.0501 0.0498 0.0508 0.0500 0.0499 0.0496 0.0495 

HK 0.0523 0.0545 0.0538 0.0560 0.0508 0.0536 0.0536 0.0551 0.0493 0.0514 0.0523 0.0522 

HKB 0.0486 0.0523 0.0525 0.0556 0.0426 0.0486 0.0499 0.0521 0.0325 0.0422 0.0467 0.0483 

L 0.0503 0.0514 0.0505 0.0527 0.0494 0.0495 0.0500 0.0519 0.0493 0.0478 0.0484 0.0498 

LT1 0.1839 0.1894 0.1900 0.2054 0.2316 0.1953 0.1894 0.1832 0.3080 0.3368 0.3196 0.3088 

LT2 0.0232 0.0388 0.0439 0.0489 0.0075 0.0316 0.0400 0.0454 0.0000 0.0156 0.0309 0.0414 
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According to the simulation results, for different ρ values when σ is 0.5, the experimental type I error values 

of the LS, HK, and HKB tests are close to 0.05 according to Table 1, Table 2, and Table 3. It can be said 

that the experimental type I error values of the LT2 test generally approach 0.05 as the sample size 

increases. When Table 7 is examined, it is observed that while the experimental type I error rate of the LT2 

test is considerably lower than 0.05 when q=4, it is affected by the increase in ρ and approaches 0.05. The 

LT1 test statistic shows the worst-performing test compared to the other tests. As can be seen from the 

tables, the experimental type I error rate of the test is considerably larger than 0.05. 
 

When Tables 4, 5, and 6 are examined for different ρ values where σ is 1, it is observed that the experimental 

type I error values of the LS, HK, and HKB tests give values close to 0.05. In addition, it is observed that 

the experimental type I error values of the L test gave values close to 0.05, especially as the ρ value 

increased. The LT1 test performed worse than the other tests with values greater than 0.05. The LT2 test 

shows that the experimental type I error value approaches 0.05 as the number of variables and ρ value 

increase. 

 

When Tables 7, 8, and 9 are examined for different ρ values when σ is 2, it is observed that the experimental 

type I error values of the LS, HK, HKB, and L tests are close to 0.05.  The LT2 test is negatively affected 

by the increase in σ and the number of variables in small sample sizes. In these cases, the experimental type 

I error values for the tests are significantly lower than 0.05. The LT1 test, as in other cases, gives values 

considerably greater than 0.05. 

 

When the simulation results are evaluated in general, it is observed that the experimental type I error values 

of the LS, HK, and HKB tests gave the results close to 0.05. It is also observed that the L test gave values 

closer to 0.05, significantly as the value of ρ increased. The experimental type I error values of the LT1 test 

are above 0.05. It is observed that the LT2 test gave better results than the LT1 test. Regardless of the 

standard deviation, in cases where the ρ value is low, the experimental type I error values approach 0.05 as 

the number of variables increases. In cases where the ρ value is high, the experimental type I error value is 

not affected by the number of variables and gives values close to 0.05. 
 

The power values of the tests related to the simulation results are given in Tables 10 and 18. Cases where 

the experimental type I error values of the tests were significantly far from the nominal α value were not 

taken into account in the calculation of the power values of the tests. Experimental type I error values in 

the range of 0.025 and 0.075 were considered in the calculation [19]. Values outside this range are indicated 

by (*), and the power values of the tests were not calculated. 
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Table 10. Powers of tests when 𝜌=0.85 ve  𝜎=0.5  

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0895 0.1028 0.1055 0.1025 0.0696 0.0844 0.0838 0.0856 0.0559 0.0651 0.0678 0.0705  

HK 0.1186 0.1462 0.1488 0.1506 0.0803 0.1030 0.1052 0.1077 0.0567 0.0724 0.0771 0.0804 
 

 

HKB 0.1821 * * * 0.0877 0.1383 0.1459 0.1552 0.0410 0.0746 0.0869 0.0950 
 

 

L 0.1585 * * * 0.1004 * * * 0.0548 0.0999 * * 
 

 

LT1 * * * * 0.1464 * * * * * * * 
 

 

LT2 0.1035 0.1159 0.1168 0.1197 0.0699 0.1061 0.1085 0.1120 * 0.0703 0.0861 0.0959 
 

 

 

Table 11. Powers of tests when 𝜌=0.95 ve  𝜎=0.5  

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0923 0.0935 0.1004 0.1041 0.0707 0.0780 0.0798 0.0844 0.0558 0.0640 0.0673 0.0683  

HK 0.1204 0.1332 0.1505 0.1550 0.0822 0.0970 0.1015 0.1098 0.0551 0.0724 0.0772 0.0800 
 

 

HKB 0.1679 * * * 0.0972 0.1367 0.1516 0.1650 0.0398 0.0812 0.0954 0.1069 
 

 

L * * * * 0.1097 * * * 0.0524 0.1192 * * 
 

 

LT1 * * * * * * * * 0.0331 0.1221 * * 
 

 

LT2 * * * * 0.0604 0.0718 0.0692 0.0713 * 0.0649 0.0715 0.0732 
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Table 12. Powers of tests when 𝜌=0.99 ve  𝜎=0.5  

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0905 0.1007 0.1048 0.1083 0.0716 0.0841 0.0844 0.0875 0.0561 0.0655 0.0697 0.0725  

HK 0.1136 0.1334 0.1438 0.1499 0.0808 0.1008 0.1015 0.1050 0.0564 0.0714 0.0767 0.0796 
 

HKB 0.1673 0.2231 0.2487 0.2631 0.0813 0.1166 0.1234 0.1302 0.0394 0.0674 0.0780 0.0846 

L 0.1137 0.1437 0.1558 0.1662 0.0810 0.1135 0.1231 0.1335 0.0561 0.0761 0.0919 0.1071 

LT1 * * * * * * * * * * * * 

LT2 0.2114 0.2617 0.2758 0.2869 * 0.1938 0.2127 0.2303 * 0.1159 0.1596 0.1825 

 

Table 13. Powers of tests when 𝜌=0.85 ve  𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0923 0.0935 0.1003 0.1040 0.0687 0.0794 0.0858 0.0845 0.0561 0.0639 0.0665 0.0694  

HK 0.1128 0.1193 0.1291 0.1380 0.0751 0.0936 0.1018 0.1010 0.0551 0.0697 0.0733 0.0771 
 

 

HKB 0.1360 0.1654 0.1822 0.1943 0.0760 0.1117 0.1246 0.1285 0.0393 0.0685 0.0793 0.0868 
 

 

L 0.1405 0.1800 0.2006 * 0.0787 0.1332 0.1539 * 0.0528 0.0782 0.1046 0.1293 
 

 

LT1 * * * * * * * * * 0.1123 * * 
 

 

LT2 * * * * 0.0581 0.0672 0.0736 0.0720 * 0.0609 0.0670 0.0709 
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Table 14. Powers of tests when 𝜌=0.95 ve  𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0949 0.1011 0.1041 0.1044 0.0691 0.0824 0.0834 0.0848 0.0547 0.0661 0.0693 0.0697  

HK 0.1184 0.1300 0.1408 0.1406 0.0772 0.0969 0.0990 0.1009 0.0541 0.0725 0.0750 0.0776 
 

 

HKB 0.1488 0.1944 0.2182 0.2228 0.0759 0.1116 0.1179 0.1233 0.0375 0.0681 0.0777 0.0826 
 

 

L 0.1372 0.1758 0.1955 0.2044 0.0796 0.1300 0.1471 0.1624 0.0529 0.0776 0.1024 0.1209 
 

 

LT1 * * * * 0.1273 * * * * 0.0977 0.1311 * 
 

 

LT2 0.1019 0.1077 0.1140 0.1149 0.0585 0.0935 0.0983 0.1010 * 0.0591 0.0744 0.0822 
 

 

 

Table 15. Powers of tests when 𝜌=0.99 ve  𝜎=1 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0895 0.1008 0.1077 0.1052 0.0755 0.0777 0.0855 0.0870 0.0562 0.0649 0.0681 0.0698  

HK 0.1117 0.1310 0.1384 0.1390 0.0830 0.0909 0.0999 0.1017 0.0565 0.0718 0.0751 0.0771 
 

 

HKB 0.1457 0.1946 0.2106 0.2183 0.0789 0.0975 0.1111 0.1162 0.0382 0.0655 0.0736 0.0786 
 

 

L 0.1057 0.1339 0.1479 0.1502 0.0820 0.0957 0.1125 0.1213 0.0555 0.0699 0.0804 0.0911 
 

 

LT1 * * * * * * * * * * * * 
 

 

LT2 * 0.2187 0.2333 0.2387 * 0.1430 0.1679 0.1804 * * 0.1079 0.1309 
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Table 16. Powers of tests when 𝜌=0.85 ve  𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0900 0.0945 0.1012 0.1035 0.0707 0.0795 0.0832 0.0863 0.0551 0.0643 0.0664 0.0699  

HK 0.1042 0.1140 0.1269 0.1287 0.0777 0.0918 0.0960 0.0997 0.0546 0.0689 0.0728 0.0770 
 

 

HKB 0.1154 0.1390 0.1571 0.1621 0.0743 0.1000 0.1075 0.1137 0.0387 0.0646 0.0736 0.0802 
 

 

L 0.1145 0.1476 0.1651 0.1743 0.0732 0.1058 0.1191 0.1321 0.0517 0.0659 0.0800 0.0918 
 

 

LT1 * * * * * * * * * 0.1057 * * 
 

 

LT2 0.0390 * * * 0.0611 0.0654 0.0720 0.0745 * 0.0591 0.0665 0.0703 
 

 
Table 17. Powers of tests when 𝜌=0.95 ve  𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 

LS 0.0958 0.0986 0.1039 0.1075 0.0725 0.0810 0.0825 0.0853 0.0557 0.0640 0.0686 0.0697  

HK 0.1136 0.1234 0.1331 0.1361 0.0804 0.0926 0.0957 0.0999 0.0544 0.0689 0.0748 0.0751 
 

 

HKB 0.1325 0.1625 0.1796 0.1870 0.0766 0.0974 0.1057 0.1121 0.0378 0.0635 0.0742 0.0772 
 

 

L 0.1232 0.1519 0.1694 0.1815 0.0759 0.1072 0.1205 0.1349 0.0535 0.0662 0.0828 0.0954 
 

 

LT1 * * * * 0.1086 * * * * 0.0817 0.1099 * 
 

 

LT2 0.0972 0.1061 0.1136 0.1152 0.0585 0.0869 0.0929 0.0980 * 0.0521 0.0699 0.0760 
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Table 18. Powers of tests when 𝜌=0.99 ve  𝜎=2 

Test 𝑞=4 𝑞=6 𝑞=10 

𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 𝑛=100 𝑛=15 𝑛=30 𝑛=50 n=100 

LS 0.0919 0.1030 0.1039 0.1065 0.0725 0.0835 0.0869 0.0877 0.0566 0.0666 0.0702 0.0708 
 

HK 0.1107 0.1321 0.1329 0.1383 0.0807 0.0947 0.1003 0.1012 0.0569 0.0717 0.0766 0.0771 
 

 

HKB 0.1340 0.1792 0.1882 0.2016 0.0763 0.0985 0.1078 0.1103 0.0401 0.0654 0.0744 0.0768 
 

 

L 0.1071 0.1322 0.1382 0.1451 0.0760 0.0992 0.1103 0.1168 0.0556 0.0693 0.0781 0.0855 
 

 

LT1 * * * * * * * * * * * * 
 

 

LT2 * 0.2004 0.2123 0.2224 * 0.1270 0.1486 0.1604 * * 0.0916 0.1079 
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According to the simulation results, when Tables 10, 11, and 12 are analyzed for different values of 𝜌 when 

𝜎 is 0.5, in most cases, the LS test shows lower power values than the other tests. According to the retrieved 

results, while the number of variables is generally the same for each test, the power values of the tests 

increase as the sample size increases. When examined in terms of the number of variables, it is seen that 

the power values of the tests decrease as the number of variables increases. For example, when Table 12 is 

examined, while the power value of the LT2 test is 0.2758 for 𝑞=4, 𝑛=50, it decreased to 0.2127 at 𝑞=6, 

𝑛=50 and to 0.1596 at 𝑞=10, 𝑛=50. In cases where the 𝜌 value is small, and the number of variables is low, 

the power value of the HK test is high among the tests, while the power value of the HKB test increased 

within itself as the number of variables increased. When the 𝜌 value increases to 0.95, the HK test gives 

better results when the number of variables is low, while the power value of the HKB test increases as the 

number of variables increases. When the 𝜌 value is 0.99, the power value of the LT2 test is higher than the 

other tests. 

 

When Tables 13, 14, and 15 are examined for different values of 𝜌 when 𝜎 is 1, in general, while the number 

of variables is the same, the power values of the tests increased as the sample size increased. When analyzed 

in terms of the number of variables, the power values of the tests decrease as the number of variables 

increases. In cases where the 𝜌 value is 0.85, the power value of the L test is higher than the other tests. 

When the 𝜌 value increases to 0.95,  the power value of the L test is generally higher than the other tests as 

the number of variables increases. When 𝜌 is 0.99, the power values of the LT2 test are higher than the 

other tests. 

 

When Tables 16, 17, and 18 are analyzed for different values of 𝜌 when 𝜎 is 2, it gives similar results to 

cases where 𝜎 is 0.5 and 1. When the simulation results are evaluated in general for the power values of the 

tests, it is seen that the power values of the tests decrease as the number of variables increases. When the 

number of variables is the same, the power values of the tests increase as the sample size increases in all 

cases. For 𝜌 value of 0.85 and large values of 𝜎, the power value of the L test is higher than the other tests. 

When 𝜌 increases to 0.95, the power value of the HKB test is higher in cases where the number of variables 

is low, while the power value of the L test is higher when the number of variables increases. When 𝜌 value 

increases to 0.99, the power value of the LT2 test is higher than the other tests. 

 

In summary, it can be generalized that the power value of the HKB test is high in cases where 𝜌 and 𝜎 values 

are low, the power value of the L test is high at moderate 𝜌 values, and the power value of the LT2 test is 

higher at high 𝜌 values. 

 

4. NUMERICAL EXAMPLE 

 

In this section, the widely used Hald's Portland Cement data is studied. This dataset has been used in the 

application of many studies examining multicollinearity in the literature. The dataset consists of 4 

independent variables and 13 observations in this example. The independent variables are tricalcium 

aluminate (𝑋1), tetracalcium silicate (𝑋2), tetracalcium alumino ferrite (𝑋3), and dicalcium silicate (𝑋4). 

The dependent variable Y represents the amount of heat released for 1 gram of cement in calories. The 

dataset is given in Table 19. The purpose of applying the numerical example is to calculate the parameter 

estimation values of LS, Ridge, Liu, and Liu-type estimators from these data and compare the results 

obtained [16]. 
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Table 19. Portland Cement Data 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝒀 

7 26 6 60 78.5 

1 29 15 52 74.3 

11 56 8 20 104.3 

11 31 8 47 87.6 

7 52 6 33 95.9 

11 55 9 22 109.2 

3 71 17 6 102.7 

1 31 22 44 72.5 

2 54 18 22 93.1 

21 47 4 26 115.9 

1 40 23 34 83.8 

11 66 9 12 113.3 

10 68 8 12 109.4 

 
In this study, the data were used in their standardized form. While Y values are standardized around the 

mean, X values are standardized according to the unit length scaling method. The X′X  correlation matrix 

showing the linear relationship between two variables is obtained as follows 

 

𝑋′𝑋=[

1.000 0.2286 −0.8241 −0.2454
0.2286 1.000 −0.1392 −0.9730

−0.8241 −0.1392 1.000 0.0295
−0.2454 −0.9730 0.0295 1.000

].                                                                                                        (26) 

 
Accordingly, while there is an inverse relationship with a magnitude of 0.973 between the variables  𝑋2 

and 𝑋4, an inverse relationship with a magnitude of 0.824 can be seen between 𝑋1 and 𝑋3 variables. The 

relationship between the variables is high, according to the X′X matrix; however, this is not a sufficient 

criterion for determining multicollinearity. For this reason, the eigenvalues of the X′X  matrix are studied. 

The eigenvalues of  X′X matrix are calculated as  𝜆1=2.2357, 𝜆2=1.5761, 𝜆3=0.1866, and 𝜆4=0.0016. As 

𝜆1 and 𝜆4 are the maximum and minimum eigenvalues of the X′X matrix, respectively, the number of 

conditions is calculated as approximately 1397,3125 according to the formula 𝐶𝑁=
λ1

λ4
  . It is a fact that this 

result is greater than 1000, indicating a high degree of multicollinearity problem. For this data, the results 

obtained from the LS, Ridge, Liu, and Liu-type estimators of the linear regression model in case of severe 

multicollinearity are given in Tables 20, 21, 22, 23, and 24, respectively. 

 
Table 20.  Test results of regression coefficients based on the LS estimator 

i �̂�𝒊(𝑳𝑺)( 𝑺(�̂�𝒊(𝑳𝑺))) 𝒕𝒊(𝑳𝑺) 𝒑𝒊(𝑳𝑺) 

1 31.6060(15.1785) 2.0823 0.0709 

2 27.4972(39.0215) 0.7047 0.5010 

3 2.2600(16.7480) 0.1349 0.8960 

4 -8.3563(41.1192) -0.2032 0.8440 

 

Table 21.  Test results of regression coefficients based on Ridge estimator 

 HK   

i �̂�𝒊(𝑹)( 𝑺(�̂�𝒊(𝑹))) 𝒕𝒊(𝑹) 𝒑𝒊(𝑹)  

1 27.3977(5.0299) 5.4470 0.0006 

2 17.3914(8.6149) 2.0188 0.0782 

3 -2.2881(5.1351) -0.4456 0.6677 

4 -18.9737(8.9584) -2.1180 0.0670 
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Table 22.  Test results of regression coefficients based on Ridge estimator 

   HKB   

i �̂�𝒊(𝑹)( 𝑺(�̂�𝒊(𝑹))) 𝒕𝒊(𝑹) 𝒑𝒊(𝑹)  

1 26.4798(4.1524) 6.3770 0.0002 

2 16.1666(4.8107) 3.3606 0.0099 

3 -3.1510(4.0843) -0.7715 0.4626 

4 -20.2144(4.8578) -4.1613 0.0032 

 

Table 23.  Test results of regression coefficients based on Liu estimator 

i �̂�𝒊(𝑳)( 𝑺(�̂�𝒊(𝑳))) 𝒕𝒊(𝑳) 𝒑𝒊(𝑳) 

1 29.6813(14.0676) 2.1099 0.0679 

2 25.9809(36.1097) 0.7195 0.4923 

3 1.2534(15.5168) 0.0808 0.9376 

4 -8.8875(38.0498) -0.2336 0.8212 

 
Table 24.  Test results of regression coefficients based on Liu-type estimator 

     LT1      LT2   

i �̂�𝒊(𝑳𝑻)( 𝑺(�̂�𝒊(𝑳𝑻))) 𝒕𝒊(𝑳𝑻) 𝒑𝒊(𝑳𝑻) �̂�𝒊(𝑳𝑻)( 𝑺(�̂�𝒊(𝑳𝑻))) 𝒕𝒊(𝑳𝑻) 𝒑𝒊(𝑳𝑻) 

1 29.6645(5.5994) 5.2978 0.0679 25.8599(3.8563) 6.7059 0.0002 

2 18.1758(9.2225) 1.9708 0.4923 15.7756(3.4924) 4.5172 0.0020 

3 -0.4829(5.6808) -0.0850 0.9376 -3.6703(3.7466) -0.9796 0.3560 

4 -18.4107(9.5697) -1.9239 0.8212 -20.5655(3.3999) -6.0488 0.0003 

 
5. CONCLUSION 

 
In this study, a test statistic was obtained to test the significance of the model coefficients for the Liu-type 

estimator. It is aimed to reveal which of the tests obtained in the case of multicollinearity is better in 

statistical inference. For this purpose, the significance tests of the model coefficients of the Ridge, Liu, and 

Liu-type biased estimators in different situations were performed with a simulation study, and the type I 

errors and power values of the tests were calculated. According to the results of the simulation study, it has 

been observed that the HKB test is stronger than the other tests at moderate multicollinearity and small 

values of 𝜎. In addition, it has been identified that the L test is stronger than the other tests at moderate 

multicollinearity and high values of 𝜎.In cases of severe multicollinearity, the LT2 test appears to be 

stronger than the other tests. 
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