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A B S T R AC T A R T I C L E I N F O

In this paper, we introduce the definition of a new class of generalized nonexpansive
mappings in hyperbolic space. Additionally, we construct the rewritten version of
the Mann iteration process in hyperbolic space. Then, using the iterative procedure
we established, we prove convergence theorems for 𝑎−𝑏−generalized nonexpansive
mappings in a uniformly convex hyperbolic space. Lastly, we offer a numerical
example to illustrate our findings.
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1. Introduction

In order to solve practical issues in mathematics, physics,
engineering, and game theory, fixed point theory is a
useful area of study. Analytical solutions of fixed point
problems are challenging, requiring iterative solutions.
Although academics create a variety of strategies, the
development on effective algorithms is still underway.
In the field of nonlinear analysis, the fixed point theory is
crucial. The Picard iteration, as defined by 𝜘𝑛+1 = Υ𝜘𝑛,

∀𝑛 ∈ N., is one of the well-known iterative procedures.
To approximate to fixed points of contraction mappings,
this iteration approach has been utilized. When using
nonexpansive mappings rather than contraction mappings,
the Picard iterative method is unable to approach fixed
points. Numerous writers have investigated new iteration
processes and mapping classes in this context for the
purpose of approximating fixed points.
For the class of nonexpansive self-mappings on a closed
and bounded subset of a uniformly convex Banach space,
Browder [6] demonstrated the existence of a fixed point.
After Browder’s result, researchers have developed itera-
tive procedures to approximate fixed points in nonexpan-

sive and nonlinear mappings, with research focusing on
faster and more efficient techniques. Studies have been
conducted in uniformly convex Banach spaces and CAT(0)
spaces.(see [1], [7], [20], [22], [23] and the references
therein)
Suzuki [19] established a new class of nonexpansive map-
pings and demonstrated several fixed point theorems for
them. Many researchers have contributed to the literature
by generalizing Suzuki’s generalized non-expansive map-
ping (see [3], [4], [16]). More recently, Adeyemi et al. [2]
introduced the generalized nonexpansive mappings and
in uniformly convex hyperbolic space, they demonstrated
approaching the fixed point of these mappings.
Along with the nonlinear mappings, the significance that
the spaces play in the study of fixed point theory is also
quite important, including Hilbert and Banach spaces.
Banach spaces have convex structures, making it easy
to exist fixed points. Metric spaces lack this structure,
making it necessary to introduce convex structures into
them. By examining the fixed points for nonexpansive
mappings in convex metric spaces, Takahashi [21] was
the pioneer in developing the idea of convex metric space.
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Since then, many convex structures have been introduced
onto metric spaces in a number of different attempts. As
a result of these studies, many fixed point theorems have
been obtained by applying well-known fixed point itera-
tion processes to hyperbolic spaces (see [9], [10], [13],
[17]). Hyperbolic spaces have a convex structure, with
the convex structure introduced by Kohlenbach [13] being
more general.
In this work, we introduce a new class of generalized
nonexpansive mappings in hyperbolic space. Also, we
constitute the form in hyperbolic space of the well known
Mann iteration process. Then, we prove strong and Δ-
convergence results for these mappings in a uniformly
convex hyperbolic space using our introduced iterative
process.

2. PRELIMINARIES
Firstly, Takahashi [21] proposed the idea of convex metric
space in 1970 as follows:
A mapping𝑊 : 𝔖×𝔖×[0, 1] −→ 𝔖 is a convex structure
in 𝔖 if

ℏ(𝔮,𝑊 (𝜘, 𝜇, ð)) ≤ (1 − ð)ℏ(𝔮, 𝜘) + ðℏ(𝔮, 𝜇),

for all 𝜘,cal𝜇,𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞∈ 𝔖 and ð ∈ [0, 1] . A metric
space (𝔖, ℏ) together with a convex structure 𝑊 defined
on it is called a convex metric space. A subset M of a
convex metric space 𝔖 is convex if calW(𝜘,cal𝜇,ð) ∈ M
for all 𝜘,cal𝜇∈ M and ð ∈ [0, 1].
Afterwards, this idea was greatly expanded upon by numer-
ous authors. In Kohlenbach’s hyperbolic space [13], one
of these convex structures is present. There are various
interpretations of hyperbolic space in the literature.
A hyperbolic space (𝔖, ℏ,𝑊) (see [13]) is a metric space
(𝔖, ℏ) together with a mapping𝑊 : 𝔖×𝔖× [0, 1] −→ 𝔖

satisfying

(W1) ℏ(𝑧,𝑊 (𝜘,cal𝜇,ð)) ≤ (1 − ð)ℏ(𝑧, 𝜘) + ðℏ(𝑧,cal𝜇),

(W2) ℏ(𝑊 (𝜘,cal𝜇,ð1),𝑊 (𝜘,cal𝜇,ð2)) = |ð1 − ð2 | ℏ(𝜘,cal𝜇),

(W3) 𝑊 (𝜘,cal𝜇,ð) =𝑊 (cal𝜇,𝜘, (1 − ð)),

(W4) ℏ(𝑊 (𝜘, 𝑧, ð),𝑊 (cal𝜇,W,ð)) ≤ (1 −
ð)ℏ(𝜘,cal𝜇)+ðℏ(𝑧,𝑊),

for all 𝜘,cal𝜇,z,W∈ 𝔖 and ð, ð1, ð2 ∈ [0, 1].
A hyperbolic space (𝔖, ℏ,𝑊) is said to be uni-
formly convex [18] if for all calfrakq, 𝜘,cal𝜇∈ 𝔖,

𝑟 > 0 and 𝜀 ∈ (0, 2], there exists a 𝛿 ∈ (0, 1]
such that ℏ

(
𝑧,𝑊

(
𝜘, 𝜇, 1

2

)
, 𝔮

)
≤ (1 − 𝛿)𝑟 whenever

ℏ(𝜘,calfrakq) ≤ 𝑟, ℏ(cal𝜇,𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞)≤ 𝑟 and ℏ(𝜘,cal𝜇)≥
𝜀𝑟.

A mapping 𝜂 : (0,∞) × (0, 2] −→ (0, 1] providing such
𝛿 = 𝜂(𝑟, 𝜀) for given 𝑟 > 0 and 𝜀 ∈ (0, 2] is called
modulus of uniform convexity. We call 𝜂 monotone if it
decreases with 𝑟 (for a fixed 𝜀).
We now compile some fundamental definitions of asymp-
totic centers and radiuses.
Let 𝔖 be a hyperbolic space and {𝜘𝑛} be a bounded
sequence in 𝔖. For 𝜘 ∈ 𝔖, define a continuous functional
𝑟 (., {𝜘𝑛}) : 𝔖 −→ [0,∞) by

𝑟 (𝜘, {𝜘𝑛}) = lim
𝑛−→∞

sup ℏ(𝜘, 𝜘𝑛).

The asymptotic radius 𝑟 ({𝜘𝑛}) of {𝜘𝑛} is given by

𝑟 ({𝜘𝑛}) = inf {𝑟 (𝜘, {𝜘𝑛}) : 𝜘 ∈ X} .

The asymptotic radius 𝑟M ({𝜘𝑛}) of {𝜘𝑛} with respect to
a subset M of 𝔖 is given by

𝑟M ({𝜘𝑛}) = inf {𝑟 (𝜘, {𝜘𝑛}) : 𝜘 ∈ M} .

The asymptotic center 𝐴({𝜘𝑛}) of {𝜘𝑛} is the set

𝐴({𝜘𝑛}) = {𝜘 ∈ X : 𝑟 (𝜘, {𝜘𝑛}) = 𝑟 ({𝜘𝑛})} .

The asymptotic center 𝐴M ({𝜘𝑛}) of {𝜘𝑛} with respect to
a subset M of 𝔖 is the set

𝐴({𝜘𝑛}) = {𝜘 ∈ X : 𝑟 (𝜘, {𝜘𝑛}) = 𝑟M ({𝜘𝑛})} .

Lim [15] proceeded by thinking about how Δ-convergence
was defined in a metric space in 1976, and Dhompongsa
and Panyanak [8] have studied its analogue in CAT(0)
spaces. Khan et al. resumed their examination of Δ-
convergence in the overall structure of hyperbolic spaces
in [11].
Now, we recall the notion of Δ-convergent.
[12]A sequence {𝜘𝑛} in 𝔖 is said to be Δ-convergent to
𝜘 ∈ 𝔖, if, for every subsequence {𝔨𝑛} of {𝜘𝑛}, 𝜘 is the
unique asymptotic center of {𝔨𝑛} . In this case, 𝜘 is called
as Δ-limit of {𝜘𝑛} and we write Δ − lim𝑛−→∞ 𝜘𝑛 = 𝜘 .

The generalized nonexpansive mapping in uniformly con-
vex hyperbolic space was first developed in 2021 by
Adeyemi et al. [2] as follows: Let M be a nonempty sub-
set of a hyperbolic space 𝔖. A mapping Υ : M −→ M
is called generalized nonexpansive mapping if there ex-
ist 𝛼, 𝛽, 𝛾 ∈ [0, 1), with 𝛾 + 𝛽 < 1 such that for all
𝜘,𝑐𝑎𝑙𝜇 ∈ M,

(1 − 𝛼)ℏ(Υ𝜘, 𝜘) ≤ ℏ(𝜘, 𝜇)

=⇒ ℏ(Υ𝜘,Υ𝜇) ≤
𝛽ℏ(𝜇,Υ𝜘) + 𝛾ℏ(𝜘,Υ𝜇) + [1 − (𝛾 + 𝛽)] ℏ(𝜘, 𝜇).

We will require the following outcomes for the follow-up:
[14]Let (𝔖, ℏ,𝑊) be a complete uniformly convex hyper-
bolic space with monotone modulus of uniform convexity
𝜂. Then every bounded sequence {𝜘𝑛} in 𝔖 has a unique

MANAS Journal of Engineering, Volume 11 (Issue 2) © (2023) www.journals.manas.edu.kg



N. Kadioglu Karaca / MANAS Journal of Engineering, 11 (2) (2023) 225

asymptotic center with respect to any nonempty closed
convex subset M of 𝔖.
[11]Let (𝔖, ℏ,𝑊) be a uniformly convex hyperbolic space
with monotone modulus of uniform convexity 𝜂. Let
𝜘 ∈ 𝔖 and {𝛼𝑛} be a sequence in [𝑎, 𝑏] for some
𝑎, 𝑏 ∈ (0, 1). If {𝜘𝑛} and {𝜇𝑛} are sequences in 𝔖

such that

lim
𝑛−→∞

sup ℏ(𝜘𝑛, 𝜘) ≤ 𝑟, lim
𝑛−→∞

sup ℏ(𝜇𝑛, 𝜘) ≤ 𝑟,

lim
𝑛−→∞

ℏ(𝑊 (𝜘𝑛, 𝜇𝑛, 𝛼𝑛), 𝜘) = 𝑟

for some 𝑟 ≥ 0, then

lim
𝑛−→∞

ℏ(𝜘𝑛, 𝜇𝑛) = 0.

3. MAIN RESULTS
In the context of uniformly convex hyperbolic space, we
develop a new class of generalized nonexpansive mapping
and establish the version in hyperbolic space of the Mann
iteration process. Also, we give Δ-convergence and strong
convergence results for these mappings we introduced in
uniformly convex hyperbolic space using the new form of
the Mann iteration process.
Let M be a nonempty subset of a hyperbolic pace 𝔖.
A mapping Υ : M −→ M is called 𝑎 − 𝑏−generalized
nonexpansive mapping if there exist 𝑎, 𝑏 ∈ [0, 1

2 ) and
𝛼 ∈ [0, 1) with 2𝑎 + 2𝑏 < 1 such that for all 𝜘,cal𝜇∈ M,

(1 − 𝛼)ℏ(Υ𝜘, 𝜘) ≤ ℏ(𝜘, 𝜇)

=⇒ ℏ(Υ𝜘,Υ𝜇) ≤ 𝑎 [ℏ(𝜇,Υ𝜘) + ℏ(𝜘,Υ𝜇)]

+𝑏 [ℏ(𝜘,Υ𝜘) + ℏ(𝜇,Υ𝜇)] + [1 − (2𝑎 + 2𝑏)] ℏ(𝜘, 𝜇).

The Mann iteration process has been extensively studied
for approximating fixed points of nonexpansive mappings.
With Υ being a self-mapping on a subset of a Banach
space, the Mann iteration process is defined as follows:{

𝜘1 ∈ M
𝜘𝑛+1 = (1 − 𝛼𝑛)𝜘𝑛 + 𝛼𝑛Υ𝜘𝑛, 𝑛 ≥ 1, (0)

where {𝛼𝑛} is real sequences in [0, 1].
A conversion of the Mann iteration process (0) from Ba-
nach space to hyperbolic space is seen in the iteration
process that follows:

𝜘1 ∈ M, (1)
𝜘𝑛+1 = 𝑊 (𝜘𝑛,Υ𝜘𝑛, 𝛼𝑛), 𝑛 ≥ 1.

Assume that M is a nonempty subset of a metric space
(𝔖, ℏ). Then Υ, a self-mapping on M, is nonexpansive if
ℏ(Υ𝜘,Υcal𝜇)≤ ℏ(𝜘,cal𝜇) 𝑓 𝑜𝑟𝑎𝑙𝑙𝜘,cal𝜇∈ M. From this

point forward, the term 𝐹 will refer to the collection of all
common fixed points for nonexpansive mappings on M.
Within this part, for nonexpansive mappings in uniformly
convex hyperbolic spaces, we demonstrate a few conver-
gence theorems.
We start by outlining the crucial lemmas below.
Let M be a nonempty, closed and convex subset of a
hyperbolic space 𝔖 and Υ be an 𝑎 − 𝑏−generalized non-
expansive self mappings on M with 𝐹 ≠ ∅. Then for the
sequence {𝜘𝑛} defined in (1), we have lim𝑛−→∞ ℏ(𝜘𝑛, 𝜛)
exists for each 𝜛 ∈ 𝐹.

Proof For any 𝜛 ∈ 𝐹, it follows from (1) that

ℏ(𝜘𝑛+1, 𝜛) = ℏ(𝑊 (𝜘𝑛,Υ𝜘𝑛, 𝛼𝑛), 𝜛)

≤ (1 − 𝛼𝑛)ℏ(𝜘𝑛, 𝜛) + 𝛼𝑛ℏ(Υ𝜘𝑛, 𝜛)
≤ (1 − 𝛼𝑛)ℏ(𝜘𝑛, 𝜛)

+𝛼𝑛𝑎 [ℏ(𝜛,Υ𝜘𝑛) + ℏ(𝜘𝑛,Υ𝜛)]
+𝛼𝑛𝑏 [ℏ(𝜘𝑛,Υ𝜘𝑛) + ℏ(𝜛,Υ𝜛)]
+𝛼𝑛 [1 − (2𝑎 + 2𝑏)] ℏ(𝜘𝑛, 𝜛)
≤ [1 − 𝛼𝑛 (𝑎 + 𝑏)] ℏ(𝜘𝑛, 𝜛)
+𝛼𝑛 (𝑎 + 𝑏)ℏ(𝜛,Υ𝜘𝑛).

and
ℏ(𝜛,Υ𝜘𝑛) = ℏ(Υ𝜛,Υ𝜘𝑛)

≤ 𝑎 [ℏ(𝜘𝑛,Υ𝜛) + ℏ(𝜛,Υ𝜘𝑛)]
+𝑏 [ℏ(𝜛,Υ𝜛) + ℏ(𝜘𝑛,Υ𝜘𝑛)]
+ [1 − (2𝑎 + 2𝑏)] ℏ(𝜛, 𝜘𝑛)
=⇒ [1 − (𝑎 + 𝑏)] ℏ(𝜛,Υ𝜘𝑛)
≤ [1 − (𝑎 + 𝑏)] ℏ(𝜛, 𝜘𝑛)
=⇒ ℏ(𝜛,Υ𝜘𝑛) ≤ ℏ(𝜛, 𝜘𝑛)

Writing (3) in (3), we have

ℏ(𝜘𝑛+1, 𝜛) ≤ [1 − 𝛼𝑛 (𝑎 + 𝑏)] ℏ(𝜘𝑛, 𝜛)

+𝛼𝑛 (𝑎 + 𝑏)ℏ(𝜛, 𝜘𝑛)
= ℏ(𝜘𝑛, 𝜛).

Hence lim𝑛−→∞ ℏ(𝜘𝑛, 𝜛) exists for each 𝜛 ∈ 𝐹. □

Let us consider a subset M of a uniformly convex hy-
perbolic space 𝔖 with monotone modulus of uniform
convexity 𝜂 . Let the set M be a nonempty, closed and
convex and Υ be an 𝑎 − 𝑏−generalized nonexpansive self
mappings on M with 𝐹 ≠ ∅. Assume that the sequence
{𝜘𝑛} is defined by (1). Then

lim
𝑛−→∞

ℏ(𝜘𝑛,Υ𝜘𝑛) = 0.

Proof Let 𝜛 ∈ 𝐹. By Lemma 3, it follows that
lim𝑛−→∞ ℏ(𝜘𝑛, 𝜛) exists. We may assume that

lim
𝑛−→∞

ℏ(𝜘𝑛, 𝜛) = 𝑟.
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(i) Let 𝑟 = 0. By (3), we have

ℏ(𝜘𝑛,Υ𝜘𝑛) ≤ ℏ(𝜘𝑛, 𝜛) +ℏ(𝜛,Υ𝜘𝑛) ≤ 2ℏ(𝜘𝑛, 𝜛).

Taking limit for 𝑛 −→ ∞, we obtain
lim𝑛−→∞ ℏ(𝜘𝑛,Υ𝜘𝑛) = 0.

(ii) Let 𝑟 > 0. By (3), we get

lim
𝑛−→∞

sup ℏ(Υ𝜘𝑛, 𝜛) ≤ lim
𝑛−→∞

sup ℏ(𝜘𝑛, 𝜛) = 𝑟

and since

lim
𝑛−→∞

ℏ(𝜘𝑛+1, 𝜛) = lim
𝑛−→∞

ℏ(𝑊 (𝜘𝑛,Υ𝜘𝑛, 𝛼𝑛), 𝜛) = 𝑟,

thus, from Lemma 2, we conclude that

lim
𝑛−→∞

ℏ(𝜘𝑛,Υ𝜘𝑛) = 0.

□

We now demonstrate the result about the Δ-convergence
of the iteration process specified by (1) in a uniformly
convex hyperbolic space.
Let M,𝔖,Υ and {𝜘𝑛} be the same as in Lemma 3. Then
the sequence {𝜘𝑛} Δ-converges to a point in 𝐹.

Proof From proof of Lemma 3, it is easily seen that
the sequence {𝜘𝑛} is bounded. According to Lemma 2,
{𝜘𝑛} has a unique asymptotic center, which is 𝐴M ({𝜘𝑛})
= {𝜘}. Suppose that {𝔨𝑛} is any subsequence of {𝜘𝑛}
such that 𝐴M ({𝔨𝑛}) = {𝔨}. By Lemma 3, we have

lim
𝑛−→∞

ℏ(𝔮𝑛,Υ𝔮𝑛) = 0. (1)

We claim that 𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞 ∈ 𝐹. So, we calculate

ℏ(Υ𝔮, 𝔮𝑛) = ℏ(Υ𝔮,Υ𝔮𝑛) + ℏ(Υ𝔮𝑛, 𝔮𝑛)

≤ 𝑎 [ℏ(𝔮𝑛,Υ𝔮) + ℏ(𝔮,Υ𝔮𝑛)]

+𝑏 [ℏ(𝔮,Υ𝔮) + ℏ(𝔮𝑛,Υ𝔮𝑛)]

+ [1 − (2𝑎 + 2𝑏)] ℏ(𝔮, 𝔮𝑛) + ℏ(Υ𝔮𝑛, 𝔮𝑛)

≤ 𝑎 [ℏ(𝔮𝑛,Υ𝔮) + ℏ(𝔮, 𝔮𝑛) + ℏ(𝔮𝑛,Υ𝔮𝑛)]

+𝑏 [ℏ(𝔮, 𝔮𝑛) + ℏ(𝔮𝑛,Υ𝔮) + ℏ(𝔮𝑛,Υ𝔮𝑛)]

+ [1 − (2𝑎 + 2𝑏)] ℏ(𝔮, 𝔮𝑛) + ℏ(Υ𝔮𝑛, 𝔮𝑛)

=⇒ ℏ(Υ𝔮, 𝔮𝑛) ≤ ℏ(𝔮, 𝔮𝑛) +
[

1 + 𝑎 + 𝑏

1 − (𝑎 + 𝑏)

]
ℏ(Υ𝔮𝑛, 𝔮𝑛).

Taking lim sup on both sides of the last inequality and
using (1), we obtain

lim
𝑛−→∞

sup ℏ(Υ𝔮, 𝔮𝑛) ≤ lim
𝑛−→∞

sup ℏ(𝔮, 𝔮𝑛)

=⇒ 𝑟 (Υ𝔮, {𝔮𝑛}) ≤ 𝑟 (𝔮, {𝔮𝑛}).

The fact that the asymptotic center is unique suggests that
Υ𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞=𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞. This means that 𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞 ∈ 𝐹.
Since lim𝑛−→∞ ℏ(𝜘𝑛, 𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞) exists, and taking into
account the uniqueness of the asymptotic center, we get

lim
𝑛−→∞

sup ℏ(𝔮𝑛, 𝔮) < lim
𝑛−→∞

sup ℏ(𝔮𝑛, 𝜘)

≤ lim
𝑛−→∞

sup ℏ(𝜘𝑛, 𝜘)

< lim
𝑛−→∞

sup ℏ(𝜘𝑛, 𝔮) = lim
𝑛−→∞

sup ℏ(𝔮𝑛, 𝔮)

which is a contradiction. Hence 𝜘 = 𝑐𝑎𝑙 𝑓 𝑟𝑎𝑘𝑞. Thus
𝐴({𝔨𝑛}) = {𝔨} for all subsequences {𝔨𝑛} of {𝜘𝑛}, that is,
{𝜘𝑛} Δ-converges to 𝜘 ∈ 𝐹. □

Let M be a subset of a metric space 𝔖. A sequence {𝜘𝑛}
in 𝔖 is called as Fejér monotone with respect to M. if
ℏ(𝜘𝑛+1, 𝜛) ≤ ℏ(𝜘𝑛, 𝜛) for all 𝜛 ∈ M and 𝑛 ∈ N.
The following result is required for the sake of proving
the main theorem:
[5]Let (𝔖, ℏ) be a complete metric space and M be a
nonempty closed subset of 𝔖. Consider the sequence
{𝜘𝑛} in M and suppose that {𝜘𝑛} is Fejér monotone with
respect to M. Then {𝜘𝑛} converges to some 𝜛 ∈ M if
and only if lim𝑛−→∞ ℏ(𝜘𝑛,M) = 0.
Following that, we establish the strong convergence for
the iteration process defined by (1).
Let M,𝔖,Υ and {𝜘𝑛} be the same as in Lemma
3. Then {𝜘𝑛} converges strongly to some 𝜛 ∈ 𝐹 if
and only if lim inf𝑛−→∞ ℏ(𝜘𝑛, 𝐹) = 0 where ℏ(𝜘, 𝐹) =

inf {ℏ(𝜘, 𝜛) : 𝜛 ∈ 𝐹}.

Proof If {𝜘𝑛} converges to 𝜛 ∈ 𝐹, then
lim𝑛−→∞ ℏ(𝜘𝑛, 𝜛) = 0. Since 0 ≤ ℏ(𝜘𝑛, 𝐹) ≤ ℏ(𝜘𝑛, 𝜛),
we have lim inf𝑛−→∞ ℏ(𝜘𝑛, 𝐹) = 0.
On the contrary, presume that lim inf𝑛−→∞ ℏ(𝜘𝑛, 𝐹) = 0.
As a result of Lemma 3 that lim𝑛−→∞ ℏ(𝜘𝑛, 𝐹) exists.
Thus by hypothesis, lim𝑛−→∞ ℏ(𝜘𝑛, 𝐹) = 0. From Lemma
3, it is said that {𝜘𝑛} is Fejér monotone with respect to 𝐹.
Therefore, Lemma 3 indicate that {𝜘𝑛} converges strongly
to a point 𝜛 in 𝐹. □

In Theorem 3, the condition lim sup𝑛−→∞ ℏ(𝜘𝑛, 𝐹) =

0 can be used in place of the condition
lim inf𝑛−→∞ ℏ(𝜘𝑛, 𝐹) = 0.
Let 𝔖 = R with metric defined by ℏ(𝜘, 𝜇) = |𝜘 − 𝜇 | and
M =

[
− 1

3 ,
1
3
]
. Choose a mapping Υ : M −→ M as

Υ𝜘 =

{ 1−𝑥
2 , if 𝜘 ≠ 1

3 ,

0, if 𝜘 = 1
3 .

Selecting 𝑎 = 1
6 and 𝑏 = 1

6 and for 𝛼 ∈ [0, 1), then Υ is
an 𝑎 − 𝑏−generalized nonexpansive mapping. To prove
that, we consider three different cases as follows:
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Case 1 For 𝜘 = 1
3 and 𝜇 = 1

3 , since ℏ(Υ𝜘,Υ𝜇) =

|Υ𝜘 − ∓𝜇 | = 0, we have

𝑎 [ℏ(𝜇,Υ𝜘) + ℏ(𝜘,Υ𝜇)]+𝑏 [ℏ(𝜘,Υ𝜘) + ℏ(𝜇,Υ𝜇)]

+ [1 − (2𝑎 + 2𝑏)] ℏ(𝜘, 𝜇) ≥ 0 = ℏ(Υ𝜘,Υ𝜇).

Case 2 For 𝜘 = 1
3 and 𝜇 ≠ 1

3 , we have ℏ(Υ𝜘,Υ𝜇) =
1
2 |𝜇 − 1| and

𝑎 [ℏ(𝜇,Υ𝜘) + ℏ(𝜘,Υ𝜇)]

+𝑏 [ℏ(𝜘,Υ𝜘) + ℏ(𝜇,Υ𝜇)]+[1 − (2𝑎 + 2𝑏)] ℏ(𝜘, 𝜇)

=
1
6

[
|𝜇 | +

����13 − 1 − 𝜇

2

����] + 1
6

[
1
3
+
����𝜇 − 1 − 𝜇

2

����]
+
[
1 − ( 1

3
+ 1

3
)
] ����13−𝜇���� ≥ 1

6
|𝜇 | + 7

36
|3𝜇 − 1|

>
1
2
|𝜇 − 1| = ℏ(Υ𝜘,Υ𝜇).

Case 3 For 𝜘 ≠ 1
3 and 𝜇 ≠ 1

3 , we have ℏ(Υ𝜘,Υ𝜇) =

|Υ𝜘 − ∓𝜇 | =
��� 1−𝑥2 − 1−𝜇

2

��� = 1
2 |𝜘 − 𝜇 | and

𝑎 [ℏ(𝜇,Υ𝜘) + ℏ(𝜘,Υ𝜇)] + 𝑏 [ℏ(𝜘,Υ𝜘)

+ℏ(𝜇,Υ𝜇) + [1 − (2𝑎 + 2𝑏)] ℏ(𝜘, 𝜇)

=
1
6

[����𝜇 − 1 − 𝑥

2

���� + ����𝑥 − 1 − 𝜇

2

����]
+1

6

[����𝑥 − 1 − 𝑥

2

���� + ����𝜇 − 1 − 𝜇

2

����]
+
[
1 − ( 1

3
+ 1

3
)
]
|𝑥−𝜇 |

=
1

12
[|2𝜇 + 𝜘 − 1| + |2𝜘 + 𝜇 − 1|]

+ 1
12

[|3𝑥 − 1| + |3𝜇 − 1|] + 1
3
|𝑥−𝜇 | ≥ 1

12
|𝜇−𝑥 |

+ 1
12

|3𝜘 − 3𝜇 | + 1
3
|𝑥−𝜇 | = 2

3
|𝑥−𝜇 |

≥ 1
2
|𝜘 − 𝜇 | = ℏ(Υ𝜘,Υ𝜇).

In the all above cases we have ℏ(Υ𝜘,Υ𝜇) ≤
𝑎 [ℏ(𝜇,Υ𝜘) + ℏ(𝜘,Υ𝜇)] + 𝑏 [ℏ(𝜘,Υ𝜘) + ℏ(𝜇,Υ𝜇)] +
[1 − (2𝑎 + 2𝑏)] ℏ(𝜘, 𝜇), therefore Υ become an 𝑎 −
𝑏−generalized nonexpansive mapping.
Now, we show that iteration process (1) converges strongly
and Δ-converges to fixed point 𝜛 = 1

3 .

Choosing 𝛼𝑛 = 𝑛
2𝑛+3 for all 𝑛 ≥ 1, the hypotheses of

Lemma 3 are verified. Since the conditions of Theorem 3

and Theorem3, iteration process (1) converges strongly
and Δ-converges to fixed point 𝜛 = 1

3 .

In this study, firstly, a new class of generalized nonex-
pansive mapping called 𝑎 − 𝑏−generalized nonexpansive
mapping has been introduced in hyperbolic space. Ad-
ditionally, we construct the form in hyperbolic space of
the Mann iteration process, which is well-known in the
literature. Finally, we prove convergence theorems for
𝑎 − 𝑏−generalized nonexpansive mappins in a uniformly
convex hyperbolic space using the modified form of the
Mann iteration process.
The author thanks the editor and the reviewers for their
helpful comments and suggestions.
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