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ABSTRACT

This paper establishes the basis of the quaternionic differential geometry (HDG) initiated in
a previous article. The usual concepts of curves and surfaces are generalized to quaternionic
constraints, as well as the curvature and torsion concepts, differential forms, directional derivatives
and the structural equations. The analogy between the quaternionic and the real geometries is
obtained using a matrix representation of quaternions. The results evidences the quaternionic
formalism as a suitable language to differential geometry that can be useful in various directions
of future investigation.
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1. Introduction

Following the approach to quaternionic differential geometry (HDG) for curves introduced in [1], this article
contains a general framework that encompasses curves and surfaces within the concept of regular constraint
that will be defined in a while. However, the investigation of quaternionic and hyper-complex geometries is
not introduced in the research contained in this article, which is an element of the interest in the interplay
between differential geometry, Clifford algebras, and their representations.

The investigation on quaternionic curves seems to have been initiated by [2], theoretically developed by
[3, 4, 5], and applied on various sorts of curves [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], as well
as surfaces [22, 23, 24, 25, 26, 27, 28, 29, 30], and hyper-surfaces in the quaternionic projective space [31, 32].
These investigations are not related to complex manifolds, that comprise a vast field of research in differential
geometry, and we mention [33] as a recent development with various classical references. In fact, this research
is a development of the real differential geometry whose relation to the territory of complex manifolds are
completely unknown, comprising an exciting direction for future research.

The approach to HDG presented in this article is somewhat simpler and more general, capable of
describing three kinds of quaternionic constraints: The one-dimensional constraint is equivalent to a curve,
the two-dimensional constraint to a surface, and a three-dimensional quaternionic constraint, without a real
counterpart in three dimensions. Following a way that runs parallel to the real differential geometry, as our
first task we define quaternionic Frenet-Serret equations. Before doing that, the next section contains the
quaternionic notation that will be used throughout the article.

2. Quaternions

This section collects essential facts, and establishes the notation adopted in the article, and it is not aimed as
an introduction to the subject, that can be found from various sources, e.g. [34, 35, 36, 37]. We also point out that
this section does not contain novel result on quaternions, it simply organizes the most important facts to be
used in this paper, and establishes the notation. However, to the best of our knowledge, the discussion about
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the polar and symplectic notation is original. Although this section is somewhat long, it will be necessary in
order to set quaternions within a convenient form to our purposes.

We define quaternions (H) as hyper-complex numbers that, ∀ q ∈ H, it holds that

q = x0 + x1i+ x2j + x3k, where xµ ∈ R for µ ∈ {0, 1, 2, 3}. (2.1)

The i, j and k anti-commuting imaginary units satisfy

i2 = j2 = k2 = −1 and ijk = −1. (2.2)

Moreover,
x0 and x⃗ = x1i+ x2j + x3k (2.3)

are respectively named the scalar, or temporal, and the vector, or spatial, components of the quaternion. If
the scalar component of the quaternion is zero, namely x0 = 0, the quaternion is called a pure imaginary
quaternion. The multiplication of quaternionic imaginary units satisfies the general rule

emen = −δmn + ϵmnlel, where m, n, l ∈ {1, 2, 3}, (2.4)

ϵmnl is the anti-commuting Levi-Cività symbol, and we choose

e1 = i, e2 = j, e3 = k. (2.5)

Defining e0 = 1 , we identify
eµ =

{
e0, em

}
. (2.6)

as the natural basis to the real linear space defined by quaternions. In the same fashion as complex numbers,
the quaternionic conjugate q, and the quaternionic norm |q| are as follows

q = x0 − x⃗, |q|2 = qq = x20 + | x⃗ |2, and | x⃗ |2 = x21 + x22 + x23. (2.7)

According to Adolf Hurwitz [38], quaternions comprise one of the four division algebras, the other being the
reals (R), the complexes (C) and the octonions (O). Notation (2.1) can be named either the extended or cartesian
notation, which alternatively may be written as

q = x0 + ω| x⃗ |, with ω =
x⃗

| x⃗ |
. (2.8)

The unitary imaginary function ω, so that ω2 = −1, commutes with the scalar component x0 of the quaternion,
but every quaternionic number has their own imaginary unit ω that, in general, neither commutes nor anti-
commutes with the quaternionic unit of a different quaternion. If necessary, one may write q = x0 + ωx| x⃗ | to
avoid confusion. From [39], we adopt the scalar product for quaternions〈

p, q
〉

= Re
[
pq

]
=

pq + qp

2
, (2.9)

which permit us to define that p and q are orthogonal if〈
p, q

〉
= 0. (2.10)

Immediately, 〈
eµ, eν

〉
= δµν , (2.11)

and a four dimensional real vector space appears after using the inner product (2.9) together with the natural
basis (2.6). An arbitrary quaternion q defines a new basis to H, where the four original orthogonal directions,
namely the real direction e0 = 1 and the three imaginary directions em, generate a novel basis, such as

q 7→
{
q, emq

}
. (2.12)

The orthogonality of the four novel directions can be seen from〈
eµq, eνq

〉
= δµν |q|2. (2.13)
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Another fundamental property is the quaternionic parallelism: quaternions p and q are parallel if〈
p, q

〉
= pq, (2.14)

Of course, if α0 ∈ R, thus eµ and α0eµ, are parallel, as well as q and α0q. However, q is not parallel to r0q if
r0 ∈ C. We notice that the orthogonality and parallelism concepts, respectively defined in (2.9) and (2.14), are
identically valid for complex numbers. Let us consider further possibilities to the quaternionic basis (2.6) and
(2.12). Remembering the definition of the general imaginary unit ω from (2.8), one obtains〈

q, ωq
〉
= 0, (2.15)

and q and ωq are consequently orthogonal. In order to obtain the further two orthogonal components of the
space, let us define:

Definition 2.1 (Regular quaternionic curves). The parametrized curve q : I → H is regular in I ⊂ R if |q′(t)| ≠
0 ∀t ∈ I.

Thus, we can prove that

Proposition 2.1 ( Imaginary quaternionic function ). Let x = x(t) be a pure imaginary regular quaternionic curve.
If ω = x

|x| , and ω′ = dω
dt , then

i. ω′ = −ω′

ii. ωω′ = −ω′ω

Proof: The item (i) comes immediately from the definition, and the item (ii) comes from the derivative of
ω2 = −1.

□
Consequently, assuming the derivative ω′ of the imaginary unitary quaternion ω as a regular quaternionic

function, the four orthogonal directions defined from q are as follows,

q 7→
{
q, ωq, ω′q, ωω′q

}
, (2.16)

and the four-components of the orthogonal basis set comprises

{
1, i, j, k

}
≡

{
1, ω,

ω′

|ω′|
, ω

ω′

|ω′|

}
. (2.17)

In summary, we defined the quaternions as a four dimensional real vector space, and obtained several
alternative basis for that. In the following section, we will consider this subject using a different notation.

2.1. Polar notation

Observing that the real coefficient of the imaginary component of (2.8) is always positive, we choose

x0 = ρ cos θ, | x⃗ | = ρ sin θ, ρ = |q|, and θ ∈ [0, π]. (2.18)

The polar notation of the Cartesian quaternion consequently comprises

q = ρ
(
cosθ + I sin θ

)
, I = cosϕ i+ sinϕ eiξj, ϕ ∈ [0, π], and ξ ∈ [0, 2π], (2.19)

Of course I2 = −1, the inner product (2.6) is valid, and q and Iq are orthogonal. In accordance to Proposition
2.1, the two remaining orthogonal directions follow as derivatives of I :

J =
∂I

∂ϕ
, K =

1

sinϕ

∂I

∂ξ
, (2.20)

we obtain
J = − sinϕi+ cosϕeiξj, and K = eiξij. (2.21)

The novel imaginary units satisfy the multiplication rule (2.4) of the natural quaternionic imaginary units, and
thus, {

1, i, j, k
}

≡
{
1, I, J, K

}
. (2.22)
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Consequently, we have the four orthogonal directions defined from q in the polar notation as

q 7→
{
q, Iq, Jq, Kq

}
. (2.23)

Therefore, and in the same token as complexes, a perfect equivalence between the cartesian and the polar
notation is observed in quaternions.

As a final remark, the range of θ ∈ [0, π] in (2.19), and not [0, 2π] as in C, indicates that a negative signal
have to be absorbed by the quaternionic structure in order to keep the polar angles within the correct range.
Let us consider the simplest case:

−q = (−1)ρ(cos θ + I sin θ). (2.24)

If q ∈ C, this multiplication means the rotation θ → θ + π, what is prohibited if q ∈ H. Absorbing the negative
signal in the imaginary unit, the correct rotation to quaternions will be

−q = ρ
[
cos(π − θ)− I sin(π − θ)

]
, and − I = cos(π − ϕ) + sin(π − ϕ)ei(ξ+π)j. (2.25)

Assuming |q| = 1 for the sake of simplicity, in general we have

q(θ1 + θ2) =



cos θ0 + ω sin θ0 n even θ0 ∈ [0, π]

cos (π − θ0)− I sin (π − θ0) n odd, θ0 ∈
[
0, π2

]
cos

(
π
2 − θ0

)
− I sin

(
π
2 − θ0

)
n odd, θ0 ∈

[
π
2 , π

]
θ1 + θ2 = nπ + θ0.

(2.26)

As a final aspect, the next subsection contains the symplectic notation for quaternions.

2.2. Symplectic notation

Quaternionic numbers can also be written as

q = z0 + z1j, where z0 = x0 + x1i, and z1 = x2 + x3i. (2.27)

The complex components of q can be obtained from

z0 =
1

2

(
q − iqi

)
and z1 =

1

2

(
q + i q i

)
j. (2.28)

The symplectic notation is not unique, and we can replace (2.27) with

q = z0 + ζ k where ζ = x3 + x2i, (2.29)

and four other possibilities replacing i with j and k. A symplectic polar notation reads

q = ρ
(
cosϑeiϕ + sinϑeiψj

)
where ϑ ∈

[
0,
π

2

]
and ϕ, ψ ∈ [0, 2π]. (2.30)

In symplectic notation, the vector space is complex. Using (2.28), the inner product〈
p, q

〉
=

1

2

(
pq − ipqi

)
, (2.31)

satisfies 〈
p, q

〉
=

〈
q, p

〉
,

〈
q, q

〉
= |q|2,

〈
α0p, q

〉
= α0

〈
p, q

〉
,

〈
p, α0q

〉
=

〈
p, q

〉
α0, (2.32)

where p, q ∈ H and α0 ∈ C. The order within the product between the complex and the quaternion is inflexible,
and pα0 is not allowed in this case. As in the cartesian case, the addition of the polar angle satisfies

q(ϑ1 + ϑ2) =



cosϑ0e
iϕ + sinϑ0e

iψj n = 0 mod 4

cos
(
π
2 − ϑ0

)
ei(ψ−π) + sin

(
π
2 − ϑ0

)
eiϕj n = 1 mod 4

cosϑ0e
i(ψ−π) + sinϑ0e

i(ϕ−π)j n = 2 mod 4

cosϑ
(
π
2 − ϑ0

)
eiψ + sin

(
π
2 − ϑ0

)
ei(ϕ−π)j n = 3 mod 4,

(2.33)
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where
ϑ1 + ϑ2 = ϑ0 + n

π

2
, ϑ0 ∈

[
0,
π

2

]
and n ∈ N.

We finally have a comprehensive picture of quaternions to the purposes of differential geometry, introduced in
the next section.

2.3. Quaternionic gradient

We adopt the quaternionic gradient operator

∇ =
∑
µ

eµ∂µ, (2.34)

that is already known from harmonic analysis [40], and that is different from the gradient vector ∇. Moreover,
using the arbitrary quaternionic function

f = f (0) + f (1)i+ f (2)j + f (3)k (2.35)

where f (µ) are real functions, let us entertain the equation

∇f = 0 ⇒
4∑

µ=0

(
∇f

)
µ
eµ = 0 (2.36)

which implies that each quaternionic component must be independently zero, so that

e0 : f
(0)
0 + f

(1)
1 + f

(2)
2 + f

(3)
3 = 0

e1 : f
(1)
0 − f

(0)
1 − f

(3)
2 + f

(2)
3 = 0

e2 : f
(2)
0 + f

(3)
1 − f

(0)
2 − f

(1)
3 = 0

e3 : f
(3)
0 − f

(2)
1 + f

(1)
2 − f

(0)
3 = 0

, where f (µ)ν = ∂νf
(µ). (2.37)

The conditions (2.37) are analogous to the Cauchy-Riemann conditions of complex analysis, although
insufficent to define functions of a quaternionic variable. Taking the second derivative, so that

∇∇f = 0. (2.38)

we obtain
∇2f (µ) = 0, where ∇2 = ∇ ·∇ (2.39)

is the usual Laplacian operator. This result is analogous to the complex one, and the real components of the
quaternionic function f that satisfies (2.36) are harmonic funtions in four dimensions, in the same fashion as
harmonic functions of two dimensions solve the complex case. Therefore, the quaternionic case generalizes the
complex one, as desired. Concluding this section, contemplate the quaternionic gradient in polar notation.

2.4. Quaternionic gradient in polar notation

Using the polar notation described in Section 2.1, using the quaternionic basis (2.22) we obtain

i = cosϕI − sinϕJ

j = cos ξ
(
sinϕI + cosϕJ

)
− sin ξK (2.40)

k = sin ξ
(
sinϕI + cosϕJ

)
+ cos ξK,

and from polar expression of the xµ cartesian coordinates,

ρ2 =

3∑
µ=0

x2µ, tan θ =

√
x21 + x22 + x23

x0
, tanϕ =

√
x22 + x23
x2

, tan ξ =
x3
x2
, (2.41)
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enable us to obtain the quaternionic gradient operator (2.34) in polar notation

∇ =
(
cos θ − I sin θ

)(
∂ρ −

I

ρ
∂θ

)
− J

ρ sin θ
∂ϕ −

K

ρ sin θ sinϕ
∂ξ. (2.42)

Using the quaternionic function

g
(
ρ, θ, ϕ, ξ

)
= g(0) + g(1)I + g(2)J + g(3)K, (2.43)

in
∇g = 0 (2.44)

we obtain 

ρg
(0)
ρ + g

(1)
θ + cot θ

(
2g(1) + cotϕ g(2) + g

(2)
ϕ +

g
(3)
ξ

sinϕ

)
− g

(2)
ξ

sinϕ + g
(3)
ϕ + cotϕ g(3) = 0

ρg
(1)
ρ − g

(0)
θ + 2g(1) + cotϕ g(2) + g

(2)
ϕ +

g
(3)
ξ

sinϕ + cot θ

(
g
(2)
ξ

sinϕ − g
(3)
ϕ − cotϕ g(3)

)
= 0

ρg
(2)
ρ + g

(3)
θ − cot θ

(
g
(0)
ϕ +

g
(1)
ξ

sinϕ − g(3)
)
+

g
(0)
ξ

sinϕ − g
(1)
ϕ + g(2) = 0

ρg
(3)
ρ − g

(2)
θ − g

(0)
ϕ − g

(1)
ξ

sinϕ + g(3) − cot θ

(
g
(0)
ξ

sinϕ − g
(1)
ϕ + g(2)

)
= 0,

(2.45)

where we also employed the derivatives of the imaginary units

Iϕ = J, Jϕ = −I, Kϕ = 0, (2.46)
Iξ = sinϕK, Jξ = cosϕK, Kξ =

(
cosϕI − sinϕJ

)
K. (2.47)

Therefore, from
∇∇g = 0, (2.48)

after several manipulations, we obtain
∇2g(µ) = 0 (2.49)

where the Laplacian operator reads

∇2u =
1

ρ3
(
ρ3uρ

)
ρ
+

1

ρ2 sin2 θ

(
sin2 θ uθ

)
θ
+

1

ρ2 sin2 θ sinϕ
(sinϕuϕ)ϕ +

1

ρ2 sin2 θ sin2 ϕ
uξξ. (2.50)

Now, the description of quaternions is complete, and we can finally proceed to the description of the
quaternionic differential geometry.

3. Quaternionic Constraints

In a former article [1], we studied quaternionic curves defining quaternionic Frenet-Serret equations. Taking
benefit of this experience, and of Proposition 2.1, in this section we generalize the formalism to higher
dimensions. Let us start defining our simplest objects.

Definition 3.1 (Quaternionic constraint). A constraint in H is the smooth map q(u, v, w) : U → H for U ⊂ R3

such that
q = x0 + x1i+ x2j + x3k,

xµ = xµ(u, v, w) are C∞ real functions.

In principle, the real functions xµ may have an arbitrary number of variables. For the sake of simplicity,
we choose only three, and left the more complicated cases to be entertained in future research. Therefore, we
define:
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Definition 3.2 (tangent map). Given a quaternionic constraint, the tangent map, and the unitary tangent map
related to the parameter a are such as

qa =
∂q

∂a
, and t(a) =

qa
|qa|

where a =
{
u, v, w

}
.

It is implicit that the derivative operates over the real components of the quaternionic function. A precise
definition to quaternionic constraints would be

Definition 3.3 (Regular quaternionic subspace). A quaternionic subset S ⊂ H is regular if ∀ q0 ∈ S there are
an open neighborhood V ⊂ H, a subset U ∈ Rn and a bijection q : U → V ∩ S such that

1. n ∈
{
1, 2, 3

}
.

2. the xµ components of q belong to the C∞ class.

3. xµ are homeomorphisms.

4. ∀P0 ∈ U the first order partial derivatives qa(P0) are non zero and linearly independent.

A regular quaternionic contraint q defines a quaternionic subspace, emphasizing that q is not a quaternionic
variable function. This quaternionic subspace can be a quaternionic curve, a quaternionic surface, or a
quaternionic three-dimensional hyper-surface. Let us impose unitary tangent vectors, where

∣∣t(a)∣∣ = 1. In this
case, it holds the orthogonality condition 〈

t(a), t
(a)
b

〉
= 0, (3.1)

where t(a)b is the derivative of t(a) with respect to b. Since emt(a) is orthogonal to t(a), the second derivative
belongs to a quaternionic subspace generated from the product of the tangent component and the imaginary
unit. Consequently, (

qa
|qa|

)
a

= κ(a)qa where κ(a) =

3∑
ℓ=1

κ
(a)
ℓ eℓ, (3.2)

and κ(a) is called the quaternionic curvature function. Additionally,(
qa
|qa|

)
b

= τ (ab)qa where τ (ab) =

3∑
ℓ=1

τ
(ab)
ℓ eℓ, (3.3)

and τ (ab) is the quaternionic torsion function. The evident analogy to the Frenet-Serret equations of real curves
enables us to define the unitary quaternionic normal n(a), and the unitary quaternionic binormal b(ab), so that

n(a) =
1

|κ(a)|
κ(a)t(a), and b(ab) =

1

|τ (ab)|
τ (ab)t(a). (3.4)

The real components of the curvature are

κ
(a)
ℓ =

1

|qa|2
〈
qaa, eℓt

(a)
〉

(3.5)

and the real components of the torsion are

τ
(ab)
ℓ =

1

|qa|2
〈
qab, eℓt

(a)
〉
, (3.6)

and we immediately observe that, in principle, τ (ab) ̸= τ (ba). We remark that (3.2-3.3) have in fact a second
possibility, because we could have written the curvature and the torsion at the right hand side of the
quaternionic funtion. Thus, our definitions are in fact a convenience that can be modified. For example, if
we rotate our function using a constant unitary quaternion u, we have(

uqa
|qa|

)
a

= κ̃(a)uqa, where κ̃(a) = uκ(a)u. (3.7)

However, using the transformation qu, it would be more convenient to use qa κ(a) on the right hand side of
(3.2). Let us prove a final and interesting result of this section:
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Lemma 3.1. If q is a regular quaternionic curve, we have

i. qaa =
∣∣qa∣∣a t(a) +

∣∣qa∣∣2∣∣κ(a)∣∣n(a)
ii. qab =

∣∣qa∣∣b t(a) +
∣∣qa∣∣2∣∣τ (ab)∣∣ b(ab) =

∣∣qb∣∣at(b) +
∣∣qb∣∣2∣∣τ (ba)∣∣b(ba).

Proof: The above relations are immediately obtained differentiating qa = |qa|t(a) respectively to a and b and
using (3.2-3.4).

□
We can interpret Lemma 3.1-i in dynamical terms, where qaa is the acceleration of a point of the quaternionic

curve of velocity qa. The normal component of the acceleration comprises the centripetal acceleration, whose
radius of the curvature is

R(a) =
1∣∣κ(a)∣∣ . (3.8)

And the analogy to Newtonian dynamics is exact. By analogy, we define the torsion radius

R(ab) =
1∣∣τ (ab)∣∣ . (3.9)

and the interpretation is analogous.

4. Quaternionic Differential Forms

The quaternionic directional derivative is defined to be

Definition 4.1 (quaternionic directional derivative). Let f : R4 → H be a quaternionic regular function, ∇ the
quaternionic gradient operator, and q an arbitrary quaternion number. The inner product

Dqf(P0) =
〈
q,∇f

〉∣∣∣
P0

defines the quaternionic directional derivative Dqf : R4 → R, along the direction of q, and at the point P0 ∈ R4.

The above definition can be interpreted as a total real derivative of f in terms a parameter t. Recalling the
correspondence established by the quaternionic gradient between the coordinates xµ and eµ, if xµ = p0µ + tqµ,
we can use the quaternion q =

∑
eµqµ in the directional derivative in the same fashion as the real directional

derivative in terms of a parameter t. Therefore, familiar properties of the real directional derivative can be
proven, namely

Proposition 4.1. Let f and g be quaternionic functions on R4, and the constants p, q ∈ H, and α, β ∈ R. Then
i. αDpf + βDqf =

(
αDp + βDq

)
f

ii. Dp

(
αf + βg) = αDpf + βDpg

iii. Dp

(
fg

)
=

〈
(∇f)g, p

〉
+
〈
f(∇g), p

〉
The proofs of (i) and (ii) are immediate, while (iii) demands to verify the Leibniz rule to the quaternionic

gradient,
∇(fg) = (∇f)g + f∇g,

which is also straightforward.
□

By way of example, the quaternionic directional derivative of the cartesian coordinates multiplied by the
quaternionic basis elements gives

Dpxµν =


Dp(x0e0) = p0
Dp(xme0) = −pm
Dp(x0em) = pm
Dp(xmen) = δmnp0 + ϵmnℓpℓ

. (4.1)
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In matrix form, we can organize the real components

Dpxµν =

 p0 p1 p2 p3
−p1 p0 p3 −p2
−p2 −p3 p0 p1
−p3 p2 −p1 p0

 . (4.2)

Here we observe an exact concordance between (4.1-4.2) and (2.36-2.37), and therefore, we define the
quaternionic differential

Definition 4.2 (Quaternionic differential 1−form). The differential 1−form associated to the map f : R4 → H is

df =

3∑
µ, ν=0

fµνDxµν

=

3∑
µ=0

(
∇f

)
µ
dxµ.

The agreement to the usual real differential forms is exact, and the usual properties of one forms, namely
their anti-commutativity property, is immediately preserved within this formulation. Moreover, the wedge
product of 1−forms is also immediately obtained.

5. Connection

Let us consider a unitary quaternion u that can be deployed as a basis to quaternions following (2.12).
Therefore, in the same fashion as (3.2), we can write

ua = ω(a)u, ⇒ ω(a) = uau, (5.1)

where ω(a) is of course a pure imaginary quaternion. A similar situation compared to the usual connection
1−form of real differential geometry, observing that (3.2) can be interpreted as a quaternionic covariant
derivative. In matrix terms, we observe that ω(a) is accordingly anti-symmetric, and their real components
are

ω
(a)
ℓ =

〈
ua, eℓu

〉
. (5.2)

Moreover, the perfect correspondence between the quaternionic ω(a) and the real connection in matrix
formalism enables us to interpret ω(a) as the quaternionic connection. Using this fact, the fundamental structure
of real differential geometry comes immediately, providing the translation of the quaternionic formalism into
the language of the real differential geometry. Hence, we define

Definition 5.1 (Quaternionic dual 1−forms). If eµ is a basis for H , then ,∀ p ∈ H the dual 1−form is defined by

ϕµ(p) = ⟨p, eµu⟩.

In the case of the natural basis (2.6),
dxµ(p) = ⟨p, eµ⟩. (5.3)

We also observe that the components of the general quaternionic basis (2.12) written as

qµ = eµq (5.4)

generate
ϕµ =

∑
ν

aµνdxµ (5.5)

where the real coefficient aµν are the real components of the quaternionic basis element qµ. The sole difference
to the real case is the constrained standard of aµν , that obeys (4.2). Therefore, in complete analogy to real
differential geometry, we have the following lemma that is a direct consequence of the linearity of 1−forms.
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Lemma 5.1. Let ϕµ be the 1−form basis dual to gµ. Thus an arbitrary 1−form ψ has the unique expression

ψ =
∑
µ

ψ(gµ)ϕµ.

Therefore, also in analogy to the established knowledge of differential geometry, we conclude that the
structural equations hold, namely

dϕ = ω(a) ∧ ϕ, dω = ω(a) ∧ ω(a). (5.6)

where ϕ is the 1− form dual to the natural quaternionic basis, and where the 1−forms are in matrix
representation. We must also stress that the exterior derivative is such as Definition 4.2. As a final remark of
this section, we obtained a translation of the quaternionic structure into the real structure by using the matrix
representation, and this simple result is the structural fact that allows the establishment of HDG.

6. Final Considerations

In this article we provided the foundations of a quaternionic differential geometry (HDG), where
quaternionic counterparts of the structural elements of the differential geometry of real curves and surfaces
were obtained. There are several possible interpretations to this new geometry. First of all, it enables to build
pure quaternionic figures within a quaternionic space, and hence we have defined a geometry of quaternionic
objects in analogy to the real geometric figures.

On the other hand, we may have a geometry that is not analogous to the geometry of real objects. This can be
observed mainly in the components of the quaternionic differential 1−forms, which are not identically related
to the real 1−forms, and therefore the calculus that will arise from this novel geometry must be fundamentally
different from that obtained from the real one. This is possibly the most interesting fact risen up from this
novel geometry, and whose consequences have to be investigated in future investigation. There are several
possibilities for that, such as the calculus, but also concerning the Riemannian version of HDG. We hope that
in a close future we can answer these important questions, and open a broad field of investigation of differential
geometry and their physical applications.
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