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Abstract
In this work, we establish some Parseval-Goldstein type identities and relations that include various new
generalized integral transforms such as Lα,µ-transform and generalized Stieltjes transform. In addition,
we evaluated improper integrals of some fundamental and special functions using our results.
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1. Introduction, definitions and preliminaries

The theory of special functions and integral transforms constitute an important part of research subjects in
mathematics, physics and engineering. Generally, an integral transform is defined by

T (y) = T {f(t); y} =

∫ b

a

K(y, t)f(t)dt (1.1)

where the function f(t) defined in a ≤ t ≤ b, K(y, t) is called the kernel of transform, and y is called the transform
variable [1]. In the literature, some famous integral transforms are Laplace, Fourier and Stieltjes transforms. Many
researchers have defined new integral transforms in the form of (1.1) by choosing different kernels and boundaries.
In particular, the kernels of the transforms can be selected from special functions as well as elementary functions.
The reader may refer to [1].

The Stieltjes transform of a function is obtained by applying the Laplace transform of the function twice. These
kinds of relations, where consecutive integral transforms are applied, are referred to as Parseval-Goldstein type
relations or theorems. Thus, the image of a function under an unknown new integral transform can be obtained
through the successive applications of known integral transforms. As a result, these relations shed light on the
calculation of many generalized integrals that have not yet been evaluated.
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In 1989, Yürekli [2] proved a Parseval-Goldstien type theorem which gives the relationship between Laplace and
Stieltjes transforms and many results arising from this theorem. In 1992, he did a similar study for the generalized
Stieltjes transform [3]. Later, many authors examined similar relationships between different integral transforms
based on Parseval-Goldstein type theorems.[2–7].

Albayrak [8] considers a different generalization of Laplace transform over the set of functions

A =
{
f(t)|∃K,M, a ∈ R,

∣∣tα−µf (t)
∣∣ ≤ Keatµ for all t ≥M,K > 0

}
,

which is defined by

F (y) = Lα,µ {f (t) ; y} =

∫ ∞
0

tα−1e−y
µtµf (t) dt, (1.2)

and the inverse of Lα,µ−transform is defined by

f(t) = L−1α,µ {F (y) ; t} =
µtµ−α

2πi

∫
C

eyt
µ

F
(
y1/µ

)
dy,

where α, y ∈ C, µ ∈ R, Reα > µ > 0, Re y > 0. A generalization of the harmonic oscillator in non-resisting and
resisting medium problems, initial-boundary value problems and integral equations are solved via this integral
transform. Furthermore, the alternative solution of well-known series entitled as Basel problem is obtained in a
similar way. The reader may refer to [8] for detailed information.

In this study, Parseval-Goldstein type theorem involvingLα,µ−transform will be proved. Later, some generalized
integrals will be evaulated as applications of these theorems.

With special choices of α and µ, Lα,µ−transform can be reduced to some classical integral transforms, such
as L1,1 {f (t) ; y} = L{f (t) ; y} Laplace transform [1], L2,2 {f (t) ; y} = L2 {f (t) ; y} L2−transform which was
introduced by Yürekli and Sadek [9], Lα,1 {f (t) ; y} = Lα {f (t) ; y} another generalized Laplace transform which is
defined by Karataş et al [6, 7] and Lµω,µ {f (t) ; y} = 1

ωyµω−1Bω,µ {f (t) ; y} Borel-Džrbashjan transform [10, 11]. If

we make a change of variable t = u
1
µ in the right-hand side of (1.2), we get the following relationship between the

Laplace transform and the Lα,µ−transform

Lα,µ {f (t) ; y} =
1

µ
L
{
t
α
µ−1f

(
t

1
µ

)
; yµ
}
. (1.3)

In the literature, some generalizations of the Stieltjes transform have been examined by many authors and their
applications have been included. We will also describe a new generalized Stieltjes transform obtained by applying
Lα,µ-transform sequentially. In addition, under appropriate conditions of convergence, we will introduce some
new generalized integral transforms with the help of Lα,µ or some integral transforms.

The generalized Stieltjes-type transform of f (x) , is defined by

Sα,µ,ρ(y) = Sα,µ,ρ {f (t) ; y} =

∫ ∞
0

tα−1

(yµ + tµ)
ρ f (t) dt (1.4)

where Reα > 0, Reµ > 0, Re ρ > 0 and the inverse of generalized Stieltjes-type transform is defined by

f(t) = S−1α,µ,ρ {Sα,µ,ρ(y); t} =
µtµ−α(ρ− 1)

2πi

∫
C

(tµ + y)
ρ−2

Sα,µ,ρ

(
y1/µ

)
dy,

where Reα > 0, Reµ > 0, Re ρ > 1. With special choices of α, µ and ρ, Sα,µ,ρ−transform can be reduced to some
classical integral transforms, such as S1,1,1 {f (t) ; y} = S {f (t) ; y} Stieltjes transform [1, 12], S2,2,1 {f (t) ; y} =
P {f (t) ; y}Widder-Potential transform [13], S1,2,1/2 {f (t) ; y} = G {f (t) ; y}, Glasser transform [14], S1,1,ρ {f (t) ; y} =
Sρ {f (t) ; y} generalized Stieltjes transform [12], S2,2,ρ {f (t) ; y} = Pρ,2 {f (t) ; y} generalized Widder-Potential
transform [15].

If we make a change of variable t = u
1
µ in the right-hand side of (1.4), we have the following relationship

between the generalized Stieltjes transform and the generalized Stieltjes-type transform

Sα,µ,ρ {f (t) ; y} =
1

µ
Sρ
{
t
α
µ−1f

(
t

1
µ

)
; yµ
}
.
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Beside the generalized Stieltjes type integral transform, some generalized integral transforms that will shed light on
the study will be defined as follows under appropriate convergence conditions.

First, let’s give definitions of integral transforms that we want to generalize. Fourier sine and Fourier cosine
integral transforms [1], respectively, are defined by

Fs {f (t) ; y} =

∫ ∞
0

sin (yt) f (t) dt,

Fc {f (t) ; y} =

∫ ∞
0

cos (yt) f (t) dt.

Now, we will define a generalized form of these integral transforms under appropriate convergence conditions.
Generalized Fourier sine and cosine integral transforms are defined as follow

Fs,α,µ(y) = Fs,α,µ {f (t) ; y} =

∫ ∞
0

tα−1 sin (yµtµ) f (t) dt, (1.5)

Fc,α,µ(y) = Fc,α,µ {f (t) ; y} =

∫ ∞
0

tα−1 cos (yµtµ) f (t) dt, (1.6)

where yµ > 0, f(t) is piecewise continuous and tα−1f(t) is absolutely integrable over [0,∞). The inverse of
Fs,α,µ−transform and Fc,α,µ−transform are defined by

f(t) = F−1s,α,µ {Fs,α,µ(y); t} =
2µtµ−α

π

∫ ∞
0

sin (tµy)Fs,α,µ(y1/µ)dy,

f(t) = F−1c,α,µ
{
Fc,α,µ(y1/µ); t

}
=

2µtµ−α

π

∫ ∞
0

cos (tµy)Fc,α,µ(y1/µ)dy,

where Fs,α,µ(y1/µ) and Fc,α,µ(y1/µ) are piecewise continuous and absolutely integrable over [0,∞). Now, let’s give
special functions that will be used throughout the study [16].

The Gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, Re(z) > 0.

Basic properties of Gamma function are given in [16]. Pochammer symbol is defined by the following relation,

(α)n =

{
α(α+ 1) . . . (α+ n− 1), n = 1, 2, 3 . . .

1, n = 0

where α ∈ R. The relationship between the Pochammer symbol and the gamma function is given by

(α)n =
Γ(α+ n)

Γ(α)
, α 6= 0, 1, 2, . . .

The generalized hypergeometric series is defined as

rFs

[
α1, α2, . . . , αr
β1, β2, . . . , βs

| z
]

=

∞∑
n=0

(α1)n (α2)n . . . (αr)n
(β1)n (β2)n . . . (βs)n

zn

n!
,

where r, s ∈ Z+ ∪ {0} and αi, βj 6= 0,−1,−2, . . . (1 ≤ i ≤ r, 1 ≤ j ≤ s). The reader may refer to [16] for detailed
information about the convergence conditions of this series. The Laplace transform of a generalized hypergeometric
function rFs in [17, p.219,Entry(17)] as follows:∫ ∞

0

e−yttv−1rFs

[
α1, · · · , αr
β1, · · · , βs

| at
]
dt =

Γ(v)

yv
r+1Fs

[
v, α1, · · · , αr
β1, · · · , βs

| a
y

]
(1.7)

provided if r < s,Re(v) > 0,Re(y) > 0 and a is arbitrary or if r = s > 0,Re(v) > 0 and Re(y) > Re(a).
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The confluent hypergeometric function is defined [16] as follows:

1Φ1(a; c;x) = M(a; c;x) =

∞∑
n=0

(a)n
(c)n

xn

n!

where |x| <∞; c 6= 0,−1,−2, . . .. The confluent hypergeometric function of second kind is defined by

U(a; c;x) =
π

sin(πc)

[
M(a; c;x)

Γ(1 + a− c)Γ(c)
− x1−cM(1 + a− c; 2− c;x)

Γ(a)Γ(2− c)

]
.

The integral representation of U(a; c;x) is given by

U(a; c;x) =
1

Γ(a)

∫ ∞
0

e−xtta−1(1 + t)c−a−1dt

where a > 0, c > 0, c 6= 1, 2, . . .. In [18], Ferreira and Salinas defined the incomplete generalized gamma function by
using the confluent hypergeometric function of the second kind as follows:

λγω (p, δ; a; c; ν) =

∫ ω

0

xλ−1e−px
δ

U(a; c; νxδ)dx

where x > 0, δ > 0, p > 0, a and c are arbitrary constants. Motivated by this definition, we define the following
integral transform

λγ∞ (p, δ; a; c; ν; f(x)) =

∫ ∞
0

xλ−1e−px
δ

U(a; c; νxδ)f(x)dx.

In [18], Ferreira and Salinas evaluated the following integral,∫ ∞
0

xλ−1e−px
δ

U
(
a; c; vxδ

)
dx =

π

δ sin(πc)p
λ
δ

[
A(p, δ, λ, a, c, v)−B(p, δ, λ, a, c, v)

p1−cΓ(1 + a− c)Γ(c)Γ(a)Γ(2− c)

]
(1.8)

where

A(p, δ, λ, a, c, v) = p1−cΓ(a)Γ

(
λ

δ

)
Γ(2− c)2F1

(
a,
λ

δ
; c;

v

p

)
,

B(p, δ, λ, a, c, v) = v1−cΓ(1 + a− c)Γ(c)Γ

(
λ

δ
− c+ 1

)
2F1

(
1 + a− c, λ

δ
− c+ 1; 2− c; v

p

)
where λ, δ, p > 0, λ, v, p are constants such as 0 < v < p, c < 1, c /∈ Z and a, 1 + a− c /∈ Z−. But, using the relation

2F1(a, b; c; z) =
Γ(a− c+ 1)Γ(b− c+ 1)

Γ(1− c)Γ(a+ b− c+ 1)
2F1(a, b; a+ b− c+ 1; 1− z)

− Γ(a− c+ 1)Γ(b− c+ 1)Γ(c− 1)

Γ(a)Γ(b)Γ(1− c)
z1−c2F1(a− c+ 1, b− c+ 1; 2− c; z)

of the generalized hypergeometric function, we can write it as∫ ∞
0

xλ−1e−px
δ

U
(
a; c; vxδ

)
dx =

1

δp
λ
δ

Γ
(
λ
δ

)
Γ
(
λ
δ − c+ 1

)
Γ
(
a+ λ

δ − c+ 1
) 2F1

(
a,
λ

δ
; a+

λ

δ
− c+ 1; 1− v

p

)
. (1.9)

2. Parseval-Goldstein type theorems

In this section, we will prove some identities and Parseval-Goldstein type theorems.
The following lemma shows that the generalized Stieltjes transform can be obtained by applying Lα,µ-transform

and Lδ,µ-transform consecutively.
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Lemma 2.1. Let F (y) = Lδ,µ {f (t) ; y}. If x, y, α, δ ∈ C, µ ∈ R and f, F ∈ A, then the following identity

Lα,µ {Lδ,µ {f (t) ;x} ; y} =
1

µ
Γ

(
α

µ

)
Sδ,µ,αµ {f (t) ; y} (2.1)

holds true for Reα > µ > 0, Re δ > µ > 0, Re y > 0, Rex > 0, Re
(
α
µ

)
> 0 provided that the integrals involved converge

absolutely.

Proof. Using the definition of (1.2), changing the order of integration, which is permissible by absolute convergence
of the integrals involved, we get

Lα,µ {Lδ,µ {f (t) ;x} ; y} =

∫ ∞
0

tδ−1f(t)Lα,µ{1; µ
√
tµ + yµ}dt

and using the relation (1.3) and the formula

Lα,µ{1; µ
√
tµ + yµ} = Γ

(
α

µ

)
1

µ

1

(tµ + yµ)
α
µ
,

we arrive at (2.1).

The following is a Parseval-Goldstein type theorem for Lα,µ-transform and generalized Stieltjes transform.

Theorem 2.1. If f, g ∈ A, α, δ ∈ C, µ, y ∈ R and then the following identities∫ ∞
0

yλ−1Lα,µ {f (t) ; y}Lδ,µ {g (x) ; y} dy =
1

µ
Γ

(
λ

µ

)∫ ∞
0

tα−1f (t)Sδ,µ,λµ {g (x) ; t} dt, (2.2)∫ ∞
0

yλ−1Lα,µ {f (t) ; y}Lδ,µ {g (x) ; y} dy =
1

µ
Γ

(
λ

µ

)∫ ∞
0

xδ−1g (x)Sα,µ,λµ {f (t) ;x} dx, (2.3)

hold true for Reα > µ > 0, Re δ > µ > 0, y > 0, Re
(
λ
µ

)
> 0 provided that the integrals involved converge absolutely.

Proof. Using the definition (1.2) and changing the order of integration, we have∫ ∞
0

yλ−1Lα,µ {f (t) ; y}Lδ,µ {g (x) ; y} dy =

∫ ∞
0

tα−1f (t)Lλ,µ {Lδ,µ {g (x) ; y} ; t} dt.

Using the identity (2.1) of Lemma 2.1, we arrive at (2.2). Proof of (2.3) is similar.

As a result of Theorem 2.1, the following relation can be obtained from the equivalence of relations (2.2) and
(2.3). ∫ ∞

0

tα−1f (t)Sδ,µ,λµ {g (x) ; t} dt =

∫ ∞
0

xδ−1g (x)Sα,µ,λµ {f (t) ;x} dx.

The following lemma shows that the generalized Stieltjes transform can be obtained by applying Lα,µ-transform
and Fs,δ,µ-transform consecutively or Lα,µ-transform and Fc,δ,µ-transform consecutively in both order.

Lemma 2.2. Let F (x) = Lα,µ {f (t) ;x}, Fs (x) = Fs,δ,µ {f (t) ;x} and Fc (x) = Fc,δ,µ {f (t) ;x}. If f, Fs, Fc ∈ A,
α, δ ∈ C, and x, y, µ ∈ R, then the following identities

Lα,µ {Fs,δ,µ {f (t) ;x} ; y} =
1

µ
Γ

(
α

µ

)
Sδ,2µ, α2µ

{
sin

[
α

µ
arctan

(
tµ

yµ

)]
f (t) ; y

}
, (2.4)

Fs,δ,µ {Lα,µ {f (t) ;x} ; y} =
1

µ
Γ

(
δ

µ

)
Sα,2µ, δ2µ

{
sin

[
δ

µ
arctan

(
yµ

tµ

)]
f (t) ; y

}
, (2.5)

Lα,µ {Fc,δ,µ {f (t) ;x} ; y} =
1

µ
Γ

(
α

µ

)
Sδ,2µ, α2µ

{
cos

[
α

µ
arctan

(
tµ

yµ

)]
f (t) ; y

}
, (2.6)

Fc,δ,µ {Lα,µ {f (t) ;x} ; y} =
1

µ
Γ

(
δ

µ

)
Sα,2µ, δ2µ

{
cos

[
δ

µ
arctan

(
yµ

tµ

)]
f (t) ; y

}
, (2.7)

hold true for Reα > µ > 0, xµ > 0, yµ > 0, Re
(
α
2µ

)
> 0, Re

(
δ
2µ

)
> 0, f(t) and F (x) are piecewise continuous, tδ−1f(t)

and xδ−1F (x) are absolutely integrable over [0,∞) provided that the integrals involved converge absolutely.
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Proof. Using the definitions of (1.2) and (1.5), changing the order of integration, which is permissible by absolute
convergence of the integrals involved, we have

Lα,µ {Fs,δ,µ {f (t) ;x} ; y} =

∫ ∞
0

tδ−1f (t)Lα,µ {sin (xµtµ) ; y} dt.

Using the relation (1.3), the known formula [17, p.152, Entry(15)]

L
{
tν−1 sin (at) ; y

}
=

Γ (a)

(a2 + y2)
ν/2

sin

[
ν arctan

(
a

y

)]
where Re(ν) > −1, Re(y) > | Im(a)| and definition of (1.4), we arrive at (2.4). Similarly, using the definitions of (1.2)
and (1.6) changing the order of integration, which is permissible by absolute convergence of the integrals involved,
we have

Lα,µ {Fc,δ,µ {f (t) ;x} ; y} =

∫ ∞
0

tδ−1f (t)Lα,µ {cos (xµtµ) ; y} dt.

Using the relation (1.3), the known formula [17, p.157, Entry(58)]

L
{
tν−1 cos (at) ; y

}
=

Γ (a)

(a2 + y2)
ν/2

cos

[
ν arctan

(
a

y

)]
where Re(ν) > 0, Re(y) > | Im(a)| and definition of (1.4), we arrive at (2.6). Proof of (2.5) and (2.7) are similar and
can be made using the same definitions, relations and formulas.

The following is a Parseval-Goldstein type theorem for Lα,µ-transform, generalized Fourier cosine and sine
transforms and generalized Stieltjes transform.

Theorem 2.2. If f ∈ A, g(x) is piecewise continuous and tδ−1f(t) is absolutely integrable over [0,∞), α ∈ C, µ, y ∈ R,
then the following identities∫ ∞

0

yλ−1Lα,µ {f (t) ; y}Fs,δ,µ {g (x) ; y} dy

=
1

µ
Γ

(
λ

µ

)∫ ∞
0

tα−1f (t)Sδ,2µ, λ2µ

{
sin

[
λ

µ
arctan

(
xµ

tµ

)]
g (x) ; t

}
dt, (2.8)∫ ∞

0

yλ−1Lα,µ {f (t) ; y}Fs,δ,µ {g (x) ; y} dy

=
1

µ
Γ

(
λ

µ

)∫ ∞
0

xδ−1g (x)Sδ,2µ, λ2µ

{
sin

[
λ

µ
arctan

(
xµ

tµ

)]
f (t) ;x

}
dx, (2.9)∫ ∞

0

yλ−1Lα,µ {f (t) ; y}Fc,δ,µ {g (x) ; y} dy

=
1

µ
Γ

(
λ

µ

)∫ ∞
0

tα−1f (t)Sδ,2µ, λ2µ

{
cos

[
λ

µ
arctan

(
xµ

tµ

)]
g (x) ; t

}
dt, (2.10)∫ ∞

0

yλ−1Lα,µ {f (t) ; y}Fc,δ,µ {g (x) ; y} dy

=
1

µ
Γ

(
λ

µ

)∫ ∞
0

xδ−1g (x)Sδ,2µ, λ2µ

{
cos

[
λ

µ
arctan

(
xµ

tµ

)]
f (t) ;x

}
dx, (2.11)

hold true for Reα > µ > 0, yµ > 0, Re
(
λ
2µ

)
> 0 provided that the integrals involved converge absolutely.

Proof. Using the definition (1.2) and changing the order of integration, we have∫ ∞
0

yλ−1Lα,µ {f (t) ; y}Fs,δ,µ {g (x) ; y} dy =

∫ ∞
0

tα−1f (t)Lλ,µ {Fs,δ,µ {g (x) ; y} ; t} dt.

Using the identity (2.4) of Lemma (2.2), we arrive at (2.8). Proof of (2.9) is similar and can be made using the
definition (1.5) and identity (2.5) of Lemma (2.2). Using the definition (1.2), changing the order of integration and
using the identity (2.6) of Lemma (2.2), we arrive at (2.10). Proof of (2.11) is similar and can be made using the
definition (1.6) and identity (2.7) of Lemma (2.2).



Some Parseval-Goldstein type theorems 87

The following lemma shows that the improper integral involving the confluent hypergeometric function of
second kind can be obtained by applying Lα,µ-transform and generalized Stieltjes integral transform consecutively
in both order.

Lemma 2.3. Let S (x) = Sδ,µ,ρ {f (t) ;x}. If α ∈ C, x, y, µ ∈ R and f, S ∈ A, then the following identities

Lα,µ {Sδ,µ,ρ {f(t);x} ; y} =
Γ(αµ )

µ

∫ ∞
0

tδ+α−µρ−1U

(
α

µ
; 1 +

α

µ
− ρ; tµyµ

)
f(t)dt, (2.12)

Sδ,µ,ρ {Lα,µ {f(t);x} ; y} =
yδ−µρ

µ
Γ

(
δ

µ

)∫ ∞
0

tα−1U

(
δ

µ
; 1 +

δ

µ
− ρ; tµyµ

)
f(t)dt (2.13)

hold true for Reα > µ > 0, Re δ > 0, x > 0, y > 0, Re
(
α
µ

)
> 0, Re

(
δ
µ

)
> 0, Re

(
1 + α

µ

)
> Re ρ >, Re

(
1 + δ

µ

)
>

Re ρ > 0 provided that the integrals involved converge absolutely.

Proof. Using the definitions of (1.2) and (1.4), changing the order of integration, which is permissible by absolute
convergence of the integrals involved, we have

Lα,µ {Sδ,µ,ρ {f (t) ;x} ; y} =

∫ ∞
0

tδ−1f (t)

[∫ ∞
0

xα−1e−x
µyµ

(tµ + xµ)
ρ dx

]
dt.

Now, making the change of variable x = tu
1
µ in the inner integral, we get

Lα,µ {Sδ,µ,ρ {f (t) ;x} ; y} =
1

µ

∫ ∞
0

tδ+α−µρ−1f(t)

[∫ ∞
0

u
α
µ−1

(1 + u)ρ
e−t

µyµudu

]
dt.

Using the integral representation of the confluent hypergeometric function U(a, b, z), we arrive at (2.12). Proof of
(2.13) is similar and can be made using the same definitions and formulas.

The following is a Parseval-Goldstein type theorem for Lα,µ-transform, generalized Stieltjes transform and
λγ∞−transform.

Theorem 2.3. If α, δ, ρ ∈ C, µ ∈ R and f ∈ A, then the following identities∫ ∞
0

yλ−1Lα,µ {f (t) ; y} Sδ,µ,ρ {g (x) ; y} dy

=
Γ(λµ )

µ

∫ ∞
0

tα−1f (t) δ+λ−µργ∞

(
0;µ;

λ

µ
; 1 +

λ

µ
− ρ; tµ; g(x)

)
dt, (2.14)∫ ∞

0

yλ−1Lα,µ {f (t) ; y} Sδ,µ,ρ {g (x) ; y} dy

=
Γ(λµ )

µ

∫ ∞
0

xδ+λ−µρ−1g (x) αγ∞

(
0;µ;

λ

µ
; 1 +

λ

µ
− ρ;xµ; f(t)

)
dx, (2.15)

hold true for Reα > µ > 0, Re δ > 0, y > 0, Re
(
α
µ

)
> 0, Re

(
δ
µ

)
> 0, Re

(
1 + α

µ

)
> Re ρ >, Re

(
1 + δ

µ

)
> Re ρ > 0

provided that the integrals involved converge absolutely.

Proof. Using the definition (1.2) and changing the order of integration, we have∫ ∞
0

yλ−1Lα,µ {f (t) ; y} Sδ,µ,ρ {g (x) ; y} dy =

∫ ∞
0

tα−1f (t)Lλ,µ {Sδ,µ,ρ {g (x) ; y} ; t} dt.

Using the identity (2.12) of Lemma 2.3, we arrive at (2.14). Proof of (2.15) is similar and can be using the definition
(1.4) and identity (2.13) of Lemma 2.3.
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3. Applications

We know that [8]

Lα,µ
{
xλ−1; y

}
=

1

µ
Γ

(
α+ λ− 1

µ

)
1

yα+λ−1
(3.1)

where Re y > 0 and Re
(
α+λ−1

µ

)
> −1.

In this section we give some applications of above lemmas and theorems.

Example 3.1. We show that

Sδ,µ,αµ
{
tλ−1; y

}
=

1

µyα−δ−λ+1
B

(
δ + λ− 1

µ
,
α− δ − λ+ 1

µ

)
, (3.2)

Sδ,µ,αµ
{
e−a

µtµ ; y
}

=
aα−δ

µ
Γ

(
δ

µ

)
U

(
α

µ
; 1 +

α

µ
− δ

µ
; aµyµ

)
(3.3)

where Re
(
δ+λ−1
µ

)
> 0, Re

(
α−δ−λ+1

µ

)
> 0, Re

(
δ
µ

)
> 0, Re

(
α
µ

)
> 0, Re

(
α
µ −

δ
µ

)
> −1 and U is a second kind of

confluent hypergeometric function.

Setting f(t) = tλ−1 in (2.1), we have

Sδ,µ,αµ
{
tλ−1; y

}
= µ

{
Γ

(
α

µ

)}−1
Lα,µ

{
Lδ,µ

{
tλ−1;x

}
; y
}
.

Using the formula (3.1) successively, we obtain the formula (3.2). Setting f(t) = e−a
µtµ in (2.1), we have

Sδ,µ,αµ
{
e−a

µtµ ; y
}

= µ

{
Γ

(
α

µ

)}−1
Lα,µ

{
Lδ,µ

{
e−a

µtµ ;x
}

; y
}
.

Using the definition (1.2) and the formula (3.1) for λ = 1, we have

Sδ,µ,αµ
{
e−a

µtµ ; y
}

= µ

{
Γ

(
α

µ

)}−1
Lα,µ

{
Lδ,µ

{
1; µ
√
aµ + xµ

}
; y
}

=

{
Γ

(
α

µ

)}−1
Γ

(
δ

µ

)
Lα,µ

{
1

(aµ + xµ)
δ
µ

; y

}

=

{
Γ

(
α

µ

)}−1
Γ

(
δ

µ

)∫ ∞
0

xα−1e−y
µxµ

(aµ + xµ)
δ
µ

dx.

Now, making the change of variable x = au
1
µ , we get

Sδ,µ,αµ
{
e−a

µtµ ; y
}

=
aα−δ

µ

∫ ∞
0

u
α
µ−1 (1 + u)

− δ
µ e−y

µaµudx.

Using the integral representation of the confluent hypergeometric function U(a, b, z), we arrive at (3.3).

Example 3.2. We show that

∫ ∞
0

yλ−1

(aµ + yµ)
α
µ (bµ + yµ)

δ
µ

dy =
bλ−δ

µaα

Γ
(
λ
µ

)
Γ
(
α−λ+δ

µ

)
Γ
(
α+δ
µ

) 2F1

(
α

µ
,
λ

µ
;
α+ δ

µ
; 1− bµ

aµ

)
. (3.4)

where Re
(
λ
µ

)
> 0, Re

(
α
µ

)
> 0, Re

(
α+λ
µ

)
> Re

(
λ
µ

)
> 0.
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If we set f(t) = e−a
µtµ and g(x) = e−b

µxµ in (2.2) and use the definition (1.2) and the formula (3.3), we have∫ ∞
0

yλ−1Lα,µ
{
e−a

µtµ ; y
}
Lδ,µ

{
e−b

µxµ ; y
}
dy =

1

µ
Γ

(
λ

µ

)∫ ∞
0

tα−1e−a
µtµSδ,µ,λµ

{
e−b

µxµ ; t
}
dt

and ∫ ∞
0

yλ−1Lα,µ
{

1; µ
√
aµ + yµ

}
Lδ,µ

{
1; µ
√
bµ + yµ

}
dy

=
bλ−δ

µ2
Γ

(
λ

µ

)
Γ

(
δ

µ

)∫ ∞
0

tα−1e−a
µtµU

(
λ

µ
; 1 +

λ− δ
µ

; bµtµ
)
dt.

Using the formulas (3.1) for λ = 1 and (1.9), we arrive at (3.4).

Example 3.3. We show that

Sδ,2µ, α2µ

{
t−ν sin

[
α

µ
arctan

(
tµ

yµ

)]
; y

}
=

1

yα+ν−δµ
B

(
α− δ + ν

µ
,
δ − ν
µ

)
sin

[
π

2

(
δ − ν
µ

)]
(3.5)

where 0 < Re
(
δ−ν
µ

)
< 2.

If we choose f(t) = t−ν in (2.4), we have

Lα,µ
{
Fs,δ,µ

{
t−ν ;x

}
; y
}

=
1

µ
Γ

(
α

µ

)
Sδ,2µ, α2µ

{
sin

[
α

µ
arctan

(
tµ

yµ

)]
t−ν ; y

}
. (3.6)

Firstly, let’s find the inner transform on the left side of the identity

Fs,δ,µ
{
t−ν ;x

}
=

∫ ∞
0

tδ−ν−1 sin (xµtµ) dt.

Making the change of variable x = u
1
µ and using the formula [17, p.68, (1)], we get

Fs,δ,µ
{
t−ν ;x

}
=
xν−δ

µ
Γ

(
δ − ν
µ

)
sin

[
π

2

(
δ − ν
µ

)]
. (3.7)

Finally, setting the result (3.7) in (3.6) and using the formula (3.1), we arrive at (3.5).

Example 3.4. We show that

Sλ−δ,2µ,α+β
2µ

{
P−να+β

µ −1

[
yµ√

y2µ + a2µ

]
; a

}
= Γ

(
λ− δ
µ

) 2
α+β+δ−λ

µ −1aλ−α−β−δ−3µΓ
(
α+β+δ−λ

µ + ν
2

)
µΓ
(
α+β
µ + ν

)
Γ
(
ν−1
2 −

α+β+δ−λ
µ

)
cos
(
πδ
2µ

) . (3.8)

where Re
(
α+β+δ−λ

µ + ν
2

)
> 0, Re

(
α+β
µ + ν

)
> 0 and Re

(
ν−1
2 −

α+β+δ−λ
µ

)
> 0.

Setting f(t) = tβJν (aµtµ) and g(x) = 1 in (2.8), we obtain∫ ∞
0

yλ−1Lα,µ
{
tβJν (aµtµ) ; y

}
Fs,δ,µ {1; y} dy

=
1

µ
Γ

(
λ

µ

)∫ ∞
0

tα+β−1Jν (aµtµ)Sδ,2µ, λ2µ

{
sin

[
λ

µ
arctan

(
xµ

tµ

)]
; t

}
dt. (3.9)

To start with, let’s find the first transform on the left side of the identity

Lα,µ
{
tβJν (aµtµ) ; y

}
=

1

µ

∫ ∞
0

tα+β−1et
µyµJν (aµtµ) dt.
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Making the change of variable x = u
1
µ and use the formula [12, p.29, (6)], we get

Lα,µ
{
tβJν (aµtµ) ; y

}
=

1

µ
Γ

(
α+ β

µ
+ ν

)
1

(y2µ + a2µ)
α+β
2µ

P−να+β
µ −1

[
yµ√

y2µ + a2µ

]
. (3.10)

Secondly, using the formula (3.7) for v = 0, we get

Fs,δ,µ {1; y} =
1

µ
y−δ sin

(
πδ

µ

)
Γ

(
δ

µ

)
, (3.11)

and using the formula (3.5), for v = 0, we obtain

Sδ,2µ, λ2µ

{
sin

[
λ

µ
arctan

(
xµ

tµ

)]
; t

}
=

1

tλ−δµ
B

(
λ− δ
µ

,
δ

µ

)
sin

(
πδ

2µ

)
. (3.12)

Now, setting the results (3.10), (3.11) and (3.12) in (3.9), we obtain

Γ

(
α+ β

µ
+ ν

)
Γ

(
δ

µ

)
cos

(
πδ

2µ

)
Sλ−δ,2µ,α+β

2µ

{
P−να+β

µ −1

[
yµ√

y2µ + a2µ

]
; a

}

=
1

2
Γ

(
λ

µ

)
B

(
λ− δ
µ

,
δ

µ

)∫ ∞
0

tα+β+δ−λ−1Jν (aµtµ) dt.

Finally, making the change of variable x = u
1
µ on the right side of the equation and using the formula [12, p.22, (7)],

we arrive at (3.8).

Example 3.5. We show that

Sλ+δ−µρ,µ,αµ

{
U

(
δ

µ
; 1 +

δ

µ
− ρ; bµyµ

)
; a

}
=

1

aα+λ−µρ

Γ
(
ρ− λ

µ

)
Γ (ρ) Γ

(
α
µ

)
Γ
(
δ
µ

)
Γ
(

1 + ρ− λ
µ

)
×
{
aµρ−λ

bδµ
Γ

(
λ

µ

)
Γ

(
δ

µ

)
Γ

(
α

µ
+
λ

µ
− ρ
)

Γ

(
1 + ρ− λ

µ

)
3F1

(
δ

µ
,
λ

µ
,
δ

µ
+
λ

µ
− ρ; 1 +

λ

µ
− ρ;

bµ

aµ

)
+

1

bρ−
λ
µ+

α
µ µ

Γ (ρ) Γ

(
α

µ

)
Γ

(
λ

µ
+ 1− ρ

)
Γ

(
α

µ
− λ

µ
+ ρ

)
3F1

(
α

µ
− λ

µ
+ ρ, ρ,

α

µ
; 1 + ρ− λ

µ
;
bµ

aµ

)}
. (3.13)

where Re α
µ > 0, Re δ

µ > 0, Re λ
µ > 0 and Re

(
α+λ
µ

)
> Re ρ > Re λ

µ − 1.

Setting f(t) = e−a
µtµ and g(x) = e−b

µxµ in (2.15), we obtain∫ ∞
0

yλ−1Lα,µ
{
e−a

µtµ ; y
}
Sδ,µ,ρ

{
e−b

µtµ ; y
}
dy

=
Γ(λµ )

µ

∫ ∞
0

xδ−1e−b
µxµ

α+λ−µργ∞

(
0;µ;

λ

µ
; 1 +

λ

µ
− ρ;xµ; e−a

µtµ
)
dx.

On the other hand, using the formulas (3.3), (1.8), (1.7) and

Lα,µ
{
e−a

µtµ ; y
}

= Lα,µ
{

1; µ
√
yµ + aµ

}
= Γ

(
α

µ

)
1

µ

1

(aµ + yµ)
α
µ

and the definition (1.4), we arrive at (3.13).

4. Conclusion
In this work, we establish Parseval-Goldstein type relations and identities that include various integral trans-

forms such as Lα,µ-transform and generalized Stieltjes transform. Thus, using these results, we show how simple
it can be to evaulate integral transforms of some elementary and special functions. It is possible to obtain all the
results and applications in [2, 3, 9] when α = µ = δ = λ = ρ = 1 is chosen in all lemmas, theorems and applications
in Sections 2 and 3.
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