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Abstract

Let H be a Hilbert space and €2 a locally compact Hausdorff space endowed with a Radon
measure p with [ 1du (t) = 1. In this paper we show among others that, if f is continuous
differentiable convex on the open interval I, (A;) .o is a continuous field of positive
operators in B (H) with spectra in I for each 7 € Q and B an operator with spectrum in
I, then we have

/XfM)Aﬁm J@1- [ f(A)du(r) @B
> [ 1A du(m)@1-19(B)
> (/QATdu(T)@Jl—(l@B)) (1 f (B))

and the Hadamard product inequality
[0 Ay dumot— [ f(A)du(r)oB
> [ 1A du(r)o1 =101 (B)
> [ Acdu(r)o f/ (B) =10 (/' (B) B).
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1. Introduction

Let I, ..., I} be intervals from R and let f : I; x ... X I, — R be an essentially bounded
real function defined on the product of the intervals. Let A = (44, ..., 4,,) be a k-tuple of
bounded selfadjoint operators on Hilbert spaces Hy, ..., H; such that the spectrum of A;
is contained in I; for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

&:/Mﬂum
I;
is the spectral resolution of A; for i = 1,..., k; by following [2], we define
F(AL oy A = /1 o [ T M) B (M) @ dB (W) (1.1)
1 k

as a bounded selfadjoint operator on the tensorial product H; ® ... ® H.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums,
and we may consider the functional calculus for arbitrary real functions. This construction
[2] extends the definition of Kordnyi [7] for functions of two variables and have the property
that

f (Al, ey Ak) = f1(A1) ®...Q fk(Ak),
whenever f can be separated as a product f(t1,...,tx) = fi(t1)...fx(tx) of k functions each
depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0), namely

F(st)= () £ (5) £ (1) for all s,¢ € [0,00)
and if f is continuous on [0,00), then [5, p. 173]
f(A®B)> (L) f(A)® f(B) forall A, B> 0. (1.2)

This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
f(A®B):/[ )/[ T (s1) B (1) @ P (3 (1.3)
0,00 0,00
for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0
A#tB — AI/Q(A—I/QBA—I/Z)tAI/Q
where ¢ € [0, 1] and
A#B — A1/2(A_1/2BA_1/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B)® (B#A)= (A B)#(B® A).
In 2007, S. Wada [8] obtained the following Callebaut type inequalities for tensorial
product

(A#B) @ (A#B) < L [(A#aB) ® (A#1_oB) + (A#1_0B) ® (A#aB)]  (14)

— N =

<-(A®B+B®A)

2
for A, B> 0and « € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the operator
Ao B € B(H) satistying

((Ao B)ej,ej) = (Aej, ej) (Bej, e5)
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for all j € N, where {e; }jeN is an orthonormal basis for the separable Hilbert space H.
It is known that, see [4], we have the representation

AoB=1U"(A® B)U (1.5)

where U : H — H ® H is the isometry defined by Ue; = e; ® e¢; for all j € N.
If f is super-multiplicative and operator concave (sub-multiplicative and operator convex)
on [0,00), then also [5, p. 173]

f(AoB)> (L) f(A)o f(B) forall A, B>0. (1.6)

We recall the following elementary inequalities for the Hadamard product
AY?2 o B2 < (A—;B) olfor A, B>0

and Fiedler inequality
Ao At >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1] showed
that

AoB < (A2ol)1/2 (3201)1/2 for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
1/2
AoB< (A%B2)  for A, B> 0.

It has been shown in [6] that (A% o 1)1/2 (B%o1) Y2 and (A? 0 B?) /2 are incomparable
for 2-square positive definite matrices A and B.

Let © be a locally compact Hausdorff space endowed with a Radon measure u. A field
(At),cq of operators in B (H) is called a continuous field of operators if the parametrization
t — A; is norm continuous on B (H). If, in addition, the norm function ¢ —— || A¢|| is
Lebesgue integrable on €, we can form the Bochner integral [, A;dp (t), which is the
unique operator in B (H) such that ¢ ([, Awdp (t)) = Jo ¢ (A¢) dp(t) for every bounded
linear functional ¢ on B (H). Assume also that, [ 1du (t) = 1.

Motivated by the above results, in this paper we show among others that, if f is contin-
uous differentiable convex on the open interval I, (A;) . is a continuous field of positive
operators in B (H) with spectra in I for each 7 € Q and B an operator with spectrum in
I, then we have

/(f(A)A)du ye1- [ FA)du(r) o B
> [ fA)du(n@1-16 1 (B)
> (/QATdu(T)®1—(1®B)) (1® f'(B))
and the Hadamard product inequality
[ (@A) a)dumyor— [ £ (A4 du(r)o
> [ 1A du(r)o1 =101 (B)
> [ Acdu(r)o £/ (B) =10 (/' (B) B).
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2. Main Results
We also have the following double inequality for tensorial product of operators:

Lemma 2.1. Assume that [ is continuous differentiable convex on the open interval I
and A, B are selfadjoint operators in B (H) with spectra in I, then

(f'(A)®1)(A®1-1®B)> f(A)®1-1® f(B) (2.1)
>(A®1-1®B)(1® f(B)).
Proof. Using the gradient inequality for the differentiable convex f on I we have
Fre)yt—s)=ft)—f(s)=f(s)(t—s)

forall t, s € 1.
Assume that

A:/ItdE(t) and B:/Ide(s)

are the spectral resolutions of A and B.
These imply that

//f (t — 5)dE () ® dF (s // E()@dF(s)  (2.2)
//f ) (t — 5)dE (t) @ dF (s).

Observe that
//f (t — 5)dE (t) ® dF (s) (2.3)

// s)dE ()  dF (s)
//f t)tdE (t) ® dF (s //f t) sdE (t) ® dF (s)
B,

AHd)el-f(A)e

/I/I<f<t>—f(s))dE(t)@dF(s)=f<A>®1—1®f<B>

and

//f ) (t — 5)dE (t) ® dF (s)

:// tf'(s) — f'(s)s)dE (t) @ dF (s)
—//tf )dE (t) @ dF (s //f )sdE (t) @ dF (s)

=Aw® f(B)-1® (f(B)B)
and by (2.3) we derive the inequality of interest:
(ff(AA)el-f(A)eB>f(A)e1-1® f(B) (2.4)
> A f(B)-1@(f(B)B).
Now, by utilizing the tensorial property
(XU)e YV)=(XY)UsV),
forany X, U, Y,V € B(H), we have
(f"(4) )®1—( ffAel)(Asl),
ffAeB=(f(A)®1)(1eB),
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A f(B)=(A®1) (1 f (B))

and
1o (f(B)B) =1 (Bf'(B)) = (1@ B)(1® f'(B)).
Therefore
(ff(AA)el-fA)eB=(f(Ael)Aal) - (f(4)e1) (1 D)
=(f"(4)e1)(A®1—-1® B)
and
Ao f/(B)-1® (f(B)B) =(Ae1)(1® f(B)) - (1@ B) (1® f'(B))
=(A®1-1®B)(1® f'(B))
and by (2.4) we derive (2.1). O

Corollary 2.2. Assume that f is continuous differentiable convex on the open interval I
and A, B are selfadjoint operators in B (H) with spectra in I, then

(f' (A)A) 01— f'(A) o B > (f(A) - f(B)) o1 (2.5)
> Ao f'(B)~ (f'(B)B) o1,

Proof. If we multiply the inequality (2.4) to the left with U* and at the right with U, we
get

U [(f'(A)A) @1 - f (A BlU
>UW[f(Ae1-1af(B)]U
>UW [A® f(B)-1@ (f(B)B)] U,

namely

U ((f (4)4) © U -U" (' (4) © B) U
>U(f(AHU-U (1 f(B)U
> (A® f/(B)U-U (L& (' (B) B)) U

Using representation (1.5) we get

(f'(A)A)ol— f'(A)o B> f(A)ol—10 f(B) (2.6)
> Ao f'(B)~1o(f (B)B),

which gives (2.5). O
In what follows, we assume that, [, 1dp (t) = 1.

Theorem 2.3. Assume that f is continuous differentiable convex on the open interval I.
Let (A7) .cq and (Br) cqbe continuous fields of positive operators in B (H) with spectra
in I for each T € Q. Then we have

/(f (Ar) A7) dp (T ®1—/f T)®/QBTdM(T) (2.7)

/f 1—1®/f

/Adu ®/f F) du (T —1®/f ) Brdp (1)
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and the Hadamard product inequality

[ (A Ay duimyer [ FA)du)e [ Bdu)
> [ (A du(m)or=1o [ f(B)du(r)
/Adu /f ) (r —1o/f ) Brdu (7).

Proof. From Lemma 2.1 we have

(f/(AT)AT)®1_f/(AT)®B’yZf(AT)®1_1®f(B’Y)

> A ® f(By) = 1@ (f'(By) By) .

for all 7, v € Q.
If we take the integral [, over du (7) in (2.9), then we get

L6 () A) @ 1- 1 (4) © B du(r)
> (A @1=18f(B))du(r)

> [ (4@ f (B) =10 (' (B,) B,)] du(7)

for all v € Q.
By using the properties of integral and tensorial product, we derive that

L (A Ar) © 1= [ (A7) @ By du (7)
/ ;) dp (T ®1—/f dp (1) ® By,

S~

/[f(A J@1-16 f(B,)]du (7)
= [ raddume1-1e 1 (5)

and
| Ao By =16 (' (B,) B)] du(7)
= [ Ay 1 (B) ~ 19 (1 (B)) B,).
By utilizing (2.10) we derive
/(f(A)A)du ye1- [ (4 du(r) o B,
/ f(A T)®1-1® f(By)
> /QATdu 7)® f'(By) = 1@ (f'(B,) B,)

for all v € Q.

(2.10)

(2.11)

If we take the integral [, over du (y) in (2.11) and use the properties of the integral

and tensorial product, we derive (2.7).

If we multiply the inequality (2.7) to the left with U* and at the right with U, use the

properties of the integral, the we also get the inequality (2.8).

O
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Corollary 2.4. Assume that f is continuous differentiable convex on the open interval I.
Let (A7), cq be a continuous field of positive operators in B (H) with spactra in I for each

7€ Q and B an operatorwith spectrum in I. Then we have
/(f(A)A)du J@1- [ f(4)dp(r) @B
> [ FA)du(m@1-19f(B)
> /QATdW ® f'(B) -1 (f'(B) B)
and the Hadamard product inequality
L @Ay duryor- [ (4
> [ 1A du(r)o1—10f(B)
/Adu £/ (B)— 1o (f'(B) B).

The proof follows by Theorem 2.3 for B, = B for 7 € ).
We observe that

/Adu )® (B (/Adu )®1>(1®f( )

and
1o (f(B)B)=1@ (Bf (B)) =(1®B) (1 [ (B)),

therefore
/QATdu (N ® f(B)~1 (f'(B) B)
_ (/Q Acdp () @ 1) (1®f(B) - (1@ B) (1 f (B))
- (/QATd,u(T)@l - (1@3)) (1 f(B))
and from (2.12) we get
/ F(A )@1-1® f(B)
> (/QATdu(T)@Jl— (1®B)) (1@ f(B)).

(2.12)

(2.13)

(2.14)

Remark 2.5. With the assumptions of Corollary 2.4 and if we take B = [, A du (1),
for which have the spectrum in I, then we have the following Jensen’s type tensorial

inequalities

/(f(A)A)du ®1—/f ) du (T ®/Adu)

/f Ddp(r ®1—1®f</Adu ))

> (/QATdu(r)®1— (1@/52147@(7))) <1®f' (/QATCW(T)»

(2.15)
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and the Hadamard product inequalities

[ Unaaumot= [ f)du)e [ Adu(r) (2.16)
/f ol—1of (/Ad,u )>

s ([

1 (i) f )

3. Some Examples

Assume that A, B have the spectra in I, then by (2.15) and (2.16) we get

/Olf’((l—t)AthB)((l—t)A+tB)dt®1 (3.1)
A+ B

—/1f’((1—t)A+tB)dt®
0

>/01f((1—t)A+tB)dt®1—1®f(A+B>
> (A;B®1—1®A;B) (1®f’(A ))

and the Hadamard product inequalities

+
Sy

\V]

/Olf’((l—t)A+tB)((1—t)A+tB)dtol (3.2)
A+ B

—/1f’((1—t)A+tB)dto
0

Z/Olf((l—t)A+tB)dtol_1of<A_;_B>

ZA—;Bof,<A42—B>_1O<f,<A42rB>A—|2rB)‘

For f (x) = expz, x € R and from (3.1) and (3.2) we derive the exponential inequalities

/Olexp((l—t)A+tB)((1—t)A+tB)dt®1 (3.3)
A+ B

—/Olexp((l—t)A—l—tB)dt@)

>/Olexp((l—t)A—l—tB)dt(X)l—l@f(A;B>

A+ B A+ B A+ B
Z( —g R1-1Q —; ><1®exp< —; ))
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and the Hadamard product inequalities

/Olexp((l—t)A+tB)((1—t)A+tB)dtol (3.4)
—/()lexp((l—t)A+tB)dtoA+B
2/Olexp((l—t)A+tB)dtol—1of(A;B>

> A+ B o exp <A+B> —1o (exp (A+B) A+B>.
- 2 2 2 2
It is known that if A and B are commuting, i.e. AB = BA, then the exponential
function satisfies the property

exp (A)exp (B) = exp (B)exp (A) =exp(A+ B).
Also, if A is invertible and a,b € R with a < b then
b
/ exp (tA) dt = A" [exp (bA) — exp (ad)] .

Moreover, if A and B are commuting and B — A is invertible, then

1 1
/ exp((1—s)A+sB)ds = / exp(s(B— A))exp (A)ds
0 0

_ (/01 exp (s (B — A)) ds) exp (A)
=(B—A)exp(B—A)—1I]exp (A)
— (B—A) " [exp (B) — exp (4)].
So, if A and B are commuting and B — A is invertible, then by (3.3) and (3.4) we get
/1exp((1—t)A+tB)((1—t)A—i—tB)dt@l (3.5)
’ A+ B

2
>(B—A) 'exp(B) —exp(4)] ®1—1®exp (A—;B>

A+ B A+ B A+ B
2( —; R1-1® _g ><1®exp( _g >)

—(B—A)"[exp (B) —exp (A)] ®

and the Hadamard product inequalities

/Olexp((l—t)A+tB)((1—t)A+tB)dtol (3.6)

A+B
)

— (B = A)"" [exp (B) — exp (A)] o 5
L AED y (AEP) o (o (AE2) A1)

A

+

\V)

> (B—A) fexp (B) —exp (4)] o1 —loexp (
- 2 2 2 2
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