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Abstract
Let G be a finite non-Dedekindian p-group which satisfies NG(H) = HZ(G) for each
nonnormal subgroup H, and we call it an NS-group. In this paper, it is proved that an
NS-group is the product of a minimal nonabelian group and the center.
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1. Introduction
The groups all of whose subgroups are normal have been determined and are well known

as Dedekindian groups. Let G be a finite non-Dedekindian group. For any nonnormal
subgroup H of G, there exists a series

1 ≤ HG ≤ H ≤ NG(H) ≤ G (∗).
Noticing the left-hand side of the series 1 ≤ HG < H, Cutolo et al. studied p-groups G

in which |H : HG| ≤ p for every subgroup H, called core-p p-groups [3, 4]. For another,
Zhao et al[9, 10] studied finite groups G with HG = 1 for any nonnormal subgroup H.
And Yang, An and Lv [6] gave the characterization of p-groups G in which |HG| ≤ pi for
any nonnormal subgroup H.

Considering the right-hand side of the series H ≤ NG(H) ≤ G above, Berkovich pro-
posed the following problem in his book of finite p-groups.

Problem 1.1. ([1] Problem 116) Classify the p-groups G such that |NG(H) : H| = p for
all nonnormal subgroups H < G.

This problem was solved by Li and Zhang (see [5]). Moreover, Zhang and Gao [7]
studied the generalized problem:

Classify the p-groups G such that |NG(H) : H| = pi for all nonnormal subgroups H < G,
where i is a fixed integer.

Furthermore, Zhang and Guo [8] investigated the p-groups G such that |NG(H) : H| ≤
pi for all nonnormal subgroups H < G, where p > 2 and i is a fixed integer.
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In fact, the above series could be refined. For example, we could add H ∩Z(G) between
1 and HG. Considering the series

1 ≤ H ∩ Z(G) ≤ HG,

the authors investigated the p-groups G such that |H ∩ Z(G)| ≤ pi for every nonnormal
subgroup H of G, see [11]. On the other side, the p-groups G which satisfy H ∩Z(G) = HG

for any nonnormal subgroup H are also studied in [12].
In this paper, we consider the series

H ≤ HZ(G) ≤ NG(H).
We study the p-group G which satisfies NG(H) = HZ(G) for each nonnormal subgroup H,
call it an NS-group and prove that an NS-group is a Dedekindian group or the product
of a minimal nonabelian group and the center.

All groups considered in the following are finite p-groups. Let G be a p-group. The
nilpotent class, the minimal number of generators, the exponent and the Frattini subgroup
of G are denoted by c(G), d(G), exp(G) and Φ(G), respectively. And Ω(G) = ⟨a ∈ G|ap =
1⟩,0i(G) = ⟨api |a ∈ G⟩. Let Cpm and Cn

p denote a cyclic p-group of order pm and an
elementary abelian p-group of order pn, respectively. The notation is standard, refer to
[2].

2. The structure of NS-groups
In this section, we try to give the classification of finite p-groups G with NG(H) =

HZ(G) for each nonnormal subgroup H.

Lemma 2.1. Let G be a finite p-group. If G is an NS-group, then c(G) ≤ 2.

Proof. It is easy to see that Ḡ = G/Z(G) is Dedekindian since K < NG(K) for any
subgroup K. If c(G) > 2, then we may assume that Ḡ = G/Z(G) = ⟨ā, b̄|ā4 = 1, b̄2 =
ā2, [ā, b̄] = b̄2⟩ × Ā ∼= Q8 × Cn

2 and G = ⟨a, b, A, Z(G)⟩ . Since for any c ∈ A, [b2, c] =
[b, c]2[b, c, b] = [b, c]2 = [b, c2] = 1 and [b2, a] = [a2z, a] = 1, where z ∈ Z(G), we see that
b2 ∈ Z(G) and G/Z(G) is abelian, a contradiction. So c(G) ≤ 2. □
Lemma 2.2. Let G be a finite p-group. If G is an NS-group, then each quotient group
of G is also an NS-group.

Proof. For any normal subgroup N ⊴ G, we consider G = G/N . Let N ≤ H and H ⋬ G.
Then H ⋬ G and so HZ(G) = NG(H). Therefore, HZ(G) = NG(H) = NG(H). It follows
from HZ(G) = HZ(G) ≤ HZ(G) that NG(H) ≤ HZ(G). So NG(H) = HZ(G). □
Lemma 2.3. Let G be a non-Dedekindian p-group. If G is an NS-group, then exp(G′) =
p.

Proof. When p > 2, by Lemma 2.1, we see that c(G) = 2 and then G is regular. Thus
we may assume that G = ⟨a1, a2, ..., an⟩, where ⟨ai⟩ ∩ ⟨aj⟩ = 1 and 1 ≤ i, j ≤ n. And
G′ = ⟨[ai, aj ]|1 ≤ i, j ≤ n⟩ ≤ Z(G).

If exp(G′) = pk, k > 1, then we may assume that [aj , ai] = c, o(c) = pk, o(aj) > p
and ⟨ai⟩ ∩ ⟨c⟩ = 1. Therefore, H = lg ai,01(G′)⟩ ⋬ G. Then we see ap

j ∈ NG(H) from
[ap

j , g] = [aj , g]p ∈ 01(G′). And we claim that ap
j /∈ HZ(G). If not, then ap

j = a−s
i z, where

z ∈ Z(G), and s is an integer. Hence ap
j as

i ∈ Z(G). Thus 1 = [ap
j as

i , ai] = [ap
j , ai][as

i , ai] =
cp, a contradiction. So ap

j /∈ HZ(G) and NG(H) ̸= HZ(G), which contradicts that
NG(H) = HZ(G) for each nonnormal subgroup H. So exp(G′) = p.

When p = 2, let G be a minimal counterexample. If exp(G′) ≥ 23, then we consider
Ḡ = G/(02(G′)). Then exp(Ḡ′) = 22. By using Lemma 2.2 and |Ḡ| < |G|, we see
exp(Ḡ′) = 2, a contradiction. So exp(G′) = 22.
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Since c(G) = 2, there exist elements g1, g2 /∈ Φ(G) such that [g1, g2] = c, c4 = 1, c ∈
Z(G). Then let M = ⟨g1, g2⟩ and d(M) = 2, M ′ ∼= C4. Now we take a, b ∈ M such that
{aM ′, bM ′} is the basis of M̄ = M/M ′ and o(a)o(b) is minimal. And we may assume that
o(a) = 2n, o(b) = 2m, n ≥ m, [a, b] = d ∈ Z(G), o(d) = 4. We claim that ⟨a⟩ ∩ ⟨b⟩ = 1.

If not, then ⟨a⟩ ∩ ⟨b⟩ ≤ M ′ ≤ Z(G) is of order 2 or 4.
Case 1. |⟨a⟩ ∩ ⟨b⟩| = 4. Then we may assume that d = a2n−2 = b2m−2 .
By [a, b2] = [a, b]2 = d2 ̸= 1 and d = b2m−2 ∈ Z(G), we see that m ≥ 4. Noticing the

element a2n−m
b−1, we see that

(a2n−m
b−1)2m−2 = a2n−2

b−2m−2 [a2n−m
, b](

2m−2
2 ) = [a2n−m

, b](
2m−2

2 )

and then (a2n−m
b−1)2m−1 = [a2n−m

, b]2(
2m−2

2 ) = 1. Thus o((a2n−m
b−1)) ≤ 2m−1. Let

b1 = a2n−m
b−1. {aM ′, b1M ′} is the basis of M̄ = M/M ′ and o(a)o(b1) < o(a)o(b), which

contradicts with the minimality of o(a)o(b).
Case 2. |⟨a⟩ ∩ ⟨b⟩| = 2. Then we may assume that d2 = a2n−1 = b2m−1 .
Note that (a2n−m

b−1)2m−1 = a2n−1
b−2m−1 [a2n−m

, b](
2m−1

2 ) = [a2n−m
, b](

2m−1
2 ). Since

[a, b2] = [a, b]2 = d2 ̸= 1 and d2 = b2m−1 ∈ Z(G), we see that m − 1 ≥ 2.
If m − 1 = 2, then m = 3 and n ≥ 3.
If n = 3, then we consider the subgroup H = ⟨a,01(G′)⟩ ⋬ G. Hence we see

b2 ∈ NG(H) from [b2, g] = [b, g]2 ∈ 01(G′). And we claim that b2 /∈ HZ(G). If not,
then b2 = a−sz, where z ∈ Z(G), and s is an integer. Hence b2as ∈ Z(G). Thus
1 = [b2as, a] = [b2, a][as, a] = c2, a contradiction. So b2 /∈ HZ(G) and NG(H) ̸= HZ(G),
which contradicts that NG(H) = HZ(G) for each nonnormal subgroup H.

If n > 3, then (a2n−m
b−1)2m−1 = [a2n−m

, b](
2m−1

2 ) = [a, b]2n−m(2m−1
2 ) = 1. Let b1 =

a2n−m
b−1. Then {aM ′, b1M ′} is the basis of M̄ = M/M ′ and o(a)o(b1) < o(a)o(b), which

contradicts with the minimality of o(a)o(b).
If m − 1 ≥ 3, then o(a2n−m

b−1) ≤ 2m−1. Let b1 = a2n−m
b−1. Then {aM ′, b1M ′} is the

basis of M̄ = M/M ′ and o(a)o(b1) < o(a)o(b), which contradicts with the minimality of
o(a)o(b).

So ⟨a⟩ ∩ ⟨b⟩ = 1 and we may assume that ⟨a⟩ ∩ ⟨d⟩ = 1. We consider the subgroup
H = ⟨a,01(G′)⟩ ⋬ G. Then we see b2 ∈ NG(H) from [b2, g] = [b, g]2 ∈ 01(G′). And we
claim that b2 /∈ HZ(G). If not, then b2 = a−sz, where z ∈ Z(G), and s is an integer. Hence
b2as ∈ Z(G). Thus 1 = [b2as, a] = [b2, a][as, a] = d2, a contradiction. So b2 /∈ HZ(G) and
NG(H) ̸= HZ(G), which contradicts that NG(H) = HZ(G) for each nonnormal subgroup
H, so exp(G′) = 2. The proof is complete.

□
Then by Lemmas 2.1 and 2.3, we get the following lemma.

Lemma 2.4. Let G be a non-Dedekindian p-group. If G is an NS-group, then Φ(G) ≤
Z(G).

Proof. By Lemma 2.1, we see G′ ≤ Z(G). It follows that [ap, g] = [a, g]p = 1 for
any elements a, g ∈ G from Lemma 2.3. Then 01(G) = ⟨gp|g ∈ G⟩ ≤ Z(G). Thus
Φ(G) = G′01(G) ≤ Z(G). □
Lemma 2.5. Let G be a non-Dedekindian p-group. If G is an NS-group, then G/Z(G) ∼=
Cp × Cp.

Proof. Since G is a non-Dedekindian p-group, there exist elements a, b ∈ G such that
⟨a⟩ ⋬ G and [a, b] = z ̸= 1.

If G/Z(G) ≇ Cp × Cp, then G/Z(G) ∼= Ct
p, t ≥ 3 by Lemma 2.4. Hence we assume that

G/Z(G) = G = ⟨a, b, c1...cs⟩, s = t − 2 ≥ 1 and G = ⟨a, b, c1, ..., cs, Z(G)⟩.
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If [a, c1] = 1, then c1 ∈ NG(⟨a⟩). And by Cp × Cp
∼= ⟨a, c1⟩ ≤ G/Z(G), we see

c1 /∈ ⟨a⟩Z(G), which contradicts that NG(H) = HZ(G) for each nonnormal subgroup H.
So [a, c1] ̸= 1. Furthermore, we claim that ⟨[a, c1]⟩ ̸= ⟨z⟩. If not, then [a, c1] =

zn, (n, p) = 1. Hence [a, b−nc1] = [a, b−n][a, c1] = z−nzn = 1. Thus b−nc1 ∈ NG(⟨a⟩).
And by Cp × Cp × Cp

∼= ⟨a, b, c1⟩ ≤ G/Z(G), we see b−nc1 /∈ ⟨a⟩Z(G), which contradicts
that NG(H) = HZ(G) for each nonnormal subgroup H.

By considering the subgroup H = ⟨a, z⟩, we see that [a, c1] ∈ H. If [a, c1] /∈ H, then
H ⋬ G. We see that b ∈ NG(H) by [a, b] = z. And b /∈ HZ(G), a contradiction.

Then we may assume that [a, c1] = aizj where i, j are integers and ⟨ai⟩ = Ω(⟨a⟩). Thus
[a, b−jc1] = [a, b−j ][a, c1] = z−jaizj = ai, which implies that b−jc1 ∈ NG(⟨a⟩). Noting
that ⟨a⟩ ⋬ G and b−jc1 /∈ ⟨a⟩Z(G) , which contradicts that NG(H) = HZ(G) for each
nonnormal subgroup H.

So G/Z(G) ∼= Cp × Cp. The proof is complete. □

Theorem 2.6. Let G be a non-Dedekindian p-group. Then G is an NS-group if and only
if G is the product of a minimal nonabelian group and the center.

Proof. If G satisfies that NG(H) = HZ(G) for each nonnormal subgroup H, then, by
Lemma 2.5, we see G = ⟨a, b, Z(G)⟩. It follows from Lemmas 2.1 and 2.3 that G is the
product of a minimal nonabelian group and the center.

On the other hand, it is easy to see that G/Z(G) ∼= Cp × Cp. For each H ⋬ G, there
exists an element a ∈ H such that a /∈ Z(G). Then HZ(G) ⋖ G. And it is easy to see
HZ(G) ≤ NG(H) ̸= G. So NG(H) = HZ(G). □
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