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ABSTRACT

We consider the Klein stratification of orbit spaces M/G, defined by the action of local
diffeomorphisms. We show that the Klein strata on M/G, where the singular orbits are isolated
points and the stabilizer group acts transitively on the unit sphere, are precisely the union of the
points where M/G has the same dimension.
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Introduction

The theory of stratified spaces, when examined through the framework of diffeology theory, provides
fascinating insights. Notably, a natural stratification, defined by the action of diffeomorphisms, already exists in
any diffeological space. This stratification is known as the ‘Klein stratification’ and was initially introduced in
[6, 1.42]. The Klein stratification adheres to the fundamental frontier condition and allows for several variants
based on the same underlying principle, as explored in [7]. Consequently, every diffeological space possesses
a structural stratification, making it amenable to the study of its intrinsic properties. Hence as diffeological
spaces, orbit space are stratified by the action of local diffeomorphisms too.

On the other hand, any Lie group acting properly on a smooth manifold M induces a stratification of M based
on the orbit types [10].

This raises an intriguing question: Which is the correspondence between the singular orbits defined by the
group action and the Klein strata on orbit spaces? At present, we have a partial response to this question.

We explicitly describe the structure of Klein strata on the orbit space. This analysis specifically addresses
situations where the singular orbits consist of isolated points and where the stabilizer group acts transitively
on the unit sphere. It’s worth noting that this transitivity condition is the main of the two cases outlined in [1,
Cor. 6.3.], when singular orbits are isolated points.

Theorem. Let G be a compact Lie group acting on a manifold M such that the singular orbits are the isolated
points and the stabilizer group acts transitively on the unit sphere. Two points x and x′ in M/G are on the same
Klein stratum if and only if M/G has the same dimension at these two points.

One of the advantages of treating the quotient space not as a differential space but as a diffeological quotient
space is that it lifts the degeneracy of singular points. Concerning the differential quotient, the dimension at
singular orbits represents a new invariant. This is a diffeological invariant not present in Sikorski’s structure.
It’s possible that it is this invariant which appears in the work currently in preparation by Yael Karshon and
Shintaro Kuroki[8].

In the last section, we will delve into specific examples to illustrate these concepts, which include the orbit
space of a compact Lie group acting locally linearly on a manifold, the orbit space of SO(3) acting on TS2, and
the orbit space of SO(3) acting on S2 × S2.
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Diffeological Stratified Spaces

General properties of stratifed spaces in diffeology and the general framewok for the theory of stratifications
is introduced in [2]. Firstly we will give the definition of the natural extension to diffeology of the usual notion
of topological stratified space.

Definition 1. Consider a diffeological space X, we call standard stratification of X any locally finite partition
in strata S of X, such that:

(1) Each stratum is a manifold for the induced diffeology.
(2) Each stratum is locally closed for the D-topology.
(3) The strata satisfy the frontier condition: for all S,S′ ∈ S,

S ∩ S
′ ̸= ∅ ⇒ S ⊂ S

′
.

In other words the closure of a stratum is a union of strata. We remind that the D-topology of a diffeological
space is the finest topology that makes the plots continuous [3, I.2.3] and [6, 2.8]. A subset A ⊂ X is open for
the D-topology (or D-open) if P−1( A) is open for any plot P in X.

Remark 1. In classical differential geometry it is important to require that the strata are manifolds since it is the
only smooth structure known by the theory, and it is essential that the space of strata to be T0 when it comes
to the uniform structure of strata. These requirements become irrelevant in diffeology since diffeology has the
capacity to discriminate between various types of strata, even when the space of non-manifold strata lacks a
T0 property. Consequently, we can assess the conditions in this definition independently [2].

Klein Stratification

We will particularly concentrate on the class of stratified spaces that are defined by the action of the
diffeomorphism groups of the space itself.

Definition 2. Let X be a diffeological space, the Klein strata of X are defined as the the orbits of the group
Diff(X) of diffeomorphisms of X. The space of Klein strata will be denoted by SK.

We can however weaken this definition by considering local diffeomorphisms. In this work, we use the
definition of Klein stratification by local diffeomorphisms.

Klein Stratification of Orbit Spaces

In this section, we compare the Klein stratification of the orbit spaces with the stratification by orbit types,
whose strata are defined as the germs of points whose stabilizers are conjugate [10].

We will first introduce the Slice Theorem, a crucial tool for analyzing the structure of orbits and the
underlying homogeneous spaces. Let G be a Lie group, H a closed subgroup, and E an euclidean space. The
equivariant vector bundle

G×H V

over G/H is obtained as the quotient of G× V by the anti-diagonal H-action h · (g, v) = (gh−1, h · v). The G-
action on G×H V is g · [g′, v] = [gg′, v]. We know the follwing theorem [9].

Slice Theorem (R. Palais). Let G be a Lie group acting properly on a manifold M . Fix x ∈M . Let H be the stabiliser
of x, and let V = TxM/Tx(G · x) be the normal space to the orbit G · x at x, equipped with the linear H-action that is
induced by the linear isotropy action of H on TxM . Then there exist a G-invariant open neighbourhood U of x and a
G-equivariant diffeomorphism F : U → G×H V that takes x to [1, 0].

Proposition 1. The map (G×H E) /G→ E/H defined by G[e, ξ] 7→ H(ξ) is a diffeomorphism.

Proof. First, note that every G-orbit in G×H E passes through a point of the form [e, ξ]. It suffices to consider
points of the form [e, ξ], and we will denote their set as Σ.

Σ = {[e, ξ], ξ ∈ E}
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The group H preserves Σ:
{g ∈ G, gΣ = Σ} = {g ∈ G, g[e, ξ] = [e, ξ′]}

because we have g[e, ξ] = [e, ξ′] if and only if g ∈ H. We will show that (G×H E) /G→ E/H defined by
G[e, ξ] 7→ H(ξ) is injective. Let ξ and ξ′ in E/H such that ξ = ξ′, which means there exists h ∈ H such that ξ = hξ′.
We have [e, ξ′] = [e, hξ] = [h, ξ] = h[e, ξ]. So the map (G×H E) /G→ E/H is injective.

Let G×H act on G× V where G acts by left multiplication on the first factor and where H acts by the
anti-diagonal action h : (g, v) 7→

(
gh−1, h · v

)
. Let us denote by π : G×H E → (G×H E) /G the projection from

G×H E onto its quotient, by πH : G× V → G×H V the quotient by the H-action, and by pr2 : G× V → V the
projection to the second factor.

Taking the quotient by G and then by H , and taking the quotient by H and then by G give the following
commuting diagram:

G× E

G×H E E

(G×H E) /G G× E/G×H E/H

pr2πH

π

Now, thanks to the uniqueness of quotients [6, 1.52], (G×H E) /G→ E/H is a diffeomorphism between
(G×H E) /G equipped with the quotient diffeology and E/H, equipped with the quotient diffeology.

Case of Isolated Singularities

Our study focuses on a specific case characterized by singular orbits consisting of isolated points, where the
stabilizer acts transitively on the unit sphere. In this context, we emphasize the discriminative role of dimension
at singular orbits.

Theorem 1. Let G be a compact Lie group acting on an n-manifold M such that the singular orbits are the isolated points
and the stabilizer group acts transitively on the unit sphere. Two points x and x′ in M/G are on the same Klein stratum
if and only if M/G has the same dimension at these two points.

Proof. Let g be a local diffeomorphism, defined on some D-open O, such that g(x) = x′.

(G×H E) /G (G×H′ E′) /G

E/H E′/H′

[0,∞) [0,∞)

g

f f ′

We have demonstrated in Proposition 1. that both maps, f and f ′, are diffeomorphisms. Since H acts
transitively on the unit sphere, it follows that E/H is diffeomorphic to Rn/O(n).

Furthermore, there exists a diffeomorphism between Rn/O(n), equipped with the quotient diffeology, and
[0,∞), equipped with the pushforward of the standard diffeology of Rn through the norm-square map ∥.∥2 [6,
Ex.50]. This establishes a diffeomorphism of the half-line [0,∞).

We should note that the dimension plays a crucial role in characterizing this diffeomorphism of the half-line
[6, Ex.64]. As the dimension is a local invariant, we can conclude that there exists a diffeomorphism between
points x and x′ in M/G if and only if they have the same dimension in M/G.

Therefore, we can assert that x and x′ in M/G belong to the same Klein stratum if and only if M/G have the
same dimension at these two points.

We have the following result about the dimension of E/H for the general case, where the stabilizer group
does not act transitively on the unit sphere.
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Proposition 2. dim(x,y) (Rp ×Rq/O(q)) =

{
p+ 1 y ̸= 0

p+ q y = 0
.

Proof. Let us prove first that 1Rp × ∥.∥2 : Rp ×Rq → Rp × [0,∞[ defined by (x, y) 7→ (x, ∥y∥2) is a generating
family for the space Rp × [0,∞[ equipped with the pushforward diffeolgy of the smooth diffeology of Rp ×Rq

by the map 1Rp × ∥.∥2.
Let P: U → Rp ×Rq be a plot of Rp ×Rq. Let r ∈ U. There exists an open neighborhood V of r such

that, either P | V is a constant parametrization, or there exists a plot Q: V → Rp × [0,∞[ such that P | V =
1Rp × ∥.∥2 ◦Q. This is exactly the criterion of generation.

Rp ×Rq

U ⊃ V Rp × [0,∞[

1Rp×∥.∥2
Q

P |V

Now, we will show that the plot 1Rp × ∥.∥2 cannot be lifted locally at the point 0 along an m-plot, with
m < p + q.

Let us assume that the plot 1Rp × ∥.∥2 can be lifted at the point 0 along an m-plot P : U → Rp × [0,∞),
with m < p + q. Let ϕ : V → U be a smooth parametrization such that P ◦ ϕ = (1Rp × ∥.∥2) | V. We can assume
without loss of generality that P (0m) = 0 and ϕ (0p+q) = 0m.

Now, since P is a plot of Rp × [0,∞), it can be lifted locally at the point 0m along 1Rp × ∥.∥2. Let ψ :
W → Rp ×Rq be a smooth parametrization such that 0m ∈ W and 1Rp × ∥.∥2 ◦ ψ = P | W. Let us introduce
V′ = ϕ−1( W). We have then the following commutative diagram.

W

V ′ Rp × [0,∞) Rp ×Rq

ψ
P |W

ϕ|V ′

1Rp×∥.∥2|V ′ 1Rp×∥.∥2

Now, denoting by F = ψ ◦ ϕ | V′, we get 1Rp × ∥.∥2 | V′ = 1Rp × ∥.∥2 ◦ F, with F ∈ C∞ (V′,Rn), 0p+q ∈ V′ and
F (0p+q) = 0p+q, that is,

(x1, . . . , xp, ∥xp+1, . . . , xp+q∥2) = (F (x1), . . . , F (xp), ∥F(xp+1), . . .F(xp+q)∥2).

The derivative of this identity gives

δxi = DF(xi) for i ∈ {1, . . . , p} and

x · δx = F(x) ·D(F)(x)(δx), for all x = (xp+1, · · · , xp+q)

whoses coordinates are the restrictions of points in V ′ to last q coordiantes, and for all δx ∈ Rq.
The second derivative, computed at the point 0q, where F vanishes, gives then

1q = MtM, with M = D(F | 0p ×Rq)) (0q) ,

where Mt is the transposed matrix of M. But D(F | 0p ×Rq)) (0q) = D(ψ) (0m) ◦D(ϕ) (0q). Let us denote A =
D(ψ) (0m) and B = D(ϕ) (0q) ,A ∈ L (Rm−p,Rq) and B ∈ L (Rq,Rm−p). Thus M = AB and the previous identity
1q = MtM becomes 1q = Bt AtAB. But the rank of B is less or equal to q which is, by hypothesis, strictly less than
q, which would imply that the rank of 1q is strictly less than q. And this is not true: the rank of 1q is q. Therefore,
the plot 1Rp × ∥.∥2 cannot be lifted locally at the point 0 by a m-plot of Rp × [0,∞) with m < p+ q.

Examples

We will explore several examples to demonstrate how the Klein stratification can offer valuable insights into
the structure of the resulting orbit space.
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Example 1

In this example, we will concentrate on analyzing the orbit space in the context where G is a compact Lie
group and acts locally linearly on a manifold M. That is, M has an atlas for which the group acts linearly
inside the domain of the chart. In a way, this situation looks like the situation on orbifolds. We will introduce a
proposition that clarifies this particular case.

Proposition 3. Let G be a compact Lie group acting locally linearly on a manifold M. If the stabilzers of two points x
and x′ are conjugate, then their orbits are on the same Klein stratum in M/G, and the projection map π : M → M/G from
(M,SOT) to (M/G,SK) is a stratified map.

Remark 2. Note that the principal orbits form the ‘principal stratum’ on M/G.

Proof. Let x and x′ ∈ M. Let f : U → M be a chart of M with f(r) = x and let f : U′ → M be a chart of M with
f(r′) = x′. Denote by H the stabilizer group of x and H′ the stabilizer group of x′. As their stabilizer groups
conjugate, there is g ∈ G such that H′ = gHg−1. Define locally around r

ψ : s 7→ r′ + g(s− r).

The map ψ is clearly a diffeomorphism. Let γ ∈ H, then ψ(γs) = r′ + g(γ(s)− r) = r′ + gγ(s− r) since γ(r) =
r. On the other hand, γ′ψ(s) = gγg−1 [r′ + g(s− r)] = r′ + gγ(s− r), where γ′ ∈ H′ such that γ′ = gγg−1, since
gγg−1r′ = r′. Hence, ψ(γs) = γ′ψ(s) the map ψ descends to the orbit space M/G into a local diffeomorphism.

Now we will show that the projection map π from (M,SOT) to (M/G,SK) is a stratified map [2] that is there
is a map φ from SOT to SK such that:

sK ◦ π = φ ◦ sOT

where sK denote the projection from the space to the space of Klein strata and sOT the projection from the space
to the space of orbit type strata.

Let x and x′ ∈ M such that sOT(x) = sOT(x
′) which means their stabilizers conjugate, then we have

established the existence of a local diffeomorphism between π(x) and π(x′), affirming that they are in the
same Klein strata. Hence, we can define the map φ such that φ(sOT(x)) = sK(π(x)), ensuring the commutivity
of the following diagram:

M M/G

SOT SK

π

sOT sK

φ

Remark 3. As a natural continuation of the preceding proposition, which established in this particular case
that the stratification by orbit types is a diffeological stratification which is geometric and all the strata are
submanifolds for the induced diffeology as a consequence of [1, Thm. 3.3]. Furthermore, due to the compact
action, these strata are locally closed. This stratification is denoted by the labels [B]-[F ]-[G]-[M ]-[T0], which are
terminologies introduced in [2] to describe and categorize specific aspects of this stratification.

Example 2

Consider the tangent space TS2 of the 2-sphere, that is, TS2 = {(u, v) ∈ S2 ×R3 | u · v = 0}. Let us denote by
π : TS2 → TS2/SO(3) the projection from TS2 onto its quotient. Since, ∥w′∥ = ∥w∥ if and only if w′ = Aw, with
A ∈ SO(3), there exists a bijection f : TS2/SO(3) → [0,∞) such that f ◦ π = ∥.∥, where < v, v >= ∥v∥2. Now,
thanks to the uniqueness of quotients (op.cit.) f is a diffeomorphism between TS2 equipped with the quotient
diffeology and [0,∞), equipped with the pushforward of the standard diffeology of TS2 by the map ∥.∥.

TS2

TS2/SO(3) [0,∞)

π
∥.∥2

f
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The dimension of TS2/SO(3) at its points is:

dim0(TS
2/SO(3)) = 2 and dimt(TS

2/SO(3)) = 1 if t ̸= 0.

The map (A, v) 7→ (Ae1, Av), from SO(3)× e⊥1 to S2 ×R3, takes its values in TS2 and represents the associated
fiber bundle SO(3)×SO(2,e1) e

⊥
1 [6].

Let us prove that ψ : TS2 → S2 × S2 defined by (u,w) → (u, v), where v = α(u+ w) such that ∥α(u+ w)∥ = 1
is an induction. First of all, the map ψ is injective. The inverse is given by

ψ−1(u, v) = (u,
1

α
v − u).

Now, let P be a plot of S2 × S2 with values in ψ(TS2) which means P (r) = (Q(r), α(Q(r) + F (r)), where Q is
plot of S2 and F is a plot of R3. Then ψ−1 ◦ P (r) = (Q(r), 1

αF(r)−Q(r)). It’s clearly a plot of S2 ×R3, thus ψ is
an induction. Consequently, the map ψ is SO(3)-equivariant. On the other hand, S2 × S2/SO(3) is obtained by
gluing two copies of TS2 along the boundary via an equivariant diffeomorphism [4].

Example 3

Let SO(3) be the group of direct rotations of the space R3, that is, the group of real 3× 3 matrices A such that
ĀA = 1R3 and det(A) = +1, where the bar denotes the transposition.

We consider the quotient of S2 × S2 under the action of SO(3). The quotient S2 × S2/SO(3) is equivalent to
the set [−1, 1] equipped with the pushforward of the smooth diffeology of S2 × S2 by the map <,> : (x, y) 7→<
x, y >.

Let us denote by π : S2 × S2 → S2 × S2/SO(3) the projection from S2 × S2 onto its quotient. Since, < x, y >=<
x′, y′ > if and only if x′ = Ax and y′ = Ay, with A ∈ SO(3), there exists a bijection f : S2 × S2/SO(3) → [−1, 1] .
such that f ◦ πn =<,>. Now, thanks to the uniqueness of quotients (op. cit.), f is a diffeomorphism between
S2 × S2/SO(3) equipped with the quotient diffeology and [−1, 1], equipped with the pushforward of the smooth
diffeology of S2 × S2 by the map <,>.

S2 × S2

S2 × S2/SO(3) [−1, 1]

π
< − >

f

The points −1 and 1 represent two singular orbits {(u,−u)} and {(u, u)}.
The dimension of S2 × S2/SO(3) at its points is:

dim−1(S
2 × S2/SO(3)) = dim+1(S

2 × S2/SO(3)) = 2 and dimt(S
2 × S2/SO(3)) = 1 if t ̸= ±1.

A remark we can do, for the quotient diffeology, these spaces are not manifolds with boundary and corners
because the interval [0,∞[ has dimension ∞ at 0 and 1 otherwise. On the contrary, for Sirkoski’s differential
structure, the orbit space is a manifold with corners, as all the quotients of Rn/SO(n) are equivalent.
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