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Abstract 

One of the most important problems in approximation theory in mathematical 

analysis is the determination of sequences of polynomials that converge to functions 

and have the same geometric properties. This type of approximation is called the 

shape-preserving approximation. These types of problems are usually handled 

depending on the convexity of the functions, the degree of smoothness depending on 

the order of differentiability, or whether it satisfies a functional equation. The 

problem addressed in this paper belongs to the third class. A quadratic bivariate 

algebraic equation denotes geometrically some well-known shapes such as circle, 

ellipse, hyperbola and parabola. Such equations are known as conic equations. In this 

study, it is investigated whether conic equations transform into a conic equation 

under bivariate Bernstein polynomials, and if so, which conic equation it transforms 

into. 
 

 

1. Introduction 

 

One of the important problems in approximation 

theory is to identify sequences of polynomials that 

converge to functions and have the same geometric 

properties. This type of approximation is called the 

shape-preserving approximation. The issue of shape-

preserving approximation with algebraic polynomials 

has a long history and probably begins in 1925 with a 

result of Pal [1] stating that any convex function 

defined in the interval [𝑎, 𝑏] can be properly 

approximated by convex polynomials in that interval. 

The first structural answer to Pal's conclusion seems 

to have been given by Popoviciu [2] in 1937 with the 

help of Bernstein polynomials: For 𝑓: [0,1] → ℝ and 

𝑛 ∈ ℕ, the nth Bernstein polynomial is defined by 

 

𝐵𝑛(𝑓; 𝑥) = ∑ 𝑓 (
𝑘

𝑛
) (

𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

 

 

The sequence of Bernstein polynomials is the best-

known that has the property of shape-preserving 

approximation.  There have been many studies on 

whether the sequence of Bernstein polynomials 
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preserves which geometric properties, especially 

convexity types. For 𝑘 ∈ ℕ, Popoviciu showed that  

the Bernstein polynomials 𝐵𝑛(𝑓) are also 𝑘-convex 

for each 𝑛 ∈ ℕ, if 𝑓 is a 𝑘-convex function [2]. Over 

time, many mathematicians have made great efforts 

to contribute to this topic. The studies of Lupaş [3], 

Leviatan [4,5], Kocic and Milovanovic [6] and Hu-

Yu [7] can be mentioned as good examples of studies 

on the shape-preserving approximation of univariate 

real functions with polynomials. 

Despite the large number of articles in the 

literature, there are not many books dealing with the 

shape-preserving approximation in the bivariate or 

multivariate case. First, Gal [8] dealt with it. Using 

the method of forming Bernstein polynomials 

dependent on univariate functions, Hildebrant and 

Schoenberg [9] defined bivariate Bernstein 

polynomials with double indices 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = ∑ ∑ 𝑓 (
𝑘

𝑛
,

𝑗

𝑚
) (

𝑛

𝑘
) (

𝑚

𝑗
) 𝑥𝑘

𝑚

𝑗=0

𝑛

𝑘=0

× (1 − 𝑥)𝑛−𝑘 𝑦𝑗(1 − 𝑦)𝑚−𝑗 
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dependent on bivariate functions defined on the 
[0,1] × [01]  and examined their approximation 

properties. Kingsley [10] showed that this set of 

operators converges uniformly to the partial 

derivatives of the function f. (𝑟, 𝑠) −convex functions 

defined by Popoviciu [11] are protected under 𝐵𝑛,𝑚 

operators [8]. Tunç and Uzun [12] obtained results 

that B-convex functions are not conserved under these 

operators, but B-concave functions are preserved in 

some special cases. 

 In this study, we have examined whether the 

geometric shapes specified by the conic equations 

were preserved under Bernstein operators mentioned 

above. 

 

2. Material and Method 

 

The moment formulas given below are correct for the 

bivariate Bernstein operators with double indices that 

are defined by 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = ∑ ∑ 𝑓 (
𝑘

𝑛
,

𝑗

𝑚
) (

𝑛

𝑘
) (

𝑚

𝑗
) 𝑥𝑘

𝑚

𝑗=0

𝑛

𝑘=0

× (1 − 𝑥)𝑛−𝑘 𝑦𝑗(1 − 𝑦)𝑚−𝑗. 
 

Let us define the functions 𝑒𝑖,𝑗, 𝑖, 𝑗 ∈ ℕ0, by 

𝑒𝑖,𝑗(𝑥, 𝑦) = 𝑥𝑖𝑦𝑗 on ℝ2. 

 

Lemma 2.1. ([9]) 

i. 𝐵𝑛,𝑚(𝑒𝑖,𝑗; 𝑥, 𝑦) = 𝑒𝑖,𝑗(𝑥, 𝑦), for all 𝑖, 𝑗 ∈ {0,1}  

ii. 𝐵𝑛,𝑚(𝑒0,2; 𝑥, 𝑦) = 𝑒0,2(𝑥, 𝑦) +
𝑦(1−𝑦)

𝑚
, 

iii. 𝐵𝑛,𝑚(𝑒2,0; 𝑥, 𝑦) = 𝑒2,0(𝑥, 𝑦) +
𝑥(1−𝑥)

𝑛
 

 

Teorem 2.2. ([9]) If 𝑓 is a continuous function on 

[0,1] × [0,1] then the sequence (𝐵𝑛,𝑚 (𝑓)) converges 

uniformly to 𝑓 function on [0,1] × [0,1]. 
 In the article referenced for the proof of this 

theorem, it is said that it can be done in a similar way 

by referring to the work of Bernstein [13]. However, 

a simpler method can be proved. [14] and Lemma 2.1 

can be used for this. 

 

3. Results and Discussion 

 

3.1. Circles Under Bivariate Bernstein Operators 

 

In this section, firstly, conic equations will be 

discussed under the bivariate Bernstein Operators 

with double index. For  𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ∈ ℝ, the 

equation  

 

𝑓(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (1) 

 

looks like following under the 𝐵𝑛,𝑚 operator: 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 𝐴′𝑥2 + 𝐵′𝑥𝑦 + 𝐶′𝑦2 + 𝐷′𝑥 + 𝐸′𝑦

+ 𝐹′ = 0 
 

where  

 

𝐴′ =
𝑛−1

𝑛
𝐴; 𝐵′ = 𝐵;  𝐶′ =

𝑚−1

𝑚
𝐶;  𝐷′ = 𝐷 +

𝐴

𝑛
;    𝐸′ = 𝐸 +

𝐶

𝑚
;       𝐹′ = 𝐹                (2) 

 

In Theorem 2.2, the double-index bivariate Bernstein 

operators are defined according to their values in the 

domain of the function, and it is said that the sequence 

formed by these operators converges properly in the 

domain of the function. However, the equations in 

Lemma 2.1 are valid at every point of the plane. So 

the following theorem is true.  

 

Theorem 3.1. For the function 𝑓 defined by (1), the 

sequence (𝐵𝑛,𝑚 (𝑓))  is uniformly convergent to the 

function 𝑓 on every compact subset of the plane. 

 

Proof. It is easily obtained from Lemma 2.1. 

 

 Let   

 

∆0= 𝐷2 + 𝐸2 −  4𝐹; 

∆1= 𝐷 + 𝐸 + 2𝐹. 

 

It is well known that, if 𝐴 = 𝐶 = 1, 𝐵 = 0   and ∆0>
0 then the equation (1) indicates a circle in the 

cartesian plane. 

 

Theorem 3.2. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1), where 𝐴 = 𝐶 = 1, specify a circle and let 𝑛 ∈
ℕ2 ≔ {2,3,4, … }. In this case, the necessary and 

sufficient condition for the equation 𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) =
0 to specify a circle is  

 

𝑛2∆0 + 2𝑛∆1 + 2 > 0. 

 

Proof.  Since 𝐴 = 𝐶 = 1 and 𝐵 = 0, if 𝑚 = 𝑛 is 

taken in equations (2), the appearance of equation (1) 

under the 𝐵𝑛,𝑛  operator will be as follows 

 

𝐵𝑛,𝑛(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝑥2 + (

𝑛 − 1

𝑛
) 𝑦2

+
𝐷𝑛 + 1

𝑛
𝑥 +

𝐸𝑛 + 1

𝑛
𝑦 + 𝐹 = 0. 
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For 𝑛 > 1, we get  

 
𝑛 − 1

𝑛
[𝑥2 + 𝑦2 +

𝐷𝑛 + 1

𝑛 − 1
𝑥 +

𝐸𝑛 + 1

𝑛 − 1
𝑦 +

𝑛

𝑛 − 1
𝐹]

= 0. 
 

If we write  

 

𝐷′′ =
𝐷𝑛 + 1

𝑛 − 1
,         𝐸′′ =

𝐸𝑛 + 1

𝑛 − 1
,          𝐹′′ =

𝑛𝐹

𝑛 − 1
, 

 

by simple calculations  

 

𝐷′′2
+ 𝐸′′2

− 4𝐹′′

=  (
𝐷𝑛 + 1

𝑛 − 1
)

2

+  (
𝐸𝑛 + 1

𝑛 − 1
)

2

− 4 (
𝑛𝐹

𝑛 − 1
 )

=  
(𝐷𝑛 + 1)2

(𝑛 − 1)2
+  

(𝐸𝑛 + 1)2

(𝑛 − 1)2

−
4𝑛𝐹(𝑛 − 1)

(𝑛 − 1)2

=  
1

(𝑛 − 1)2
[(𝐷𝑛 + 1)2

+  (𝐸𝑛 + 1)2 − 4𝑛𝐹(𝑛 − 1)]

=   
1

(𝑛 − 1)2
[𝐷2𝑛2 + 𝐸2𝑛2 − 4𝐹𝑛2

+ 2𝐷𝑛 + 2𝐸𝑛 + 4𝐹𝑛 + 2]

=
1

(𝑛 − 1)2
[𝑛2∆0 + 2𝑛∆1 + 2] 

 

are obtained. So that we get desired result. 

 

Remarks 3.3.  

 

1. In Theorem 3.2, if 𝑛 = 1, the equation 

𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 indicates a line. The equation 

of this line is (𝐷 + 1)𝑥 + (𝐸 + 1)𝑦 + 𝐹 = 0. 

2. In Theorem 3.2, if 𝑛 > 1, the equation 

𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 refers to the circle with radius 

√𝑛2∆0+2𝑛∆1+2

2𝑛−2
 centered at (𝐷𝑛+1

2𝑛−2
,
𝐸𝑛+1

2𝑛−2
). 

3. Since ∆0> 0, the condition 𝑛2∆0 + 2𝑛∆1 + 2 >
0 in Theorem 3.2 will be satisfied for every 

sufficiently large natural number 𝑛. Therefore, if 

the equation 𝑓(𝑥, 𝑦) = 0 indicates a circle, the 

equation 𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 indicates a circle 

except for a finite number of 𝑛. 

 

Since ∆0> 0, the following result can be 

easily obtained from Theorem 3.2. 

 

Corollary 3.4. Under the conditions of Theorem 3.2, 

if ∆1> −1/𝑛, then 𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 indicates a 

circle. 

 

Example 3.5. If the circle specified by the equation 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦 − 12 = 0 is taken into 

account, since  ∆0= 100  and ∆1= −26, from 

Corollary 3.4, it is not clear that the equations 

𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 specify a circle. However, since 

 

𝑛2∆0 + 2𝑛∆1 + 2 = 100𝑛2∆0 − 52𝑛∆1 + 2 > 0, 
 

the equation 𝐵𝑛,𝑛 (𝑓; 𝑥, 𝑦) = 0 specify a circle by 

Theorem 3.2. (see Figure 1) 

 

 
Figure 1. Images of the circle given in Example 3.5 under 

the operator 𝐵𝑛,𝑛  for 𝑛 = 5,10,15. 

 

Theorem 3.6. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1), where 𝐴 = 𝐶 = 1, specify a circle and let 𝑛, 𝑚 ∈
ℕ2. If 𝑛 ≠ 𝑚, then the equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 

specifies an ellipse.  

 

Proof. Since 𝐴 = 𝐶 = 1 and 𝐵 = 0, from the 

equations (2), the appearance of equation (1) under 

the 𝐵𝑛,𝑚  operators will be as follows 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝑥2 + (

𝑚 − 1

𝑚
) 𝑦2

+
𝐷𝑛 + 1

𝑛
𝑥 +

𝐸𝑚 + 1

𝑚
𝑦 + 𝐹 = 0. 

 

For 𝑛, 𝑚 > 1, we get  

 

𝐵′2 − 4𝐴′𝐶′ = −4𝐴′𝐶′ = −4 (
𝑛−1

𝑛
) (

𝑚−1

𝑚
) < 0. 
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Since 𝑛 ≠ 𝑚, the equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 

specifies an ellipse.   

 

Example 3.7. If the circle specified by the equation 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦 − 12 = 0 is taken into 

account, the equations 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝑥2 + (

𝑚 − 1

𝑚
) 𝑦2

+
4𝑛 + 1

𝑛
𝑥 +

1 − 6𝑚

𝑚
𝑦 − 12 = 0 

 

specify ellipses under the condition 𝑛 ≠ 𝑚 (see 

Figure 2).  

 

Theorem 3.8. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1), where 𝐴 = 𝐶 = 1, specify a circle and let 𝑛, 𝑚 ∈
ℕ. If 𝑛 ≠ 𝑚 and 𝑚𝑖𝑛{𝑛, 𝑚} = 1 then the equation  

𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies a parabola.  

 

Proof. Since it does not violate generality, let 𝑛 = 1 

and 𝑚 > 1. Since 𝐴 = 𝐶 = 1 and 𝐵 = 0, from the 

equations (2), the appearance of equation (1) under 

the 𝐵𝑛,𝑚  operators will be as follows 

 
Figure 2. Images of the circle given in Example 3.7 under 

the operators 𝐵𝑛,𝑚  for (𝑛, 𝑚) = (5,15),
(10,25), (15,35). 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑚 − 1

𝑚
) 𝑦2 + (𝐷 + 1)𝑥

+
𝐸𝑚 + 1

𝑚
𝑦 + 𝐹 = 0. 

 

Since B′2 − 4A′C′ = 0, the equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) =
0 specifies a parabola. 

 

Example 3.9. If the circle specified by the equation 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 6𝑦 − 12 = 0 is taken into 

account, the equations  

 

𝐵1,𝑚(𝑓; 𝑥, 𝑦) = (
𝑚 − 1

𝑚
) 𝑦2 + 5𝑥 +

1 − 6𝑚

𝑚
𝑦 − 12 = 0 

 

specify parabolas under the condition 𝑚 > 1 (see 

Figure 3).  

 

 
Figure 3. Images of the circle given in Example 3.9 under 

the operators 𝐵𝑛,𝑚  for (𝑛, 𝑚) = (1,5), (1,10), (1,15). 

 

3.2. Ellipses Under Bivariate Bernstein Operators 

 

Theorem 3.10. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1) specify an ellipse. Then the equation  

𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies 

i. an ellipse for all 𝑛, 𝑚 ∈ ℕ2 with the condition 
𝐵2

4𝐴𝐶
< (

𝑛−1

𝑛
) (

𝑚−1

𝑚
), 

ii. a hyperbola for all 𝑛, 𝑚 ∈ ℕ2 with the condition 
𝐵2

4𝐴𝐶
> (

𝑛−1

𝑛
) (

𝑚−1

𝑚
), 

iii. a parabola for all 𝑛, 𝑚 ∈ ℕ2 with the condition 
𝐵2

4𝐴𝐶
= (

𝑛−1

𝑛
) (

𝑚−1

𝑚
). 

 

Proof. Since the equation 𝑓(𝑥, 𝑦) = 0 given by (1) 

indicates an ellipse, the inequality 𝐵2 − 4𝐴𝐶 < 0 and 

thus 𝐴𝐶 > 0 is satisfied. From the equations (2), the 

appearance of equation (1) under the 𝐵𝑛,𝑚  operators 

will be as follows 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝐴𝑥2 + 𝐵𝑥𝑦

+ (
𝑚 − 1

𝑚
) 𝐶𝑦2 +

𝐷𝑛 + 𝐴

𝑛
𝑥

+
𝐸𝑚 + 𝐶

𝑚
𝑦 + 𝐹 = 0. 
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Since  

 

𝐵′2 − 4𝐴′𝐶′ = 𝐵2 − 4𝐴𝐶 (
𝑛 − 1

𝑛
) (

𝑚 − 1

𝑚
) 

 

for all 𝑛, 𝑚 ∈ ℕ2, we have desired results. 

 

Example 3.11. If the ellipse specified by the equation 

𝑓(𝑥, 𝑦) = 15𝑥2 + 15𝑥𝑦 + 6𝑦2 + 4𝑥 − 6𝑦 − 12 =
0 is taken into account, we get 𝐵2 4𝐴𝐶⁄ = 5/8. 

Hence, according to Theorem 3.10, the equation  

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 15 (
𝑛 − 1

𝑛
) 𝑥2 + 15𝑥𝑦

+ 6 (
𝑚 − 1

𝑚
) 𝑦2 + (

15

𝑛
+ 4) 𝑥

+ (
6

𝑚
− 6) 𝑦 − 12 = 0 

 

specifies an ellipse for 𝑛 = 6,   𝑚 = 8, a parabola for 

𝑛 = 4,   𝑚 = 6 and a hyperbola for 𝑛 = 2,   𝑚 = 4 

(see Figure 4) 

 

 
Figure 4. Images of the ellipse given in Example 3.11 

under the operators 𝐵𝑛,𝑚  for (𝑛, 𝑚) = (2,4), (4,6), (6,8). 

 

Theorem 3.12. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1) specify an ellipse. Then, if 𝑛 ≠ 𝑚 and 

min{𝑛, 𝑚} = 1, the equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 

specifies 

i. a hyperbola for 𝐵 ≠ 0, 

ii. a parabola for 𝐵 = 0. 

 

Proof. Since it does not violate generality, let 𝑛 = 1 

and 𝑚 > 1. From the equations (2), the appearance of 

equation (1) under the 𝐵𝑛,𝑚  operators will be as 

follows 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 𝐵𝑥𝑦 + (
𝑚 − 1

𝑚
) 𝐶𝑦2 + (𝐷 + 𝐴)𝑥

+
𝐸𝑚 + 𝐶

𝑚
𝑦 + 𝐹 = 0. 

 

Since B′2 − 4A′C′ = 𝐵2, the equation  

𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies a parabola for 𝐵 = 0 

while a hyperbola for 𝐵 ≠ 0. 

 

Example 3.13.  
(a) If the ellipse specified by the equation 

 
𝑓(𝑥, 𝑦) = 15𝑥2 + 15𝑥𝑦 + 6𝑦2 + 4𝑥 − 6𝑦 − 12 = 0 

 

 is taken into account, the equation  

 

𝐵1,𝑚(𝑓; 𝑥, 𝑦) = 15𝑥𝑦 + 6 (
𝑚 − 1

𝑚
) 𝑦2 + 19𝑥

+ (
6

𝑚
− 6) 𝑦 − 12 = 0 

 

specifies a hyperbola for each 𝑚 > 1 (see Figure 5).  

 

 
Figure 5. Images of the ellipse given in Example 3.13(a) 

under the operators 𝐵1,𝑚  for 𝑚 = 5, 10, 50 

 

(b) If the ellipse specified by the equation 

 

 𝑓(𝑥, 𝑦) = 15𝑥2 + 6𝑦2 + 4𝑥 − 6𝑦 − 12 = 0   
 

is taken into account, the equation   

 

𝐵1,𝑚(𝑓; 𝑥, 𝑦) = 6 (
𝑚 − 1

𝑚
) 𝑦2 + 19𝑥 + (

6

𝑚
− 6) 𝑦

− 12 = 0 
 

specifies a parabol for each 𝑚 > 1 (see Figure 6). 
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Figure 6. Images of the ellipse given in Example 3.13(b) 

under the operators 𝐵1,𝑚  for 𝑚 = 5, 10, 50 

 

3.3. Hyperbolas Under Bivariate Bernstein 

Operators 

 

Theorem 3.14. If the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1) specifies a hyperbola, then the equations  

𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specify hyperbola for all 𝑛, 𝑚 ∈
ℕ2. 

 

Proof. Since the equation 𝑓(𝑥, 𝑦) = 0 given by (1) 

indicates a hyperbola, the inequality 𝐵2 − 4𝐴𝐶 > 0 is 

satisfied. From the equations (2), the appearance of 

equation (1) under the 𝐵𝑛,𝑚  operators will be as 

follows 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝐴𝑥2 + 𝐵𝑥𝑦

+ (
𝑚 − 1

𝑚
) 𝐶𝑦2 +

𝐷𝑛 + 𝐴

𝑛
𝑥

+
𝐸𝑚 + 𝐶

𝑚
𝑦 + 𝐹 = 0. 

 

Since 0 < (
𝑛−1

𝑛
) (

𝑚−1

𝑚
) < 1, then we have 

 

𝐵′2 − 4𝐴′𝐶′ = 𝐵2 − 4𝐴𝐶 (
𝑛 − 1

𝑛
) (

𝑚 − 1

𝑚
) > 0 

 

for all 𝑛, 𝑚 ∈ ℕ2. 

 

Remarks 3.15.  

1. Let the equation 𝑓(𝑥, 𝑦) = 0 given by (1) specify 

a hyperbola and let 𝐴𝐶 < 0. In this case, the 

possibility of 𝐵 = 0 arises. If this situation occurs, 

the equation 𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0  for every 𝑛, 𝑚 ∈
ℕ with 𝑚𝑖𝑛 {𝑛, 𝑚} = 1 and 𝑛 ≠ 𝑚 also indicates a 

parabola. Because under these conditions will be 

𝐵′2 − 4𝐴′𝐶′ = 0. 

2. If 𝐵 ≠ 0, Theorem 3.14 is valid for every 𝑛, 𝑚 ∈
ℕ with 𝑚𝑎𝑥{𝑛, 𝑚} ≠ 1. 

 

Example 3.15.  
(a) If the hyperbola specified by the equation 

𝑓(𝑥, 𝑦) = 15𝑥2 + 15𝑥𝑦 + 2𝑦2 + 4𝑥 − 6𝑦 − 12 =
0 is taken into account, the equations  

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 15 (
𝑛 − 1

𝑛
) 𝑥2 + 15𝑥𝑦

+ 2 (
𝑚 − 1

𝑚
) 𝑦2 + (

15

𝑛
+ 4) 𝑥

+ (
2

𝑚
− 6) 𝑦 − 12 = 0 

 

specify hyperbola for all 𝑛, 𝑚 ∈ ℕ2. Note that 𝐴𝐶 =
15.2 = 30 > 0 (see Figure 7). 

 

 
Figure 7. Images of the hyperbola given in Example 

3.15(a) under the operators 𝐵𝑛,𝑚  for (𝑛, 𝑚) =
(3,5), (5, 10), (10,20). 

 

(b) If the hyperbola specified by the equation 

 

𝑓(𝑥, 𝑦) = 15𝑥2 + 15𝑥𝑦 + 4𝑥 − 6𝑦 − 12 = 0 
 

is taken into account, the equations  

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 15 (
𝑛 − 1

𝑛
) 𝑥2 + 15𝑥𝑦

+ (
15

𝑛
+ 4) 𝑥 − 6𝑦 − 12 = 0 

 

specify hyperbola for all 𝑛, 𝑚 ∈ ℕ2. Note that 𝐴𝐶 =
0 (see Figure 8). 
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Figure 8. Images of the hyperbola given in Example 

3.15(b) under the operators 𝐵𝑛,𝑚  for (𝑛, 𝑚) =
(5, 𝑚), (10, 𝑚), (20, 𝑚). 

 

(c) If the hyperbola specified by the equation  

 

𝑓(𝑥, 𝑦) = 15𝑥2 + 15𝑥𝑦 + 4𝑥 − 6𝑦 − 12 = 0 
 

is taken into account, the equations 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 15 (
𝑛 − 1

𝑛
) 𝑥2 − 2 (

𝑚 − 1

𝑚
) 𝑦2

+ (
15

𝑛
+ 4) 𝑥 + (−

2

𝑚
− 6) 𝑦 − 12

= 0 
 

specify hyperbola for all 𝑛, 𝑚 ∈ ℕ2. Note that 𝐴𝐶 =
−30 < 0 (see Figure 9). On the other hand, the 

equations 

 

𝐵1,𝑚(𝑓; 𝑥, 𝑦) = −2 (
𝑚−1

𝑚
) 𝑦2 + 19𝑥 + (−

2

𝑚
−

6) 𝑦 − 12 = 0, 

 

𝐵𝑛,1(𝑓; 𝑥, 𝑦) = 15 (
𝑛 − 1

𝑛
) 𝑥2 + (

15

𝑛
+ 4) 𝑥 − 8𝑦

− 12 = 0 
 

specify parabolas for all 𝑛, 𝑚 ∈ ℕ2 (see Figure 10).  

 
Figure 9. Images of the hyperbola given in Example 

3.15(c) under the operators 𝐵𝑛,𝑚  for  (𝑛, 𝑚) =
(3,5), (5, 10), (10,20). 

 

 
Figure 10. Images of the hyperbola given in Example 

3.15(c) under the operators 𝐵𝑛,𝑚  for  (𝑛, 𝑚) =
(1,5), (1, 10), (5,1), (10,1). 

 

3.4. Parabolas Under Bivariate Bernstein 

Operators 

 

Theorem 3.16. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1) specify a parabola. Then, for all 𝑛, 𝑚 ∈ ℕ2, the 

equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies 

i. a hyperbola if  𝐴𝐶 ≠ 0, 

ii. a parabola if 𝐴𝐶 = 0. 

 

Proof. Since the equation 𝑓(𝑥, 𝑦) = 0 given by (1) 

indicates a parabola, the equality 𝐵2 − 4𝐴𝐶 = 0 is 

satisfied. Therefore, it must be 𝐴𝐶 ≥ 0 and 𝐴 and 𝐶 

cannot be zero at the same time. From the equations 

(2), the appearance of equation (1) under the 𝐵𝑛,𝑚  
operators will be as follows 
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𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = (
𝑛 − 1

𝑛
) 𝐴𝑥2 + 𝐵𝑥𝑦

+ (
𝑚 − 1

𝑚
) 𝐶𝑦2 +

𝐷𝑛 + 𝐴

𝑛
𝑥

+
𝐸𝑚 + 𝐶

𝑚
𝑦 + 𝐹 = 0. 

 

Hence  

 

𝐵′2 − 4𝐴′𝐶′ = 𝐵2 − 4𝐴𝐶 (
𝑛 − 1

𝑛
) (

𝑚 − 1

𝑚
) 

 

for all 𝑛, 𝑚 ∈ ℕ2. If 𝐴𝐶 > 0, then since 0 <

(
𝑛−1

𝑛
) (

𝑚−1

𝑚
) < 1, we have  

 

𝐵′2 − 4𝐴′𝐶′ = 𝐵2 − 4𝐴𝐶 (
𝑛 − 1

𝑛
) (

𝑚 − 1

𝑚
)

> 𝐵2 − 4𝐴𝐶 = 0 
 

hence the equation  𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies a 

hyperbola. If  𝐴𝐶 = 0, since 𝐵 = 0, the equality 

𝐵′2 − 4𝐴′𝐶′ = 0 is obtained, therefore the equation  

𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0 specifies a parabola. 

 

Remark 3.17. Let the equation 𝑓(𝑥, 𝑦) = 0 given by 

(1) specify a parabola and let 𝐴𝐶 >0. In this case, the 

equation 𝐵𝑛,𝑚 (𝑓; 𝑥, 𝑦) = 0  for every 𝑛, 𝑚 ∈ ℕ with 

𝑚𝑖𝑛 {𝑛, 𝑚} = 1 and 𝑛 ≠ 𝑚 also indicates a 

hyperbola. Because under these conditions 𝐵′2 −
4𝐴′𝐶′ will be 𝐵2 > 0. 

 

Example 3.18.  

(a) If the parabola specified by the equation 𝑓(𝑥, 𝑦) =
3𝑥2 − 6𝑥𝑦 + 3𝑦2 + 2𝑥 − 7 = 0  is taken into 

account, it is clear that 𝐴𝐶 = 3.3 = 9 > 0 and the 

equations  

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 3 (
𝑛 − 1

𝑛
) 𝑥2 − 6𝑥𝑦

+ 3 (
𝑚 − 1

𝑚
) 𝑦2 + (

3

𝑛
+ 2) 𝑥 +

3

𝑚
𝑦

− 7 = 0 
 

specify hyperbola for all 𝑛, 𝑚 ∈ ℕ2 (see Figure 11). 

 

(b) If the parabola specified by the equation 𝑓(𝑥, 𝑦) =
3𝑦2 + 2𝑥 − 7 = 0 is taken into account, it is clear 

that 𝐴𝐶 = 0 and the equations 

 

𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 3 (
𝑚 − 1

𝑚
) 𝑦2 + 2𝑥 +

3

𝑚
𝑦 − 7 = 0 

 

specify hyperbola for all 𝑛, 𝑚 ∈ ℕ2(see Figure 12). 

 

 
Figure 11. Images of the parabola given in Example 

3.17(a) under the operators 𝐵𝑛,𝑚  for  (𝑛, 𝑚) =
(1,5), (1, 10), (5,10), (10,15). 

  

 

 
Figure 12. Images of the parabola given in Example 

3.17(b) under the operators 𝐵𝑛,𝑚  for  (𝑛, 𝑚) =
(1,2), (5, 10), (15,15). 

 

 

4. Conclusion and Suggestions 

 

The equation 𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 0 is a quadratic two-

variable equation, where 𝑓(𝑥, 𝑦) = 0 is a conic 

equation and 𝐵𝑛,𝑚 is a double-indexed two-variable 

Bernstein operator. If the equation 𝑓(𝑥, 𝑦) = 0 

indicates a circle, then the equations 𝐵𝑛,𝑛(𝑓; 𝑥, 𝑦) =
0 specify a circle for sufficiently large numbers 𝑛. 

However, in cases where the indices are different, that 

is, for 𝑛 ≠ 𝑚, 𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 0 equations indicate an 

ellipse or parabola. If the equation 𝑓(𝑥, 𝑦) = 0 

specifies an ellipse, the equations 𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 0 

specifies an ellipse, hyperbola or parabola in certain 

cases. If the equation 𝑓(𝑥, 𝑦) = 0 specifies a 
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hyperbola, the equations 𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 0 specifies 

hyperbola. Finally, if the equation 𝑓(𝑥, 𝑦) = 0  

specifies a parabola, the equations 𝐵𝑛,𝑚(𝑓; 𝑥, 𝑦) = 0 

specifies a hyperbola or parabola, depending on 

whether the 𝐴𝐶 product is zero or not.  
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