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Abstract  

Mechanized timber harvesting involves various activities including road planning, and selection of harvesting 

systems and machineries. The emergence of geospatial technology (GSPT) i.e., geographical information system 

(GIS) and remote sensing in the recent decades, has been considered as the best tools to facilitate timber harvesting 

planning in plantation forests. GSPT provide accurate stand information enabling better decision-making and 

optimizing forest operations. This study was conducted at Sao hill Forest Plantation (SHFP) in Tanzania, with the 

objective of determining relative efficiency (RE) between geospatial approach (GSPA) and conventional approach 

(CA) on planning mechanized timber harvesting. 120 grapple skidders (GS) in 30 sample plots within different 

elevation terrain ranges were studied with time study observations in both approaches. Productivity and costs under 

the two approaches were estimated and modelled using generalized linear model (GLM) approach. To obtain large 

scale estimates of productivity and costs, Inverse Distance Weighted (IDW) interpolation approach was used. The 

results showed that, GSPA demonstrated higher productivity and lower unit skidding costs (i.e., 71.1 m3/hr and 

2.121 USD/m3) compared to CA (i.e., 67.5 m3/hr and 2.914 USD/m3) respectively. Skidding distance and slope (p-

value < 0.05) were significant predictors of the GS performance in both approaches. The pseudo R2 ranging from 

58.1% to 64.3% under CA, and from 62.9% to 60.8% under GSPA. Likewise, relative root mean square error 

(RMSEr) for the models under CA ranged from 49.3% to 50.4% and 33.4% to 35.2% under GSPA. Generally, the 

results showed that, models under GSPA have better fits and accuracy, compared to CA. Furthermore, the GSPA 

provided a raster representation of productivity and costs over the entire study area. Moreover, computed RE values 

(i.e., 1.18 and 6.17) indicated that parameter estimates for the GS productivity and costs were more precise in 

geospatial models (GSPM) compared to conventional models (CM). These findings highlight the potential of 

GSPT for an efficient large scale timber harvesting planning, by considering terrain constraints. 

Keywords: Convectional, Geospatial, Grapple skidder, Productivity, Costs, Relative efficiency.

1. Introduction 

Forest operation planning normally involves detailed 

site-specific plans for various forest activities, such as 

forest establishment, tending operations, road 

construction, and timber harvesting (Bettinger et al., 

2009). It involves capturing  information on 

environmental, economic, and social constraints as the 

key components for sustainable forest management (Ole-

Meiludie and Skaar, 1990; Bredström et al., 

2010).Timber harvesting operations, being one of  the 

forest management objectives (Kühmaier and Stampfer, 

2010), generally rely on the operational level of 

planning, which involves planning of the harvesting 

roads (skidding trails), selection of the harvesting system 

to be used and allocation of other resources required to 

accomplish the entire operations, including number of 

days and personnel required as well as costs of items and 

services (Đuka et al., 2015). 

 Previously, timber harvesting planning in tropical 

countries, including Tanzania, has been carried out using 

conventional methods, involving manual collection of 

site-specific information essential for planning (Conway, 

1986; Shemwetta et al., 2007) before actual logging 

operation. Furthermore, through CA, other essential 

planning information is usually extracted from the forest 

management plan of the respective forest (Shemwetta, 

1997), including printed topographic maps, aerial 

photographs, and ground survey reports (Conway, 1986; 

Ole-Meiludie and Skaar, 1990). However, such office-

based information is frequently insufficient, re 

preliminary field visits to supplement missing data 

before commencing harvesting operations. It makes the 

planning activity tedious and time-consuming hence 

leading to operational delays (Conway, 1986). 

 The emergence of GSPT (i.e., Geographic 

Information Systems (GIS) and Remote sensing) has 
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simplified planning activities by providing crucial stand 

information, such as terrain steepness, roughness, 

extraction distances, felling unit boundaries, and road 

networks, which are very necessary for timber harvesting 

planning. Through GIS technology, the analysis of 

topographic, ecological, and morphological 

characteristics of the study area can be performed 

(Picchio et al., 2020). 

 Previous studies by Perpiñá et al., (2009) and 

McKendry and Eastman, (1991) suggested that forest 

management has become interesting and successful 

through combining spatial and non-spatial information to 

facilitate decision-making particularly in the preparation 

of timber harvesting plans, whereby through spatial 

analysis, it allows optimization of forest operations 

based on field and machinery characteristics (Pecora et 

al., 2014). Additionally, the study by Suvinen (2006) and 

Lubello (2008) applied a GIS-based simulation model to 

evaluate the interaction of terrain trafficability, vehicle 

mobility, and terrain tractability for the harvesting 

machinery as among the efforts undertaken to enhance 

sustainable and efficient mechanized timber harvesting. 

Furthermore, a study conducted by Phelps et al. (2021) 

has proven the potential of spatial and forest road 

network analysis in creating thematic map information 

that assists in choosing proper harvesting machinery and 

systems that maximize productivity and profit. 

Despite all the potentials shown by GSPT, most of the 

past logging studies, such as Banaś et al. (2021) and 

Okey and Visser (2020), were relied on CA as the major 

criterion for assessing and selecting harvesting systems 

and machinery to be used on logging operations 

(Çalişkan and Karahalil, 2017). Moreover, such an 

approach was based on intuitional/personal judgement, 

which gives less attention to the environmental 

constraints, particularly terrain variables, hence leading 

to lower machinery efficiency in terms of productivity 

and costs. Furthermore, CA, compared to GSPA, can 

cover smaller spatial areas at a time which leads to 

inefficient planning for large-scale timber harvesting. 

Therefore, this study aimed to integrate GSPT in 

predicting productivity and costs of mechanized 

skidding operations and compare its relative efficiency 

with the CA in order to identify the most efficient 

approach that minimizes costs and the negative impact 

on the environment while maximizing productivity and 

ensuring the safety of forest workers (Picchio et al., 

2020). The findings from this study form a basis for the 

applications of GSPT in timber harvesting planning, 

which can be used to recommend the best timber 

harvesting planning under different terrain conditions in 

plantation forests.   

 

2. Materials and methods 

2.1 Study area description 

This study was conducted at Sao Hill Forest 

Plantation, situated in the Southern highland of Tanzania 

mainland, in the Mufindi district found in Iringa region. 

It is located at latitudes 80 18́ S to 80 33́ S and longitudes 

350 06́ E to 350 40́ E with an altitude ranging from 1,700 

m to 2,000 m above the sea level (Figure 1).  

 

 
Figure 1. Map of Sao hill Forest plantation showing the compartment understudy 

 

The plantation is estimated to cover 135,903 hectares 

and  is administratively divided into four divisions: 

Irundi, Ihefu, Ihalimba and Mgololo (MNRT, 2018). The 

most planted tree species are exotic softwood and 

hardwood species, including Pinus patula, Pinus elliottii, 

Pinus caribeae, Eucalyptus maidenii, Eucalyptus 
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saligna, Eucalyptus camaldulensis and Cupressus 

lusitanica. Also, it comprises some patches of grassland 

and indigenous tree species of Erythrina abyssinica, 

Parinari curatellifolia, Apodytes dimidiata and Albizia 

petersiana. Climate is characterized by a unimodal 

rainfall pattern starting from November to April and a 

dry season from May to late October. The mean annual 

rainfall is 1,300 mm. The temperatures are fairly cool, 

with the minimum monthly temperature range between 

10°C to 18°C and the maximum range between 23°C to 

28°C. 

 

2.2 Machinery description 

The machine used in this study was a CAT 525 

grapple skidder owned by MPM. It is an American-

manufactured caterpillar brand with the following 

characteristics (Table 1) as presented by RP (2007). 

 
Table 1. GS descriptions 

Machinery specifications Description 

Model CAT 525 

Configuration Rubber-tired 

Overall length 19.69 ft (6.00 m) 

Overall width 10.27 ft (3.13 m) 

Ground clearance 1.73 ft  (0.53 m) 

Wheel base 11.49 ft (3.50 m) 

Engine Model CAT 3304 DIT Diesel 

Gross power 175 HP 

Operating weight 15200 kg 

Brakes service type Hydraulic actuated, oil disc 

Maximum Drawbar pull 19731.3 kg 

Maximum forward speed 16.9 mph (27.20km/hr) 

Maximum reverse speed 12 mph (19.31 km/hr) 

Estimated operating weight 13558.3 kg 

Grapple bunching capacity 12.5 ft2 (1.16 m2) (1065.9 kg) 

Maximum operating distance 500 m 

Maximum operating slope 30 % 

CAT = Caterpillar, ft = Feet, HP = Horsepower, kg = Kilogram, m = Meter, mph = Miles per hour.  

 

2.3 Study design 

The compartment understudy was selected by 

considering SHFP management plan, which indicate 

total area harvested per annually. Data acquisition and 

analytical procedures for this study are described in 

Figure 2. To enhance total terrain variability, 30 plots of 

15 m x 15 m were laid randomly throughout the 

compartment. Furthermore, a total of 120 GS work 

cycles were determined using the formula by Murphy 

(2005) (Equation 1), whereby; pilot time study was 

conducted in 10 random observations, yielding an 

average cycle time (i.e., mean WCT) and variance cycle 

time (i.e., Var WCT) of 6.873 and 0.071 minutes 

respectively. The desired precision (E) was 0.95. 

 

n = 𝑡2 ∗ 𝑉𝑎𝑟(𝑊𝐶𝑇)/[𝐸 ∗ 𝑊𝐶𝑇/100]2  (1) 

 

where; 

n = number of work cycles to be studied 

t = Student’s t-value 

Var (WCT) = Variance of the work cycle time 

E = Level of precision desired  

WCT = Mean work cycle time (minutes) 
 

Figure 2. Methodological framework for modelling and 

predicting GS productivity and costs using whole tree 

harvesting system at SHFP 
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2.4 Data collection 

Skidding time (minutes), tree diameter at breast 

height (DBH), tree height, terrain variables (elevation, 

distance, and slope %), and operational cost were used to 

predict GS productivity and costs in this study. The 

details of each collected variable are described below; 

 

2.4.1 GS time variables 

Skidding time was quantified using detailed time 

study techniques using the stopwatch. The GS time was 

divided into five measurable work elements, including 

travel empty (TE), positioning (PS), grappling (GL), 

travel loaded (TL), and unloading (UNL) to ensure 

effective quantification of the utilized time. Furthermore, 

necessary delays (inevitable interruption due to the 

nature of the work and the environment) and unnecessary 

delays (the wastage of time which can be eliminated by 

improving supervision and training to workers) (Mauya, 

2022) were recorded once they occurred in operation. 

 

2.4.2 Forest stand parameters 

Before skidding operations, standing trees in all 30 

plots were marked using serial numbers for easier 

monitoring in the subsequent operations. Then, the 

individual tree parameters, i.e., DBH and tree height 

were measured using a calliper and vertex hypsometer, 

respectively.  Following the adopted harvesting system 

(i.e., Whole tree), the volume of each tree was estimated 

by an allometric single tree model (Equation 2) by 

Malimbwi et al. (2016). 

 
Tree volume = exp (−9.04925 + 1.14781 × ln(ℎeight) +  

1.5496 × ln (DBH)             (2) 
 

2.4.3 Terrain variables 

Digital elevation model (DEM) for SHFP was 

acquired from https://earthexplorer.usgs.gov/ website 

with a resolution of 30m x 30m, followed by clipping 

into specific areas of interest (compartment understudy) 

using QGIS software. The input and mask layers were 

DEM and harvested compartment 3/9, respectively. 

 

2.5 Data analysis 

For the case of terrain analysis, elevation in the study 

area was classified into six categories with an interval of 

26 meters above the mean sea level (Figure 3), followed 

by vectorization to determine the area occupied by each 

elevation class (Table 2). 

Under GSPA, the distance from the bunching sites to 

the landing was determined using the least-cost path 

analysis on QGIS. Slope changes (%) on various spatial 

area of the harvested forest compartment (Figure 4) were 

computed indirectly by taking the difference in elevation 

between the landing and bunching site then dividing by 

the horizontal distance between two stations (Equation 

3). The spatial area under each slope class is presented in 

Table 3, as adopted in the study by Çalişkan and 

Karahalil (2017). 

 

 

 
Figure 3. DEM showing terrain (elevation) classes and sample plots distributions in the study area 
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Table 2. Harvested area (ha) occupied by each terrain (elevation) class 

S/N Elevation classes (m) Area occupied (ha) 

1 1520 -1546 6.957 

2 1546 - 1572 9.858 

3 1572 - 1598 6.761 

4 1598 - 1624 8.247 

5 1624 - 1650 7.465 

6 1650 - 1676 0.805 

Total  40.1 

 

 
Figure 4. DEM showing slope variations on various spatial area in the harvested forest compartment under study 

 
Table 3. Harvested area (ha) occupied by each terrain (slope) class 

S/N Slope classes (%) Description Spatial area (ha) 

1 0 - 10 Level terrain 9.896 

2 11-20 Gentle terrain 28.705 

3 21-33 Moderate terrain 1.549 

Total   40.1 

 

𝑆𝑙𝑜𝑝𝑒 (%) =
𝐷𝐸

𝐻𝐷
𝑥100%     (3) 

Where; DE is the change in elevation between the 

landing and bunching site, HD is the horizontal distance 

obtained through Pythagoras theorem (Equation 4). 

Under CA, distance and slope were measured directly 

using measuring tape and vertex hypsometer. 

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐻𝐷) = √𝑆𝐷2 − 𝐷𝐸2         (4) 

Where; SD is the slant distance on the surface of the 

terrain, DE is the change in elevation between the 

landing and bunching site. Detailed terrain variables 

information is presented in Table 4. 

 

2.5.1 GS productivity and costs estimates 

Since delay time was not captured in the GSPA, in 

order to bring a sense of comparison with CA, GS 

productivity estimation (Equation 5) was performed 

using the formula described by Mauya (2022) and 

Miyajima et al. (2021). 

 

P =   

𝑇𝑣𝑜𝑙 (𝑚3)𝑥 (60)

𝑃𝑀𝐻
    (5) 

Where; P is the GS productivity (m3/hr), 60 is the time 

conversion factor from minutes to hours and PMH is the 

productive machine hour (i.e., delay free). 

Following US dollar being a global means of 

exchange, unit skidding costs (Equation 6) was estimated 

in USD/m3 based on Tanzania Central Bank (BOT) 

exchange rates of 5th April 2023, which was 1 USD to 

2301.7 TSHS. 

 

Unit skidding costs (USD/m3) = 
Hourly skidding costs (USD/hr) 

Production rate(m3/hr)
   (6) 
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Table 4. Sources and properties of the terrain variables used to develop study area DEM and slope map 

S/N Variable Data Source Precision Level 

1 Elevation (m) 
Field based data (captured using 

GPSMAP64csx) 
± 3.0 m 

2 Slope (%) 

1.Field based data (i.e., Sample plot elevation 

captured using   GPSMAP64csx)  
 

2.Geospatial based data (i.e., Skidding distance 

obtained through Least cost path on QGIS) 

± 3.0 m 

 

 

30 m Resolution 

3 DEM 
Geospatial based data (acquired from 

https://earthexplorer.usgs.gov/) 
30 m Resolution 

4 Skidding distance (m) 
Geospatial based data (Obtained through Least 

costs path on QGIS) 
30 m Resolution 

 

2.5.2 Model development 

Productivity and cost predictions were carried out 

using parametric and non-parametric models. Prior to 

parametric modelling, the normality test for selected 

predictor variables was performed using the Shapiro-

Wilk test, followed by a multicollinearity test using 

variance inflation factor (VIF) analysis. Variables with a 

VIF value > 5 were excluded in the model (Korkmaz et 

al., 2014). Parametric modelling  was performed based 

on the previous logging studies; Conrad et al. (2013), 

Long (2003), and Wang et al. (200 4, 2005) using the 

GLM approach (Equation 7) since it is flexible and can 

avoid data originality loss due to log and back 

transformations (Lindsey, 1998). 

 

𝑔(µ𝑖) = 𝑛𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖 2 + 𝛽𝑘𝑥𝑖𝑘 + ᶓ          (7) 

 

Where; g(µi) = ni is a smooth and invertible 

linearizing link function g (·), which transforms the 

expectation of the response variable, μi = E (Yi), to the 

linear predictor, α is the model intercept while “β1 xi1 + β2 

x i2 +…. βk xi k” are predictor variables.  

Since the data are continuous, Gaussian family and 

identity link was applied to ensure normal distribution of 

error terms. 

On the other hand, geospatial (i.e., raster) models for 

predicting GS performance (i.e., productivity and costs) 

on the specific terrain were performed through Inverse 

Distance Weighting (IDW) interpolation techniques 

(Equation 8), which refers to estimation of values (i.e., 

productivity and costs) at unknown terrain using discrete 

terrain data set of specific sample plots in order to 

generate continuous surface. 

 

Z(x) = 

∑
𝑧𝑖

𝑑
𝑖
𝑝

𝑛
𝑖=1

∑
1

𝑑
𝑖
𝑝

𝑛
𝑖=1

     (8) 

where; Z (x) is the interpolated productivity and costs 

value at the unknown terrain. Zi is the known 

productivity and costs at the sample plots. d i is the 

distance from the unknown location x to the sample plots. 

p is the power parameter that controls the influence of 

distance (normally; 1 for Euclidean distance and 2 for 

Manhattan distance). 

 

2.5.3 Model validation 

Model validation is usually  encouraged for its 

accuracy (James et al., 2013; Jimmy et al., 2013). Cross 

validation was performed by randomly splitting 120 GS 

observations into ten-folds with 12 observations each. 

During each iteration, a subset was reserved for 

evaluating model performance, while the rest of subsets 

were utilized as a training data (James et al., 2013). The 

goodness of fit for the models was assessed through 

coefficient of determination (R2) (Equation 9), residual, 

and scatter plots (Figures 8 and 9). Furthermore, model 

quality was assessed through relative mean square error 

(RMSEr) using its predicted values (Equation 11). A 

higher R2 and lower RMSEr value typically signify the 

precise estimation of the model. 

 

𝑃𝑠𝑒𝑢𝑑𝑜 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 − (
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑁𝑢𝑙𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒
)*100         (9) 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑦 𝑖  )

2

𝑛
𝑛
𝑖=1    (10) 

RMSEr =  
𝑅𝑀𝑆𝐸

𝑦  
𝑥100     (11) 

Where; ∑ isn
i=1  the sum of all observation from i =1 

to i = n, 𝑦𝑖 and ŷ𝑖  denote observed and predicted 

variables for, productivity and unit skidding costs in a 

given i observation respectively. RMSE is the root mean 

square error (Equation 10), 𝑦̅ denotes observed mean 

productivity and costs on the entire GS observations, and 

n is the total number of GS observations. 

Moreover, on assessing if there is a gain in precision 

while using GSPT on estimating GS productivity and 

costs, the relative efficiency (RE) of GSPM over CM, 

which indicates the level of accuracy for the model’s 

parameters estimates (Equation 12) was calculated as 

follows: 

https://earthexplorer.usgs.gov/


Eur J Forest Eng 2024, 10(1):1-14 

7 
 

Relative efficiency (RE) = 
𝑉𝑎𝑟(𝐶𝑀)

𝑉𝑎𝑟(𝐺𝑆𝑃𝑀)
   (12) 

Where; RE is the relative efficiency of GSPM over 

CM, Var (CM) is the variance of the CM, and Var 

(GSPM) is the variance of the GSPM used to estimate 

productivity and costs. RE value greater than 1.0 

indicates higher efficiency of GSPM estimates than CM 

estimates on GS productivity and cost predictions. 

 

3. Results 

Harvested forest compartment exhibited a total area 

of 40.1 hectare (ha) with an elevation range of 1520 m to 

1676 m above mean sea level (a.s.l). For both CA and 

GSPA, 120 skidding cycles were studied, giving an 

average skidding time of 4.519 minutes and 4.485 

minutes, respectively. Average skidding distance and 

slope were observed to be 59.218 m and 13.52 % for CA, 

while for GSPA, it was 62.792 m and 11.02 % 

respectively. The harvested tree DBH ranged from 12 cm 

to 69 cm, averaging 32.5 cm (Figure 5). 

 

 
Figure 5. Tree DBH distribution throughout the compartment 

understudy 

 

3.1 GS productivity and costs 

For both CA and GSPA logging plans, fuel appeared 

to be cost fully variable which consumed 71.69 % of the 

total GS hourly costs, while the least costs variable was 

labour (L) which consumed 1.43 % of the entire 

operational hourly costs (Figure 6). Interest costs is zero 

since the machine was purchased cash without interest 

rate. 

 

 
Figure 6. GS hourly costs distributions in both approaches 

 

The average unit skidding costs in GSPA logging plan 

was 2.121 USD/m3 lower than the one in CA logging plan 

which was 2.914 USD/m3. On the other hand, estimated 

GS productivity under CA and GSP were 67.5 m3/hr and 

71.1 m3/hr respectively. Furthermore, the performed 

paired t-test indicated that there is significance deference 

in terms of productivity and costs (p-value < 0.05) 

between CA and GSPA (Figure 7). 

 

 
Figure 7. Error bars showing (a) average GS productivity and 

(b) average unit skidding costs under CA and GSPA logging 

plan 

 

3.2 GS productivity and costs models 

In both approaches, skidding distance (m) and slope 

(%) variables were good predictors for the machine 

productivity and costs (Table 5). Coefficient of 

determination (R2) for productivity and costs models for 

CA logging plan was 58.1% and 64.3 % respectively, 

while it was 62.9% and 60.8% respectively for GSPA 

logging plan. Furthermore, residual and scatter plots in 

both approaches appeared to be normally distributed, 

indicating a good fit (Figure 8 and 9). 

Table 5. GS productivity and costs models 

Model type Approach Model Pseudo R2 (%) RMSEr (%) 

Productivity CA 
72.651 - 2.309Slope - 0.333SkD + 10.890 

Av.trip volume 
58.1 49.3 

Unit skidding 

costs 
CA 

2.009 + 0.027Slope + 0.065 SkD – 0.422 Av.trip 

volume 
64.3 50.4 

Productivity GSPA 
59.142- 2.657Slope - 0.348SkD + 16.391 

Av.trip volume  
62.9 35.2 

Unit skidding 

costs 
GSPA 

2.233 + 0.024Slope + 0.021 SkD – 0.425 Av.trip 

volume 
60.8 33.4 

Av. trip volume = Average tree volume per trip, CA = Conventional approach, GSPA = Geospatial approach, SkD = Skidding distance. 
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Figure 8. Residual plots (a) and scatter plots (b) for the GS productivity and costs models under CA logging planning 

 

 
Figure 9. Residual plots (a) and scatter plots (b) for the GS productivity and costs models under GSPA logging planning 

 

3.3 GS productivity and costs predictions 

Since variable skidding distance (m) and slope (%) 

were observed as the main predictor of the GS 

performance, productivity decreased with the increase in  

 

 

 

distance and slope, while unit skidding costs increased as 

the terrain variables; skidding distance and slope 

increased in both CA and GSPA (Figure 10 and 11). 
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Figure 10. Boxplot showing effect of skidding distance and slope on GS productivity and costs under CA logging plan 

 

 
Figure 11. Boxplot showing effect of skidding distance and slope on GS productivity and costs under GSPA logging plan 

 

For CA, the average GS productivity in all terrain 

classes ranged from 20.1 m3/hr to 100 m3/hr, while unit 

skidding costs ranged from 1.3 USD/m3 to 5.8 USD/m3. 

For GSPA, GS productivity ranged from 30.5 m3/hr to 

126.6 m3/hr, while skidding costs ranged from 1.8 

USD/m3 to 4.9 USD/m3. Furthermore, based on the 

developed geospatial (raster) model (Figure 12), higher 

GS productivity is confined to areas with lower slopes, 

while higher skidding costs are confined to steep terrain 

areas. The area occupied by each productivity and cost 

range are presented in Table 6. 
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Figure 12. Raster model showing (a) GS productivity and (b) unit skidding costs on various slope ranges 

 
Table 6. Predicted GS productivity and costs and the area associated 

Productivity range  

(m3/hr) 

Area covered  

(ha) 

Unit costs range 

(USD/m3) 

Area covered  

(ha) 

0 - 25.0 0.1 0 - 1 1.6 

25.1 - 50.0 5.9 1.1-2.0 18.5 

50.1 - 75.0 24.4 2.1 - 3.0 17.3 

75.1 -100.0 4.4 3.1 - 4.0 1.9 

100.1 - 125.0 2.6 4.1 - 5.0 0.6 

125.1 - 150.0 1.1 5.1 - 6.0 0.1 

150.1 - 175.0 1.1 6.1 - 7.0 0.0 

175.1 - 200.0 0.4 7.0 - 8.0 0.0 

>200 0.1 >8.0 0.0 

TOTAL 40.1 TOTAL 40.1 

 

3.4 Relative efficiency between CM and GSPM on GS 

productivity and costs predictions 

In our study, we compared the precision of 

productivity and cost parameter estimates between CM 

and GSPM. The results showed that GSPM exhibited 

higher precision on estimating GS productivity and costs 

than CM, as evidenced by its RE value of 1.18 and 6.17 

for productivity and costs models, respectively. The 

findings were further verified by additional statistical 

parameters presented in Table 7. 

 
Table 7. Statistical parameters showing relative efficiency between CM and GSPM on the GS productivity and costs 

predictions 

Statistical 

Parameters 

Productivity model Costs model 

Variables Under 

GSPM 

Variables Under 

CM 

Variables Under 

GSPM 

Variables Under 

CM 

VAR 1082.98 1277.11 1.02 6.23 

SD 32.91 35.74 1.00 2.49 

SE 28.31 28.40 0.82 1.88 

N 120 120 120 120 

VAR = Variance, SD = Standard deviation, SE = Standard error, N = Grapple skidder work cycles 
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4. Discussion 

This study aimed to estimate and predict GS 

productivity and costs on various terrains using CM and 

GSPM at SHFP. It was mainly focused on ground 

skidding operations using a whole tree harvesting 

system. Objectively, the study intended to create baseline 

information on predicting mechanized skidding 

operations using CM and GSPM in the southern 

highlands of Tanzania and compare its relative efficiency 

to develop accurate information for future decision-

making and planning. Regression analysis using the 

GLM approach were employed to assess the machine 

interaction with environmental and other stand variables 

in predicting GS productivity and costs. 

The results revealed that the average skidding time 

was higher under CA, i.e., 4.519 minutes compared to 

4.485 minutes in the GSPA (p-value < 0.05). Such 

variation might be because machinery time estimation 

normally varies with methodological aspects and 

measurement systems used (Borz et al., 2015; Orlovský 

et al., 2020). For instance, in this study, skidding time 

under GSPA was indirectly estimated using stand 

variables: skidding distance, slope, and average tree 

DBH per turn, which typically rely on predicted values, 

compared to CA, which measures actual time in the field 

using various techniques such as continuous time study 

technique. Moreover, skidding trails under GSPA were 

mainly determined using cost distance analysis, which 

mainly relies on the least terrain path instead of using 

operator intuitions (Çalişkan and Karahalil, 2017), 

reduce machinery traversing time. 

A significant difference in GS productivity and costs 

(P-value < 0.05) between CA and GSPA (i.e., 67.5 m3/hr 

and 71.1 m3/hr, respectively) might be because skidding 

trails under CA were mainly decided through 

supervisor’s and operator’s intuitions. This might lead to 

poor machine performance during operations compared 

to GSPA, which normally relies on the least terrain 

(slope) variable in deciding the skidding trails. It reduced 

the traversing cycle time of the machine, resulting in 

higher productivity and lower skidding costs. Therefore, 

these findings signify the potential of integrating GSPT 

(i.e., DEM) into a mechanized timber harvesting plan 

since it provides basis for analyzing GS efficiency (Đuka 

et al., 2015). For instance, through cost distance analysis, 

we can easily determine the shortest and easiest route for 

the machine (i.e., Grapple skidder) mobility and 

trafficability, which will help to increase machinery 

efficiency (Phelps et al., 2021). 

GS productivity and cost predictor variables 

(distance, slope, and average volume per turn) were 

significant (p-value < 0.05) in both CM and GSPM. 

Geospatial-based productivity and cost models showed 

better performance with lower RMSEr values of 35.2% 

and 33.4%, respectively, compared to CM with RMSEr 

values of 49.3% and 50.4%, respectively. It implies that 

extracted terrain variables (slope and skidding distance) 

from resampled DEM with 15m x 15m resolution bring 

more accurate terrain information for predictions than 

the variables measured though CA. Similarly, studies by 

Agüera-Vega et al. (2020) and Kienzle (2004) reported 

that the accuracy of the DEMs is highly correlated with 

spatial resolution. For instance, we can use grid cells of 

5m x 5m to capture precise terrain information (i.e., 

altitude and slope) (Kienzle, 2004). Furthermore, all 

predictor variables in CM and GSPM show goodness of 

fit. Unit skidding cost variables of CM showed higher 

goodness of fit by having a higher R2 value of 64.3%, 

followed by productivity model in GSPA with R2 value 

of 62.9%. The lowest R2 value (58.1%) was observed in 

the productivity model under CA. The accuracy level for 

the model depends much on the closeness between 

observed and predicted variables, which are highly 

influenced by DEMs spatial resolution and data 

acquisition and processing efficiency (Agüera-Vega et 

al., 2020; Liu and Zhang, 2008). The closer values 

between observed and predicted values, the more 

accurate model (Figures 8 and 9). 

Variables: skidding distance, slope, and skidded 

volume per turn were significant predictor variables for 

GS productivity and costs in both CM and GSPM. For 

both approaches, GS productivity decreased when the 

terrain variables, such as skidding distance and slope, 

increased. Conversely, unit skidding costs were positive 

correlated with distance and slope (Figure 10 and 11). 

The potential of GSPM (i.e., DEM) in predicting GS 

productivity and costs were further revealed through a 

raster model (Figure 12) developed on QGIS software. 

Whereby 60.8% of the forest compartment area 

exhibited a predicted productivity range of 50 – 75 m3/hr 

(Table 6) with an average of 71.1 m3/hr, which is much 

closer to the predicted value obtained through parametric 

regression models using the GLM approach.  

Furthermore, productivity and cost models under 

GSPA demonstrated higher precision for the GS 

parameter estimates, by having RE value > 1. Similarly, 

the SE estimates for GSPM were relatively much smaller 

than CM. To achieve similar level of precision in CM, 

number of GS observations should be increased by a 

factor equivalent to the RE value (Mauya et al., 2015) 

(i.e., 18% and 17%) for productivity and cost estimates, 

which are equivalent to 142 and 140 observations 

respectively. 

Variations in efficiency between approaches (i.e., 

models) might be due to multiple factors, including 

sample size (Kachamba et al., 2017), the accuracy and 

consistency of the measuring instrument/procedures, the 

operating environment, the diversity of collected field 

variables, and the computational approach used to derive 

predictor variables. These factors align with the findings 

of Okey and Visser (2020), who investigated the 

influence of extraction method and processing location 

on forest harvesting efficiency in individual forest 

harvesting operations in New Zealand between 2009 and 

2018. 
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5. Conclusion 

Effective planning for sustainable and 

environmentally friendly timber harvesting operations is 

essential for the long-term management of forest 

resources in order to ensure benefits for present and 

future generations. The accuracy of planning techniques 

employed in various geographical locations varies 

depending on the measurements and quantification 

methods used. Among the different models used to 

predict GS productivity and costs, CM and GSPM have 

demonstrated superior performance, although with 

variations in accuracy levels. 

In large-scale timber harvesting scenarios, GSPM 

holds greater potential than the CM. It enables rapid 

coverage of extensive areas, providing parameter 

estimates with higher accuracy for predictions. By 

obtaining highly precise stand and terrain information, 

managers can make informed decisions regarding 

selecting and allocating appropriate harvesting systems 

and resources. This optimization can maximize 

productivity while minimizing overall operation costs 

and mitigating associated environmental impacts. 

Although GSPM utilizing Digital Elevation Models 

(DEM) derived from SRTM offer sufficiently accurate 

information for predicting GS productivity and costs, 

their efficiency, as shown in Table 7, may be influenced 

by the spatial resolution of the utilized imagery when 

extracting terrain variables (i.e., distance and slope). For 

future research, it is recommended to explore other 

remote sensing techniques such as Radial Basic 

Functions (RBF), Multi-log Function interpolation 

(MLF), ordinary kriging (KR), or spline-based 

interpolation and other platforms with higher resolution 

imagery for more accurate predictions of productivity 

and costs. 
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