
*Corresponding author, e-mail: ahsanshani36@gmail.com 

GU J Sci 30(3): 101-115 (2017) 

Gazi University 

Journal of Science 
 

http://dergipark.gov.tr/gujs  

A New Exponentiated Extended Family of Distributions with Applications 

M. ELGARHY1 , Muhammad Ahsan ul HAQ2,*, Gamze ÖZEL3, Muhammad Arslan NASIR4 

1Vice Presidency for Graduate Studies and Scientific Research, Jeddah University,KSA 

2College of Statistical & Actuarial Sciences, University of the Punjab, Lahore, Pakistan 

3Department of Statistics, Hacettepe University, Turkey 

4Govt. Degree College Lodhran, Punjab, Pakistan 

Article Info 

 

Abstract 

In this article, we propose a new family of distributions called “A New Exponentiated Extended 

G family of distributions” in short EEX-G family, which generalize the extended-G of Corideiro 

et al. (2013). We gave the infinite mixture representation of the EEX-G cdf and pdf in terms of 

base line cdf and pdf.  We study most of its mathematical properties. We give the explicit 

expression on ith order statistics as a linear combination of baseline cdf and pdf and model 

parameters are estimated by maximum likelihood method. The flexibility of the family is 

explained by four special models with their plots of density and hazard rate function. Finally the 

performance of the family is checked by fitting one of the special model on two real data sets. 
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1. INTRODUCTION 

 

In the last few years, several ways of generating new probability distribution from classic ones were 

developed and discussed by using a function of baseline cdf. Some well-known generators are the Marshall-

Olkin generated (MO-G) by Marshall and Olkin (1997), the beta-G by Eugene et al. (2002), Kumaraswamy-

G (Kw-G for short) by Cordeiro and Castro (2011), the McDonald-G (Mc-G) by Alexander et al. (2012), 

the gamma-G by Zografos and Balakrishnan (2009), the transformer (T-X) by Alzaatreh et al. (2013), the 

extended-G by Cordeiro et al. (2013), the Weibull-G by Bourguignon et al. (2014), the exponentiated half-

logistic by Cordeiro et al. (2014), the Kw-odd log-logistic-G by Alizadeh et al. (2015), type I half-logistic-

G by Cordeiro et al. (2015), Garhy-G by Elgarhy et al. (2016), KwWeibull-G by Hassan and Elgarhy 

(2016a), exponentiated Weibull-G by Hassan and Elgarhy (2016b), type II half logistic–G by Hassan et al. 

(2017). 

 

Ristic and Balakrishnan, (2011) proposed an alternative gamma generator for any continuous distribution

( )G x  which is defined as 

 

 
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where 
1

0

( ) tt e dt


     is the gamma function. 

This paper aims to introduce an Exponentiated version of the Extended-G (EX-G) distributions which is 

called as Exponentiated Extended-G (EEX-G) family of distributions. The paper is organized as. In section 

2, we defined the new EEX-G family. In section 3, we give infinite mixture representation of the EEX-G 

cdf and pdf in terms of base line cdf and pdf. In section 4, we give some mathematical properties including 

rth moment, rth incomplete moment, moment generating function and mean deviations. In section 5, the 
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density of ith order statistics is given and model parameters are estimated by ML method. In section 6, four 

special models are given along with their plots of density and hazard rate function. In section 7, application 

is carried out on two real data sets. 

 

2. THE EEX-G FAMILY 

 

In this section, (EEX-G) family is introduced. Kumaraswamy (1980) presented the Kw distribution with 

the following pdf 

 

 
1

1(t) 1 , 0 1 ; , 0.r t t t


   


         (2) 

 

Now, we obtain the new family by replacing the generator (t)r defined in (1) by the pdf generator defined 

in (2) and replacing  ( ( ))W G x  in (1) with  1 ( )
b

G x  as follows: 
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. 

Then, we obtain the cumulative density function (cdf) of the EEX-G family as  

 

𝐹(𝑥) = (1 − (1 − 𝐺(𝑥))
𝑏 𝛼

)
𝛽

, 𝑋 > 0.       (3) 

 

where , , 0b     are three shape parameters. The cdf (3) provides a wider family of continuous 

distributions. The pdf corresponding to (3) is given by 

 

   
1

1
( ) ( ) 1 ( ) 1 1 ( ) ,  0 ;b, , 0.

b b
f x b g x G x G x x
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  (4) 

 

Hereafter, a random variable X with pdf (4) is denoted by X~EEX-G. For 1,b   the EEX-G family reduces 

to EX-G family of distributions which is obtained by Cordeiro et al. (2013). 

 

The survival, hazard and cumulative hazard rate functions corresponding to (3) are, respectively, given by 
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and  

   ( ) ln 1 ( ) ln 1 1 1 ( ) .
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The quantile function of the EEX-G family is 
1( ) ( )Q u F u of X is derived as 

 1 1 ( ( )) .
b

u G Q u


   
   

After some algebra, the quantile function will be 
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1
1
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where u follows  uniform distribution on the interval  0,1  and  
1(.)G

is the inverse function of (.)G . 

In particular, Q(0.5) is the median of the family and defined by  

 

 

1
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1 1 1 0.5 .
b

Median G
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3. MATHEMATICAL PROPERTIES 

 

In this section some mathematical properties of the EEX-G family are given, 

 

a. Infinite Mixture Representation 

 

In this subsection, useful expansions for the pdf and cdf of the EEX-G family of distributions is provided. 

First, we obtain an expansion for the cdf defined in (3). The generalized binomial expansion is given by 

 

 
11

0

1 ( 1)  ,i i

ii

z z
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
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By applying the generalize binomial theorem to (4), the expression (1 − 𝐺(𝑥))𝑏 𝛼  becomes  

 

(1 − 𝐺(𝑥))
𝑏 𝛼

= ∑ (
𝑏 𝛼

𝑗
) (−1)𝑖∞

𝑗=0 𝐺𝑗(𝑥)              (6) 

Rewriting  

∑ (
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𝑗
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∞
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Where 𝑎𝑗 = (
𝑏 𝛼

𝑗
) (−1)𝑖 

 

Now (6) becomes 

(1 − 𝐺(𝑥))𝑏 𝛼 = ∑ 𝑎𝑗 𝐺
𝑗(𝑥)∞

𝑗=0     (7) 

 

Substituting (7) in (3), we have 

𝐹(𝑥) = (1 − ∑ 𝑎𝑗 𝐺
𝑗(𝑥)

∞

𝑗=0

)

𝛽

 

Rewriting  

𝐹(𝑥) = (∑ 𝑏𝑗 𝐺
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∞
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𝛽

 

Where  𝑏0 = 1 − 𝑎0 and for 𝑗 ≥ 1, 𝑏𝑗 = 𝑎𝑗. Using power series expansion (Gradshteyn and Ryzhik, 2000) 

page 17, we have 

𝐹(𝑥) = ∑ 𝑐𝑗:𝛽 𝐺
𝑗(𝑥)

∞

𝑗=0
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where 𝑐0:𝛽 = 𝑏0
𝛽

 ,  𝑐𝑚 =
1

𝑚 𝑏0
∑ (𝑘𝛽 − 𝑚 + 𝑘)𝑏𝑘𝑐𝑚−𝑘

𝑚
𝑘=1  for 𝑚 ≥ 1 

 

Rewriting the above expression, we have 

 

   𝐹(𝑥) = ∑ 𝑐𝑗:𝛽 𝐺
𝑗(𝑥) =∞

𝑗=0 ∑ 𝑐𝑗:𝛽 𝐻𝑗(𝑥)∞
𝑗=0      (8) 

 

Similarly, the density in Eq. (4) can be expressed as 

 

𝑓(𝑥) = ∑ 𝑐𝑗:𝛽 (𝑗 − 1)𝑔(𝑥)𝐺𝑗−1(𝑥)∞
𝑗=0 = ∑ 𝑐𝑗:𝛽 ℎ𝑗−1(𝑥)

∞
𝑗=0              (9) 

 

Where 𝐻𝑗(𝑥) and ℎ𝑗−1(𝑥) are the exp-G cdf and pdf of the baseline distributions.  

Now, we obtain an expansion for [ ( )]hF x where h is an integer and β is a real non-integer. Again, the 

binomial expansion is worked out for[ ( )]hF x  as follows: 

𝐹ℎ(𝑥) = (1 − (1 − 𝐺(𝑥))
𝑏 𝛼

)
𝛽ℎ

 

Then, the binomial expansion is applied to  1 ( )
b k

G x


  and we have 
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𝑖
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∞
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. 

 

Finally, we can write  

 𝐹ℎ(𝑥) = ∑ 𝑤𝑖𝐺𝑖(𝑥)∞
𝑖=0   ,              (10) 

 

where 𝑤𝑖 = ∑ (
𝛽ℎ
𝑗

) (
𝑏𝛼𝑗

𝑖
) (−1)𝑖+𝑗∞

𝑗=0 . 

 
b. Moments 

 

The rth moment of the EEX-G family can be obtained by using following expression 

´ ( ) .r

r x f x dx




 
              

Using the infinite mixture representation of the pdf in (x) we have 

 

𝜇𝑟 = ∑ 𝑐𝑗:𝛽 
∞
𝑗=0 ∫ 𝑥𝑟ℎ𝑗−1(𝑥)𝑑𝑥

∞

−∞
. 

 
𝜇𝑟 = ∑ 𝑐𝑗:𝛽 

∞
𝑗=0 𝛾𝑟.              (11) 

 

Where 𝛾𝑟 = ∫ 𝑥𝑟ℎ𝑗−1(𝑥)𝑑𝑥
∞

−∞
. 

 

The rth moments can be obtained by using quantile function 

 

𝜇𝑟 = ∑ 𝑐𝑗:𝛽 ∫ 𝑢𝑗−1(𝑄𝐺(𝑢))𝑟𝑑𝑢
1

0

∞

𝑗=0

 

 

c. Moment Generating Function 

 

The moment generating function of EE family can be obtained as 
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𝑀0(𝑡) = ∑ 𝑐𝑗:𝛽 

∞

𝑗=0

∫ 𝑒𝑡𝑥ℎ𝑗−1(𝑥)𝑑𝑥
∞

−∞

 

 

𝑀0(𝑡) = ∑ 𝑐𝑗:𝛽 
∞
𝑗=0 𝑀𝑥(𝑡)                   (12) 

 

where 𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥ℎ𝑗−1(𝑥)𝑑𝑥
∞

−∞
. 

 

The moment generating function of EEX-G family can be obtained by using quantile function. 

 

𝑀0(𝑡) = ∑ 𝑐𝑗:𝛽 

∞

𝑗=0

∫ 𝑒𝑡(𝑄𝐺(𝑢))𝑢𝑗−1
1

0

𝑑𝑢 

 

d. Incomplete Moments 

 

The rth incomplete moment of the EEX-G family can be obtained by using following expression 

 

        𝑇𝑟(𝑥) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
𝑥

−∞
      

 

Using the infinite mixture representation of the pdf in (x) we have 

 

𝑇𝑟(𝑥) = ∑ 𝑐𝑗:𝛽 
∞
𝑗=0 ∫ 𝑥𝑟ℎ𝑗−1(𝑥)𝑑𝑥

𝑥

−∞
. 

   𝑇𝑟(𝑥) = ∑ 𝑐𝑗:𝛽 
∞
𝑗=0 𝜑𝑟.          (13) 

Where 𝜑𝑟 = ∫ 𝑥𝑟ℎ𝑗−1(𝑥)𝑑𝑥
𝑥

−∞
. 

 

The rth incomplete can be obtained by using quantile function 

 

𝑇𝑟(𝑥) = ∑ 𝑐𝑗:𝛽 ∫ 𝑢𝑗−1(𝑄𝐺(𝑢))𝑟𝑑𝑢
𝑞

0

∞
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e. The Mean Deviation 

 

The mean deviations of the EEX-G family can be obtained by following expressions 

 

1( ) 2 ( ) 2 ( )X F T      and 2 ( ) 2 (M),X T    

 

Where 𝜇 = 𝐸(𝑥) is mean can easily be obtained from Eq. (x), 𝐹(𝜇) can be obtained from Eq.(3) and 𝑀 =
𝑚𝑒𝑑𝑖𝑎𝑛 given in Eq. (x) and 𝑇(𝑥) is the first incomplete moment given in Eq.(x). 

 

f. Order Statistics 

 
Order statistics make their appearance in many areas of statistical theory and practice. Let

(1) (2) ( )... nX X X   be an ordered random sample from a population of size n following the EEX-G 

family. The density of ith order statistic is  

𝑓(𝑥𝑖:𝑛) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (

𝑛 − 𝑖
𝑗

) (−1)𝑗

𝑛−𝑖

𝑗=0

𝑓(𝑥)𝐹𝑗+𝑖−1(𝑥) 

 

Using pdf and cdf of EEX-G family in (.) and (.), we have 
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𝑓(𝑥𝑖:𝑛) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (

𝑛 − 𝑖
𝑗

) (−1)𝑗

𝑛−𝑖

𝑗=0

[𝛼𝛽𝑏 𝑔(𝑥)(1 − 𝐺(𝑥))
𝑏 𝛼−1
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𝑏 𝛼

)
𝛽−1

]

× [(1 − (1 − 𝐺(𝑥))
𝑏 𝛼

)
𝛽

]
𝑗+𝑖−1

 

 

Using generalized binomial expansion and after some algebra, we have 

 

𝑓(𝑥𝑖:𝑛) = ∑ 𝑉𝑙ℎ𝑙(𝑥)

∞

𝑙=0

 

 

Where 𝑉𝑙 = ∑ ∑ (
𝑛 − 𝑖

𝑗
) (𝛽(𝑖 + 𝑗) − 1

𝑚
)∞

𝑚=0 (
𝑏𝛼(𝑚 + 1) − 1

𝑙
)

(−1)𝑗+𝑚+𝑙

𝑙+1
𝑛−𝑖
𝑗=0   

 

and ℎ𝑗(𝑥) = (𝑗 + 1)𝑔(𝑥)𝐺𝑙(𝑥). 

 

Moments of the ith order statistics can be defined as 

  

𝐸(𝑥𝑖:𝑛) = ∫ 𝑥𝑖:𝑛
𝑟𝑓(𝑥𝑖:𝑛) 𝑑𝑥𝑖:𝑛

∞

−∞
        (14) 

 

Substituting (14) in (13), we have 

𝐸(𝑥𝑖:𝑛) = ∑ 𝑉𝑙

∞

𝑙=0

∫ 𝑥𝑖:𝑛
𝑟ℎ𝑙(𝑥𝑖:𝑛) 𝑑𝑥𝑖:𝑛

∞

−∞

 

 

g. The Probability Weighted Moments 

 

The probability weighted moment of EEX-G family can be obtained as 

, [ F( ) ] f( )(F( )) .r s r s

r s E X x x x x dx




  
   

Substituting (8) and (9) into (10), replacing h with s, we have 

 

𝜏𝑟,𝑠 = ∫ 𝑋𝑟 ∑ 𝑤𝑖𝐺𝑖(𝑥) ∑ 𝑐𝑗:𝛽 ℎ𝑗−1(𝑥)

∞

𝑗=0

𝑑𝑥

∞

𝑖=0

∞

−∞

 

 

𝜏𝑟,𝑠 = ∑ ∑ 𝑗 𝑤𝑖𝑐𝑗:𝛽 
∞
𝑗=0

∞
𝑖=0 ∫ 𝑋𝑟𝑔(𝑥)𝐺𝑖+𝑗−1(𝑥)𝑑𝑥

∞

−∞
             (15) 

 

Then, we have 

𝜏𝑟,𝑠 = ∑ ∑ 𝑗 𝑤𝑖𝑐𝑗:𝛽 

∞

𝑗=0

∞

𝑖=0

𝛾𝑟,𝑖+𝑗 

 

Where 𝛾𝑟,𝑖+𝑗 = ∫ 𝑋𝑟𝑔(𝑥)𝐺𝑖+𝑗−1(𝑥)𝑑𝑥
∞

−∞
 

 

Additionally, different form is yielded by using quantile function as follows: 

 

𝜏𝑟,𝑠 = ∑ ∑ 𝑗 𝑤𝑖𝑐𝑗:𝛽 

∞

𝑗=0

∫ 𝑢𝑖+𝑗(𝑄𝐺(𝑢))𝑟𝑑𝑢
1

0

∞

𝑖=0
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4. SPECIAL DISTRIBUTIONS 

 

In this section, we will give some special models of EEX-G family.  

 

a. The EEX-Uniform (EEX-U) Distribution 

If Uniform distribution is the base line distribution having pdf and cdf 
1

( , )g x 


  , 0 x   and 

( , )
x

G x 


  , then the cdf and pdf of EEX-U distribution are, respectively, given below 

( ) 1 1 ,  

b
x

F x






  
    

     
and 

 

1
1

1 1 1 , 0 .


     

         
     

b b
b x x

f x x


 




  
 

 

In Figure 1 (a) and Figure 2 (a) the plots of density and hazard rate function are given. The density of EEX-

U is U shape, J-shape and symmetrical and hrf is increasing and bathtub. 

 

b. The EEX –Burr XII (EEX-BXII) Distribution 

 

If Burr XII distribution is the base line distribution having pdf and cdf 

1 1g( , , , ) [1 ( ) ] ,   , , 0,c c cx
x c c x c    



       and ( , , , ) 1 [1 ( ) ] . cx
G x c  



    , then the cdf and pdf 

of EEX-B distribution are, respectively, given below  

( ) 1 1  ,  0,
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In Figure 1 (b) and Figure 2 (b) the plots of density and hazard rate function are given. The density of EEX-

B is reversed J, symmetrical and right skewed and hrf is decreasing and upside-down bathtub. 

 

c. The EEX-Weibull (EEX-W) Distribution 

 

If Burr XII distribution is the base line distribution having pdf and cdf 𝑔(𝑥, 𝜆, 𝛾) = 𝜆𝛾𝑥𝛾−1𝑒−𝜆𝑥𝛾
 and 

(𝑥, 𝜆, 𝛾) = 1 − 𝑒−𝜆𝑥𝛾
, then the cdf and pdf of EEX-W distribution are, respectively, given below 
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In Figure 1 (c) and Figure 2 (c) the plots of density and hazard rate function are given. The density of EEX-
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W is reversed J, symmetrical and right skewed and hrf increasing and decreasing. 

 

d. The EEX-Quasi Lindley (EEX-QL) Distribution 

 

If Burr XII distribution is the base line distribution having pdf and cdf g( , ) ( )
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In Figure 1 (d) and Figure 2 (d) the plots of density and hazard rate function are given. The density of EEX-

QL is reversed J and right skewed and hrf is increasing and decreasing. 
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Figure 1. Plots of (a) EEX-U (b) EEX-BXII (c) EEX-W (d) EEX-QL densities. 
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(b) 

 
(c) 
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Figure 2. Plots of (a) EEX-U (b) EEX-BXII (c) EEX-W (d) EEX-QL hazard rate. 

 

From Figures 1 and 2 we conclude that the density shapes of EEX-G model are left-skewed, right-skewed, 

decreasing, symmetric and J-shaped and the hazard rate shape are increasing, decreasing, left-skewed, right-

skewed, symmetric, and bathtub shaped. This attractive flexibility makes the hrf of the EEX-G useful and 

suitable for non-monotone empirical hazard behaviors which are more likely to be encountered or observed 

in real life situations.  

 

5. MAXIMUM LIKELIHOOD METHOD 

 

In this section, the method of maximum likelihood method is used to estimate the EEX-G parameters Θ =
(𝑏, 𝛼, 𝛽, 𝜉 )𝑇. The maximum likelihood estimates (MLEs) enjoy desirable properties that can be used when 

constructing confidence intervals and regions and deliver simple approximations that work well in finite 

samples. The resulting approximation for the MLEs in distribution theory is easily handled either 

analytically or numerically. If 𝑥1, , . . , 𝑥𝑛be a sample of size n from the EEX-G family, then the log-

likelihood function for the vector of parameters is 
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Setting  , ,bU U U    and  U   equal to zero and solving the equations simultaneously yields the maximum 

likelihood estimates. Note that these equations cannot be solved analytically and statistical software can be 

used to solve those numerically using iterative methods.  

 

6. APPLICATION 

 

In this section, we provide two applications to real data to illustrate the flexibility of the EEX-G family and 

EEX-W distribution. The first data set consists of a random sample of 128 bladder cancer patients. The data 

set reported in Hashmi and Memon (2016).  

 

The second data set represents by Silva et al. (2010) the maximum annual flood discharges in units of 1000 

cubic feet per second, of the North Saskachevan River at Edmonton, over a period of 48 years. 

 

The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimization (L-BFGS-B) and 

the log-likelihood function evaluated. The goodness-of-fit measures; Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), Anderson-Darling (A∗), Cramér–von Mises (W∗) are computed. The 

lower the values of these criteria, the better the fit. We compare the EEX-W distribution with those of the 

Weibull (W), Gamma (G), beta exponential (BE), transmuted exponentiated Weibull (TEW), exponentiated 

transmuted generalized Rayleigh (ETGR) (Afify et al., 2015), gamma Weibull (GW), exponentiated 

Weibull (EW) and transmuted additive Weibull (TAW). The MLEs and some statistics of the models for 

the first data set are presented in Tables 1 and 2, respectively. 

 

Table 1. The MLEs for the first data set. 

Distribution 
Estimates 

�̂� �̂� 𝛾 �̂� �̂� 

EEX-W 0.6304 1.28136 0.65441 2.79601 0.561649 

TEW 0.7449 - 1.13333 0.0478274 0.000011 

BE 1.4485 0.179191 - - 0.645544 

ETGR 7.3762 - 0.0494 0.0473 0.118 

W - - 1.04783 - 10.651 

G - - 1.17251 - 7.98766 

 

Table 2. Some statistics for the models fitted to the first data set. 

Model 
Goodness of fit criteria 

AIC BIC L A W 

EEX-W 831.36 845.620 -410.680 0.27198 0.04050 

TEW 832.92 849.925 -411.958 0.56339 0.08826 

BE 832.69 847.244 -412.344 0.56139 0.09984 

ETGR 866.35 877.758 -429.175 2.36077 0:39794 

W 832.17 846.878 -414.087 0.96345 0.15430 

G 832.74 846.44 -413.368 0.77625 0.13606 
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Tables 3 and 4 present the MLEs and some statistics of the models for the second data set. 

 

Table 3. The MLEs for the second data set. 

Distribution 
Estimates 

�̂� �̂� 𝛾 �̂� �̂� 

EEX-W 1.76775 12.2004 0.224467 35778.6 0.217492 

TAW 0.000236 1.94727 5.86338*10^-13 0.535489 0.703578 

EW 5.86338*10^-13 0.00074 - - 1.77242 

W - - 1.77242 - 1350.96 

GW 4.11135 - 0.721162 - 3.52303 

 

Table 4. Some statistics for the models fitted to the second data set. 

Model 
Goodness of fit criteria 

AIC BIC L A W 

EEX-W 440.568 449.924 -215.284 0.18857 0.025970 

TAW 458.199 467.555 -224.100 1.46318 0.213104 

EW 457.413 463.027 -225.706 1.80212 0.279709 

W 455.413 459.155 -225.706 1.80212 0.279709 

GW 446.724 452.338 -220.362 0.94575 0.141279 

 

The values in Tables 2 and 4 indicate that the EEX-W model has the lowest values for AIC, BIC, A and W 

among all fitted models (for the two real data sets). So, the EEX-W models could be chosen as the best 

models. Then, the estimated pdfs and cdfs are displayed in Figures 3 and 4. It is clear from Figures 3 and 4 

that the new EEX-W distribution provides the best fits to both data sets. 

 

  

Figure 3. Plots of the estimated pdfs and cdf for the EEX-W and their sub-models for the data set-1 
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Figure 4. Plots of the estimated (a) pdfs and (b) cdfs for the EEX-W and their sub-models for the 

data set-2. 

 

 

7. CONCLUSIONS 

 
In this paper, we discuss a special family of absolutely continuous distribution namely the exponentiated 

extended-G (EEX-G) family of distributions. This family of distributions have been obtained by adding 

one extra shape parameter to extend the extended-G class. Properties of the EEX-G were discussed, such 

as, expressions for the density function, moments, mean deviation, quantile function and order statistics. 

The maximum likelihood method is employed for estimating the model parameters. Four special models 

namely, exponentiated extended Uniform, exponentiated extended Burr XII and exponentiated extended 

quasi Lindley, are provided. Further, the derived properties of the generated family are valid to these 

selected models. We also provide two real life applications for a specific member of the EEX-G family. 

Results of the applications nicely exhibit the fact that the EEX-G family performs better in some situations 

in comparison to its parent model. We wish a broadly statistical application in some area for this new 

generalization. 
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Data set-1: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 

2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 

5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 

43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 

7.87, 11.64, 17.36, 1.40, 3.02, 4.34,5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 

4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 

6.93, 8.65, 12.63, 22.69. 

 Data set-2: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600, 

30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000, 40.400, 

40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 61.740, 

65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560. 


