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 Since Molodtsov first introduced soft set theory, a useful mathematical tool for solving problems 
related to uncertainties, many soft set operations have been described and used in decision 
making problems. In this study, a new soft set operation called complementary soft binary 
piecewise symmetric difference operation is defined, and its properties are examined in 
comparison with the basic algebraic properties of the symmetric difference operation. 
Moreover, it has been shown that the collection of soft sets with a fixed set of parameter together 
with complementary soft binary symmetric difference and restricted intersection, is a 
commutative hemiring with identity and also a Boolean ring. 
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1. INTRODUCTION 
 
In real life, we tackle problems in a variety of disciplines, including engineering, environmental sciences, health sciences, 
and economics. But there is some kind of uncertainty that prevents traditional methods from being used effectively. 
Molodtsov [1] proposed Soft Set Theory in 1999 as a mathematical way of dealing with these uncertainties. Since then, this 
theory has been applied to a wide range of fields, including information systems, decision making, optimization theory, game 
theory, operations research, measurement theory, and some algebraic structures. The first contributions to soft set 
operations were made by Maji et al. [2] and Pei and Miao [3]. Subsequently, Ali et al. [4] presented and discussed several 
soft set operations, including restricted and extended soft set operations. The basic properties of soft set operations and the 
relationships between them were described in [5]. In [5], the idea of restricted symmetric difference operation was also 
explored and defined. An entirely new soft set operation called extended difference of soft sets was proposed by Sezgin et 
al. [6]. Stojanovic [7] introduced the extended symmetric difference of soft sets and studied the properties of the term. Eren 
[8] created an entirely new class of soft difference operation (called soft binary piecewise difference operation) and also 
carefully analyzed the core properties of the operation. Other soft binary piecewise operations have been defined by Yavuz 
[9], who also carefully analyzed their core properties. The concept of soft set operations has been extensively studied since 
2003, as it is a fundamental concept of soft set theory. We refer to [10-28] for more details about soft set operations. 
Semirings, first described by Vandiver [29] in 1934, consist of a set R and two associative binary operations, addition '+' and 
multiplication '.', with '+' distributing from both sides. Various researchers, including [30,31], have published different 
theories and findings on semirings, and some have studied semirings with additive inverse [32-35]. Semirings have been 
extensively studied recently, especially for their applications (see [36]). Semirings are extremely important in geometry, but 
they are also essential for solving problems in a variety of practical mathematics and informatics applications and are also 
important in pure mathematics. [37-45]. Hemiring means a special semiring with zero and commutative addition. Hemiring 
is also very important in theoretical computer science. Hemiring occurs naturally in a variety of applications in formal 
language theory, computer science, and automata [44–45]. 
This study contributes to the literature on soft set theory by describing a new soft set operation called "Complementary Soft 
Binary Piecewise Symmetric Difference Operation". This paper is organized as follows: Section 2 recalls the basic concepts 
regarding soft set theory and semirings. Section 3 gives definitions and examples of complementary soft binary piecewise 
symmetric difference operations. A full analysis of the algebraic properties of the new operation, including closure, 
associativity, unity, inverse elements, and abelian properties, is then also examined in comparison to the classical set-
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theoretic symmetric difference operation. In the same section, it is proved that the set of all soft sets with a fixed set of 
parameter together with soft binary piecewise symmetric difference and restricted intersection is both a commutative 
hemiring with identity and a Boolean ring. The conclusion section considers the significance of the research findings and 
their possible impact on the subject. Introducing new soft set operations and the extractions of algebraic properties and 
their implementations will provide new perspectives in dealing with problems containing parametric data. 
 
2. PRELIMINARIES 
 
Definition 2.1. [1] Let  U be the universal set,  E be the parameter set, P(U) be the power set of U and A ⊆ E. A pair  (F, A) is 
called a soft set over U where F is a set-valued function such that F: A → P(U). 
Throughout this paper, the set of all the soft sets over U is designated by SE(U). Let A be a fixed subset of E and SA(U) be the 
collection of all soft sets over U with the fixed parameter set A. Clearly SA(U) is a subset of SE(U).  From now on, while soft 
set will be designated by SS and parameter set by PS; soft sets will be designated by SSs and parameter sets by PSs for the 
sake of ease. 
Definition 2.2. [4] (W, K) is called a relative null SS (with regard to K), denoted by ∅K, if  W(ζ) = ∅ for all ζ∈W and (W, K) is 
called a relative whole SS (with regard to K), denoted by  UK if  W(ζ) = U  for all ζ∈W. The relative whole SS  UE with regard 
to E is called the absolute SS over U. We shall denote by ∅∅ the unique soft set over U with an empty parameter set, which is 
called the empty soft set over U. Note that ∅∅  and ∅A are different soft sets over U [17].  
Definition 2.3. [3] For two SSs (W, K)  and (Ş, T), (W, K)  is a soft subset of (Ş, T) and it is denoted by  (W, K) ⊆̃ (Ş, T),  if  K⊆
T and W(ζ) ⊆ Ş(ζ), ∀ ζ ∈ K. Two SSs (W, K)  and (Ş, T) are said to be soft equal if (W, K) is a soft subset of (Ş, T) and (Ş, T) is 
a soft subset of (W, K). 
Definition 2.4. [4] The relative complement of a SS (K, W), denoed by (W, K)r, is defined by (W, K)r = (Wr, K), where 
Wr: K → P(U) is a mapping given by (W, K)r = U\W(ζ) for all ζ ∈ W. From now on,  U\W(ζ)=[W(ζ)]′ will be designated by 
W’(ζ) for the sake of ease.  
Let " Θ " be used to denote the set operations (Namely, Θ here can be ∩, ∪, \, ∆), then the soft set operations can be grouped 
into the following categories as a summary: 
Definition 2.5. [4,5] Let (W, K) and (Ş, T) be SSs over U. The restricted  Θ operation of (W, K) and (Ş, T) is the SS (X,B), 
denoted by, (W, K)ΘR(Ş, T) = (X, B), where  B = K ∩ T ≠ ∅ and  ∀ζ ∈ B, X(ζ) =W(ζ) Θ Ş(ζ). Here note that if K ∩ T = ∅, then 
(W, K)ΘR(Ş, T) = ∅∅ [17]. 
Definition 2.6. [3,4,6,7] Let (W, K) and (Ş, T) be SSs over U. The extended  Θ operation of (W, K) and (Ş, T) is the SS 
(X,B), denoted by (W, K)Θε(Ş, T) = (X, B), where  B = K ∪ T and ∀ζ ∈ B,  

X(ζ) = {

W(ζ), ζ ∈ K\T,

Ş(ζ), ζ ∈ T\K,

W(ζ) ΘŞ(ζ),  ζ ∈ T ∩ Ş.

  

Definition 2.7. [8,9] Let (W, K) and (Ş, T) be SSs over U. The soft binary piecewise Θ operation of (W, K) and (Ş, T) is the SS 

(B,K), denoted by (W, K)
~
Θ (Ş, T ) = (X, K), where  ∀ζ∊K, 

 
                 W(ζ),                          ζ∊K\T  
X(ζ)= 
                 W(ζ) Θ Ş(ζ),             ζ∊K∩T      
Definition 2.8. [10-13] Let (W, K) and (Ş, T) be SSs over U. The complementary soft binary piecewise Θ operation of (W, K) 

and (Ş, T) is the SS (X, K), denoted by, (W, K)
＊
~
Θ

(Ş, T ) = (X, K), where ∀ζ∊K, 

                 W’(ζ),                         ζ∊K\T 
X(ζ)=  
                 W(ζ) Θ Şζ),               ζ∊K∩T    
In mathematics, a semiring is used in abstract algebra to describe an algebraic structure which is more general than ring. A 
semiring (R,+, ・) is an algebraic structure consisting of a non-empty set R together with two binary operations usually 

called addition and multiplication such that (R,+) is a semigroup, (R, ・) is a semigroup and multiplication is distributive 
over addition from both sides. If a semiring has identity with multiplication, then it is called semiring with identity and if it 
has commutative multiplication, then it is called a commutative semiring. If there exists an element 0 ∈ R such that 0・a =a

・0 =0 and 0 + a =a + 0 =a for all a ∈ R, then 0 is called the zero of R. A semiring with commutative addition and zero element 
is called a hemiring. For more about semirings and hemirings, we refer to [29-45]. 
 
 
 
 
 

https://en.wikipedia.org/wiki/Mathematics
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3. ALGEBRAIC PROPERTIES OF COMPLEMENTARY SOFT BINARY PIECEWISE SYMMETRIC DIFFERENCE 
OPERATION 

 
Definition 3.1. Let (Ψ, I) and (Ω, Ş) be SSs over U.  The complementary soft binary piecewise symmetric difference operation 

of (Ψ, I) and (Ω, Ş) is the SS (℘, I), denoted by, (Ψ, I)
＊

~
∆

 (Ω, Ş) = (℘, I), where ∀ζ∊I,   

                  Ψ’(ζ),                        ζ∊I\Ş            
℘(ζ)=  
                  Ψ(ζ) ∆Ω(ζ),             ζ∊I∩Ş       
Example 3.2. Let E={e1,e2,e3,e4} be the PS, I ={e1, e3} and Ş={e2, e3, e4} be the subsets of E and U={h1,h2,h3,h4,h5} be universe 
set. Let (Ψ,I) and (Ω,Ş) be SSs over U defined as follows: 
(Ψ,I)={( e1, {h2,h5}), (e3,{h1,h2,h5})} 

(Ω,Ş)={( e2,{h1, h4,h5}), (e3,{h2,h3,h4}),(e4,{ h3, h5}}). 

Let (Ψ,I) 
＊

~
∆

 (Ω,Ş)=(℘,I). Then,      

                  Ψ’(ζ),                    ζ∊I\Ş            
℘(ζ)=  
                  Ψ(ζ) ∆Ω(ζ),         ζ∊I∩Ş         
Since I ={e1, e3} and I\Ş={e1}, so ℘(e1) =Ψ’(e1)={ h1,h3,h4}. And since I∩Ş={e3} so ℘(e3)=Ψ(e3) ∆Ω(e3)={h1, h3, h4,h5}. 

Thus, (Ψ, I) 
＊

~
∆

 (Ω,Ş)={( e1,{h1,h3,h4}), (e3, {h1, h3, h4,h5})}. 

The set of elements that are in either of the sets but not in their intersection is known as the symmetric difference of two 
sets in classical theory. Namely, I∆Ş=(I ∪Ş)\(I∩Ş). Now, we have: 

Theorem 3.3.  (Ψ, I) 
＊

~
∆

  (Ω,Ş) =[(Ψ,I) 
＊

~
∪

(Ω, Ş)] \̃ [(Ψ,I)  ∩R (Ω, Ş)]. 

Proof: Since the PS of the SSs of both hand side is I, the first condition for the soft equality is satisfied. Now let 

(Ψ, I)
＊

~
∪

(Ω,Ş)=(℘,I) where ∀ζ∊I;   

                 Ψ’(ζ),                         ζ∊I\Ş 
℘(ζ)=      
                 Ψ(ζ) ∪Ω(ζ),             ζ∊I∩Ş 

Let (Ψ, I) ∩R(Ω,Ş)=(M,I∩Ş), where ∀ζ∊I∩Ş; M(ζ)=Ψ(ζ)∩Ω(ζ).  Let (℘,I) \̃ (M,I∩Ş)=(S,I), where for ∀ζ∊I, 
                ℘(ζ),                           ζ∊I\(I ∩Ş)=I\Ş 
S(ζ)=     
                ℘(ζ) \M(ζ),               ζ∊I∩(I∩Ş)=I∩Ş 
Thus, 
                 Ψ’(ζ),                                              ζ∊(I\Ş)\Ş=I\Ş 
S(ζ)=       Ψ(ζ) ∪Ω(ζ),                                  ζ∊(I∩Ş)\Ş=∅ 
                 Ψ’(ζ) \( Ψ(ζ)∩Ω(ζ)),                  ζ∊(I\Ş)∩Ş=∅ 
                 [Ψ(ζ) ∪Ω(ζ)] \[Ψ(ζ)∩Ω(ζ)],     ζ∊(I∩Ş) ∩Ş=I∩Ş       
Thus,  
                 Ψ’(ζ),                                              ζ∊I\Ş 
S(ζ) =    
                 [Ψ(ζ) ∪Ω(ζ)] \(Ψ(ζ)∩Ω(ζ)),   ζ∊I∩Ş       
Hence, 
                 Ψ’(ζ),                     ζ∊I\Ş 
S(ζ)=   
                 Ψ(ζ) ∆Ω(ζ),          ζ∊I∩Ş      

Thus, (S,I)=(Ψ, I) 
＊

~
∆

 (Ω,Ş). 

In classical theory, I∆Ş=(I\Ş)∪(Ş\I). Now, we have: 

Theorem 3.4. (Ψ, I) 
＊

~
∆

 (Ω,Ş) =[(Ψ,I) 
＊

~
\

(Ω, Ş)] ∪̃[(Ω,Ş)
＊

~
\

(Ψ, I)]. 
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Proof: Since the PS of the SSs of both hand side is I, the first condition for the soft equality is satisfied. Now let 

(Ψ, I) 
＊

~
\

(Ω,Ş)=(℘,I) where ∀ζ∊I;   

                   Ψ’(ζ),                        ζ∊I\Ş 
℘(ζ)=       
                   Ψ(ζ) \Ω(ζ),             ζ∊I∩Ş 

Let (Ω,Ş) 
＊

~
\

 (Ψ,I)=(K,Ş) where ∀ζ∊I;   

                   Ω’(ζ),                        ζ∊Ş\I 
K(ζ)=       
                   Ω(ζ) \Ψ(ζ),             ζ∊Ş∩I 
Let (℘,I)∪̃ (K,Ş)=(S,I), where for ∀ζ∊I;  
                   ℘(ζ),                        ζ∊I\Ş 
S(ζ)=       
                   ℘(ζ) ∪K(ζ),            ζ∊I∩Ş 
Hence, 
                 Ψ’(ζ),                                            ζ∊(I\Ş)\Ş=I\Ş 
                 Ψ(ζ) \Ω(ζ),                                  ζ∊(I∩Ş)\Ş=∅ 
S(ζ)=       Ψ’(ζ)∪Ω’(ζ),                                ζ∊(I\Ş)∩(Ş\I)=∅ 
                 Ψ(‘ζ)∪(Ω(ζ) \Ψ(ζ)),                  ζ∊(I\Ş)∩(Ş∩I)=∅ 
                (Ψ(ζ) \Ω(ζ)) ∪Ω’(ζ),                  ζ∊(I∩Ş)∩(Ş\I)=∅ 
                [Ψ(ζ) \Ω(ζ)] ∪ [Ω(ζ) \Ψ(ζ)],   ζ∊(I∩Ş)∩(Ş∩I)=I∩Ş       
Thus, 
                 Ψ’(ζ),                                                 ζ∊I\Ş 
S(ζ)=     
                [Ψ(ζ) \Ω(ζ)] ∪ [Ω(ζ) \Ψ(ζ)],       ζ∊I∩Ş       
Therefore,  
                 Ψ’(ζ),                ζ∊I\Ş 
S(ζ)=     
                 Ψ(ζ) ∆Ω(ζ),      ζ∊I∩Ş       

Hence, (S,I)=(Ψ, I) 
＊

~
∆

 (Ω,Ş). 

Theorem 3.5. 

1)  SE(U) is closed under  
＊

~
∆

. Namely, when (Ψ,I) and (Ω,Ç) are two  SSs over  U, then so is (Ψ,I) 
＊

~
∆

(Ω, Ç) as 
＊

~
∆

is a binary operation 

in SE(U). SA(U) is closed under
＊

~
∆

, too, where A is a fixed parameter set of E. 

In classical theory, (F∆G)∆P=F∆(G∆P). As an analogy, we have: 

2) [(Ψ, I) 
＊

~
∆

(Ω,I)] 
＊

~
∆

 (℘,I)=(Ψ,I) 

＊

~[
∆

(Ω, I) 
＊

~
∆

(℘, I)] 

Proof: Let  (Ψ, I) 
＊

~
∆

(Ω,I)=(T,I), where ∀ζ∊I;   

                 Ψ’(ζ),                       ζ∊I\I=∅    

T(ζ)=       

                 Ψ(ζ) ∆Ω(ζ),              ζ∊I∩I=I 

Let (T,I) 
＊

~
∆

 (℘,I) =(M,I), where ∀ζ∊I; 

                 T’(ζ),                         ζ∊I\I=∅    

M(ζ)=       

                 T(ζ) ∆℘(ζ),               ζ∊I∩I=I 

Thus, 

                  T’(ζ),                              ζ∊I\I=∅    
M(ζ)=       
                  [Ψ(ζ) ∆Ω(ζ)]∆℘(ζ),   ζ∊I∩I=I          
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Let  (Ω,I) 
＊

~
∆

 (℘,I)=(R,I), where ∀ζ∊I; 

                   Ω’(ζ),                        ζ∊I\I=∅    
R(ζ)=       
                   Ω(ζ) ∆℘(ζ),             ζ∊I∩I=I 

Let (Ψ,I) 
＊

~
∆

 (R,I) =(N,I), where ∀ζ∊I;  

                   Ψ’(ζ),                        ζ∊I\I=∅    
N(ζ)=       
                   Ψ(ζ) ∆R(ζ),             ζ∊I∩I=I 
Thus, 
                  Ψ’(ζ),                             ζ∊I\I=∅    
N(ζ)=       
                  Ψ(ζ) ∆[Ω(ζ)∆℘(ζ)],   ζ∊I∩I=I           
It is seen that (M,I)=(N,I). 

Namely, for the SSs whose PSs are the same,  
＊

~
∆

  is associative. Here's what we have right now: 

3) [(Ψ, I) 
＊

~
∆

(Ω,Ç)] 
＊

~
∆

 (℘,Ö) ≠ (Ψ,I) 
＊

~
∆

[(Ω,Ç) 
＊

~
∆

 (℘,Ö)]. 

Proof: Let (Ψ, I) 
＊

~
∆

(Ω,Ç)=(T,I), where ∀ζ∊I;   

                   Ψ’(ζ),                       ζ∊I\Ç 
T(ζ)=       
                   Ψ(ζ) ∆Ω(ζ),            ζ∊I∩Ç 

Let (T,I) 
＊

~
∆

 (℘,Ö) =(M,I), where ∀ζ∊I;  

                    T’(ζ),                       ζ∊I\Ö   
M(ζ)=      
                    T(ζ) ∆℘(ζ),            ζ∊I∩Ö 
Thus,  
                   Ψ(ζ),                               ζ∊(I\Ç)\Ö=I∩Ç’∩Ö’ 
M(ζ)=      (Ψ(ζ) ∆Ω(ζ))’,                ζ∊(I∩Ç)\Ö=I∩Ç∩Ö’ 
                   Ψ’(ζ) ∆℘(ζ),                  ζ∊(I\Ç)∩Ö=I∩Ç’∩Ö 
                  [Ψ(ζ) ∆Ω(ζ)] ∆℘(ζ),     ζ∊(I∩Ç) ∩Ö=I∩Ç∩Ö           

Let (Ω,Ç) 
＊

~
∆

 (℘,Ö)=(K,Ç), where ∀ζ∊Ç;   

                 Ω’(ζ),                      ζ∊Ç\Ö 
K(ζ)=       
                 Ω(ζ) ∆℘(ζ),          ζ∊Ç∩Ö 

Let (Ψ,I) 
＊

~
∆

 (K,Ç) =(S,I), where ∀ζ∊I;  

                 Ψ’(ζ),                         ζ∊I\Ç   
S(ζ)=      
                 Ψ(ζ) ∆K(ζ),              ζ∊I∩Ç 
Thus, 
                 Ψ’(ζ),                                 ζ∊I\Ç 
S(ζ)=       Ψ(ζ) ∆Ω’(ζ),                     ζ∊I∩(Ç\Ö)=I∩Ç∩Ö’ 
                 Ψ(ζ) ∆ [Ω(ζ) ∆℘(ζ)],     ζ∊I∩(Ç∩Ö)=I∩Ç∩Ö             
Here, let’s consider ζ∊I\Ç in the second equation. Since I\Ç=I∩Ç’, if ζ∊Ç’, then ζ∊Ö\Ç or ζ∊(Ç∪Ö)’. Hence, if ζ∊I\Ç, then 

ζ∊I∩Ç’∩Ö’ or ζ∊I∩Ç’∩Ö. Thus, it is seen that (M,I)≠ (N,I). Namely, for the SSs whose PSs are not the same,  
＊

~
∆

  is not associative 

in the set SE(U). 
In classical theory, symmetric difference operation is commutative, i.e., F∆G=G∆F. However, we have: 
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4) (Ψ, I) 
＊

~
∆

 (Ω,Ç)≠(Ω,Ç) 
＊

~
∆

 (Ψ,I). 

Proof:  Let (Ψ, I) 
＊

~
∆

 (Ω,Ç)=(℘,I). Then, ∀ζ∊I; 

                  Ψ’(ζ),                         ζ∊I\Ç    
℘(ζ)=     
                  Ψ(ζ) ∆Ω(ζ),              ζ∊I∩Ç     

Let (Ω,Ç) 
＊

~
∆

 (Ψ,I)=(T,Ç). Then ∀ζ∊Ç; 

                 Ω’(ζ),                          ζ∊Ç\I      
T(ζ)= 
                 Ω(ζ) ∆Ψ(ζ),              ζ∊Ç∩I       
Here, while the PS of the SS of left side is I; the PS of  the SS of right side is Ç. Thus,  

(Ψ, I) 
＊

~
∆

(Ω,Ç)≠(Ω,Ç) 
＊

~
∆

 (Ψ,I) 

Hence,  
＊

~
∆

 is not commutative in SE(U). However it is easy to see that  

(Ψ, I)
＊

~
∆

(Ω,I)=(Ω,I) 
＊

~
∆

 (Ψ,I). 

That is to say,
＊

~
∆

 is commutative, where the PSs of the SSs are the same. 

In classical theory, ∅ is the identity element for the symmetric difference operation, i.e., F∆∅=∅∆F=F. As an analogy, we have: 

5) (Ψ, I) 
＊

~
∆

 ∅I= ∅I

＊

~
∆

 (Ψ,I)=(Ψ, I).  

Proof:  Let ∅I=(S,I). Then, ∀ζ∊I;  S(ζ)=∅.  Let  (Ψ, I) 
＊

~
∆

(S,I)=(℘,I), where ∀ζ∊I, 

                   Ψ’(ζ),                          ζ∊I\I =∅    
℘(ζ)=       
                   Ψ(ζ) ∆ S(ζ),               ζ∊I∩I=I 
Hence, ∀ζ∊I; ℘(ζ)=Ψ(ζ)∆S(ζ) =Ψ(ζ) ∆∅=Ψ(ζ). Thus, (℘,I)=(Ψ, I). Note that, for the SSs whose PS  is I,  ∅I is the identity element 

for  
＊

~
∆

  in SI(U).  

In classical theory, every element is its own inverse for the symmetric difference operation, i.e., F∆F = ∅. As an analogy, we 
have: 

6) (Ψ, I) 
＊

~
∆

 (Ψ,I)=∅I. 

Proof: Let  (Ψ, I) 
＊

~
∆

(Ψ,I)=(℘,I), where ∀ζ∊I;   

                   Ψ’(ζ),                       ζ∊I\I=∅    
℘(ζ)=       
                   Ψ(ζ) ∆Ψ(ζ),            ζ∊I∩I=I 
Here ∀ζ∊I; ℘(ζ)=Ψ(ζ) ∆Ψ(ζ)=∅, thus (℘,I)=∅I. 

This property shows us that every SS is its own inverse for  
＊

~
∆

  in SI(U) and also 
＊

~
∆

 is not idempotent in SE(U). 

Remark  3.6.:  By Theorem 3.5. (1), (2), (4), (5) and (6),  (SA(U), 
＊

~
∆

) is an abelian group with identity ∅A. 

7) (Ψ, I) 
＊

~
∆

 ∅E=(Ψ,I). 

Proof:  Let ∅E =(S,E). Hence ∀ζ∊E;  S(ζ)=∅.  Let (Ψ,I) 
＊

~
∆

 (S,E)=(℘,I). Thus, ∀ζ∊I, 
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                Ψ’(ζ),                  ζ∊I\E =∅ 
℘(ζ)=         
                Ψ(ζ) ∆S(ζ),        ζ∊I∩E=I 

Hence, ∀ζ∊I ℘(ζ)=Ψ(ζ) ∆S(ζ)=Ψ(ζ) ∆∅=Ψ(ζ), so (℘,I)=(Ψ,I). Note that, ∅E is the right identity element for 
＊

~
∆

  in SE(U).  

8) (Ψ, I) 
＊

~
∆

 ∅∅ = (Ψ, I)r. 

Proof:  Let ∅∅=(S, ∅).  Let  (Ψ, I) 
＊

~
∆

(S, ∅)=(℘,I), where ∀ζ∊I, 

                   Ψ’(ζ),                       ζ∊I\∅=I    
℘(ζ)=      
                   Ψ(ζ) ∆ S(ζ),            ζ∊I∩∅=∅ 
Hence, ∀ζ∊I; ℘(ζ)=Ψ’(ζ). Thus, (℘,I)=(Ψ, I)r.  

9) ∅∅

＊

~
∆

 (Ψ,I)=∅∅. 

Proof: Let  (S, ∅)
＊

~
∆

 (Ψ, I) =(T, ∅). Since, ∅∅ is the unique SS with empty set, (T, ∅)=∅∅. Note that, ∅∅ is the left absorbing 

element for  
＊

~
∆

  in SE(U).  

In classical theory, F∆U=U∆F=F’, where U is the universal set. As an analogy, we have: 

10) (Ψ, I) 
＊

~
∆

  UI=UI

＊

~
∆

 (Ψ,I)=(Ψ,I)r. 

Proof: Let  UI = (T,I). Then, ∀ζ∊I; T(ζ)=U. Let (Ψ,I)
 

＊

~
∆

 (T,I)=(℘,I), where ∀ζ∊I; 

                   Ψ’(ζ),                       ζ∊I\I =∅   
 ℘(ζ)=       
                   Ψ(ζ) ∆T(ζ),            ζ∊I∩I=I 
Thus, ∀ζ∊I; ℘(ζ)=Ψ(ζ) ∆T(ζ)=Ψ(ζ) ∆U=Ψ’(ζ), hence (℘,I)=(Ψ,I)r. 
11) (Ψ, I)∆̃UE=(Ψ,I)r 

Proof:  Let UE =(T,E). Hence, ∀ζ∊E, T(ζ)=U. Let (Ψ, I)
＊

~
∆

 (T, E)=(℘,I), then ∀ζ∊I, 

                   Ψ’(ζ),                   ζ∊I\E =∅  
℘(ζ)=         
                   Ψ(ζ) ∆T(ζ),         ζ∊I∩E=I 
Hence, ∀ζ∊I, ℘(ζ)=Ψ(ζ) ∆T(ζ)=Ψ(ζ) ∆U=Ψ’(ζ), so (℘,I)=(Ψ,I)r. 
In classical theory, F∆F’ = F’∆F=U, where U is the universal set.  As an analogy, we have: 

12) (Ψ, I) 
＊

~
∆

 (Ψ,I)r= (Ψ,I)r 
＊

~
∆

  (Ψ,I)=UI. 

Proof: Let (Ψ,I)r=(℘,I). Hence, ∀ζ∊I; ℘(ζ)=Ψ’(ζ). Let (Ψ, I) 
＊

~
∆

 (℘,I)=(T,I), where ∀ζ∊I, 

                   Ψ’(ζ),                           ζ∊I\I=∅  
T(ζ)=         
                   Ψ(ζ) ∆℘(ζ),               ζ∊I∩I=I 
Hence, ∀ζ∊I; T(ζ)=Ψ(ζ) ∆℘(ζ)=Ψ(ζ) ∆ Ψ’(ζ)=U, thus (T,I)=UI. 
In classical theory, (F∆G)∆(G∆P)=F∆P. As an analogy, we have: 

13) [(Ψ, I) 
＊

~
∆

 (Ω,Ş)] 
＊

~
∆

 [(Ω,Ş) 
＊

~
∆

 (℘,I)] =(Ψ,I) ∆̃(℘, Ş). 

Proof: Since the PS of the SSs of both hand side is I, the first condition for the soft equality is satisfied. Now let 

(Ψ, I) 
＊

~
∆

(Ω,Ş)=(℘,I) where ∀ζ∊I;   
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 Ψ’(ζ),                         ζ∊I\Ş 
℘(ζ)=       
                  Ψ(ζ) ∆Ω(ζ),             ζ∊I∩Ş 

Let (Ω,Ş) 
＊

~
∆

 (℘,I)=(K,Ş) where ∀ζ∊I;   

                 Ω’(ζ),                          ζ∊Ş\I 
K(ζ)=       
                 Ω(ζ) ∆℘ (ζ),             ζ∊Ş∩I 

Let (℘,I) 
＊

~
∆

 (K,Ş)=(S,I), where for ∀ζ∊I;  

                ℘’(ζ),                      ζ∊I\Ş 
S(ζ)=       
                ℘(ζ) ∆K(ζ),           ζ∊I∩Ş    
Thus, 
                 Ψ(ζ),                                              ζ∊(I\Ş)\Ş=I\Ş 

(Ψ(ζ) ∆Ω(ζ)’,                                ζ∊(I∩Ş)\Ş=∅ 
S(ζ)=       Ψ’(ζ) ∆ Ω(ζ),                                ζ∊(I\Ş)∩(Ş\I)=∅ 
                 Ψ’(ζ) ∆ (Ω(ζ) ∆℘ (ζ)),               ζ∊(I\Ş)∩(Ş∩I)=∅ 
                 (Ψ(ζ) ∆Ω(ζ)) ∆Ω(ζ),                   ζ∊(I∩Ş)∩(Ş\I)=∅ 
                [Ψ(ζ) ∆Ω(ζ)] ∆ [Ω(ζ) ∆℘ (ζ)],   ζ∊(I∩Ş)∩Ş=I∩Ş         
Thus, 
                 Ψ(ζ),                                               ζ∊I\Ş 
S(ζ)=     
                [Ψ(ζ) ∆Ω(ζ)] ∆ [Ω(ζ) ∆℘ (ζ)],   ζ∊I∩Ş       
Therefore,  
                 Ψ(ζ),                   ζ∊I\Ş 
S(ζ)=     
                 Ψ(ζ) ∆℘ (ζ),     ζ∊I∩Ş       
Hence, (S,I)=(Ψ, I) ∆̃(℘,Ş). 
In classical theory, F’∆G’=F∆G. Now, we have the following: 

14) (Ψ,I)r 
＊

~
∆

 (Ω,Ş)r=(Ψ, I) ∆̃(Ω,Ş) 

Proof:  Let (Ψ,I)r 
＊

~
∆

 (Ω,Ş)r=(℘,I). Then, ∀ζ∊I, 

                (Ψ’)’(ζ),               ζ∊I\Ş 
℘(ζ)= 
                Ψ’(ζ) ∆Ω’(ζ),     ζ∊I∩Ş 
Thus, 
                Ψ(ζ),                   ζ∊I\Ş 
℘(ζ)= 
                Ψ’(ζ) ∆Ω’(ζ),     ζ∊I∩Ş 
Since Ψ’(ζ) ∆Ω’(ζ)=Ψ(ζ) ∆Ω(ζ), thus, (℘,I) =(Ψ, I) ∆̃(Ω,Ş). 
In classical theory, for all F, ∅ ⊆ F. As an analogy, we have: 

15) ∅I ⊆̃(Ψ, I) 
＊

~
∆

(Ω,Ç) and ∅Ç ⊆̃(Ω,Ç) 
＊

~
∆

 (Ψ,I).  

In classical theory, for all F, F ⊆ U. As an analogy, we have: 

16)  (Ψ, I) 
＊

~
∆

(Ω,Ç) ⊆̃  UI and (Ω,Ç) 
＊

~
∆

(Ψ, I) ⊆̃  UÇ. 

In classical theory, F∆G = F∆P⟹G=P (Cancellation Law). As an analogy, we have: 

17) (Ψ, I)
＊

~
∆

(Ω,Ş)=(Ψ,I) 
＊

~
∆

(℘, Ş)  ⟹ (Ω, I ∩ Ş) =(℘, I ∩ Ş). 

Proof:  Let (Ψ, I)
＊

~
∆

(Ω,Ş)=(℘,I). Then, ∀ζ∊I, 
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                Ψ’(ζ),                  ζ∊I\Ş 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩Ş 

Let, (Ψ,I) 
＊

~
∆

 (℘,Ş)=(T,I), where  ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\Ş 
T(ζ)= 
                Ψ(ζ) ∆℘(ζ),      ζ∊I∩Ş 
Since, (℘,I)=(T,I), then for all ζ∊I∩Ş;  Ψ(ζ) ∆Ω(ζ)=Ψ(ζ) ∆℘(ζ), thus Ω(ζ)=℘(ζ) for all ζ∊I∩Ş. Hence, (Ω, I ∩ Ş) =(℘, I∩Ş). Here 

note that (Ψ, I)
＊

~
∆

(Ω,Ş)=(Ψ,I) 
＊

~
∆

(℘, Ş) does not imply that (Ω, I) =(℘,Ş). 

In classical theory, F∆G ⊆ F ∪G. As an analogy, we have:  

18) (Ψ, I) 
＊

~
∆

(Ω,Ş) ⊆̃ (Ψ, I)
＊

~
∪

(Ω, Ş). 

Proof: Since the PS of the SSs of both hand side is I, the first condition for the soft subset is satisfied. Let (Ψ, I) 
＊

~
∆

(Ω,Ş)=(℘,I), 

where ∀ζ∊I, 
                Ψ’(ζ),                  ζ∊I\Ş 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩Ş 

Now let (Ψ, I)
＊

~
∪

(Ω,Ş)=(T,I), where ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\Ş 
T(ζ)= 
                Ψ(ζ) ∪Ω(ζ),      ζ∊I∩Ş 
Since for all ζ∊I\Ş,  Ψ’(ζ) ⊆ Ψ’(ζ) and  ∀ζ∊I∩Ş,  Ψ(ω) ∆Ω(ω) ⊆ Ψ(ω) ∪  Ω(ω), thus for all ∀ζ∊I, ℘(ζ) ⊆T(ζ). Hence, (℘,I) ⊆̃ 
(T,I). 
In classical theory, F∆G = ∅ ⇔ F = G. As an analogy, we have: 

19) (Ψ, I) 
＊

~
∆

(Ω, I) = ∅I  ⇔ (Ψ, I) = (Ω, I) . 

Proof: Necessity: Let  (Ψ, I) 
＊

~
∆

(Ω, I) = (T,I). Hence, ∀ζ∊I, 

                   Ψ’(ζ),               ζ∊I\I=∅ 
T(ζ)=              
                   Ψ(ζ) ∆Ω(ζ),    ζ∊I∩I=I 
Since (T,I)=∅I, ∀ζ∊I, T(ζ)=∅. Thus, ∀ζ∊I, Ψ(ζ) ∆Ω(ζ)=∅. Hence, ∀ζ ∊ I,  Ψ(ζ)=Ω(ζ).  So, (Ψ, I) = (Ω, I).  

Sufficiency: Let (Ψ, I) = (Ω, I) . Then, (Ψ, I) 
＊

~
∆

(Ω, I)=∅I. 

In classical theory, F∆G = F ∪G⇔ F∩G=∅. As an analogy, we have (20) and (21). 

20) (Ψ, I) 
＊

~
∆

(Ω,I) =(Ψ, I)
＊

~
∪

(Ω, I) ⇔ (Ψ, I)
＊

~
∩

(Ω, I) = ∅I   

Proof:  Let (Ψ, I) 
＊

~
∆

(Ω,I)=(℘,I)  and (Ψ, I)
＊

~
∪

(Ω,I)=(T,I). Then, 

                Ψ’(ζ),                  ζ∊I\I=∅ 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩I=I 
and  
                Ψ’(ζ),                  ζ∊I\I=∅ 
T(ζ)= 
                Ψ(ζ) ∪Ω(ζ),       ζ∊I∩I=I 

Since (℘,I)=(T,I), then ∀ζ∊I, ℘(ζ)=Ψ(ζ)∆Ω(ζ)=Ψ(ζ)∪Ω(ζ)=T(ζ). Thus, ∀ζ∊I, Ψ(ζ)∩Ω(ζ)=∅. Hence,(Ψ, I)
＊

~
∩

(Ω, I)= ∅I. 
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21) (Ψ, I) 
＊

~
∆

(Ω,Ş) =(Ψ, I)
＊

~
∪

(Ω, Ş) ⇔ (Ψ, I) ∩R (Ω, Ş)= ∅I∩Ş.  

Proof:  Let (Ψ, I) 
＊

~
∆

(Ω,Ş)=(℘,I)  and (Ψ, I)
＊

~
∪

(Ω,Ş)=(T,I). Then, 

                Ψ’(ζ),                 ζ∊I\Ş 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),     ζ∊I∩Ş 
and 
                Ψ’(ζ),                 ζ∊I\Ş 
T(ζ)= 
                Ψ(ζ) ∪Ω(ζ),     ζ∊I∩Ş 
Since (℘,I)=(T,I), then ∀ζ∊I∩Ş, Ψ(ζ)∆Ω(ζ)=Ψ(ζ)∪Ω(ζ). Thus, ∀ζ∊I∩Ş, Ψ(ζ)∩Ω(ζ)=∅. Hence, (Ψ, I) ∩R (Ω, Ş)= ∅I∩Ş. 

In classical theory, F⊆ G ⟹ F∆G= G\F. As an analogy, we have (22) and (23):  

22) (Ψ, I) ⊆̃ (Ω, I) ⟹(Ψ, I)
＊

~
∆

(Ω,I)= (Ω,I) 
＊

~
\

 (Ψ,I). 

Proof:  Let (Ψ, I) ⊆̃ (Ω, I). Then, ∀ζ∊I, Ψ(ζ)  ⊆ Ω(ω) and let (Ψ, I) 
＊

~
∆

(Ω, I)=(℘,I). Then, ∀ζ∊I, 

                Ψ’(ζ),                 ζ∊I\I=∅ 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩I=I 

Since ∀ζ∊I, Ψ(ζ)  ⊆ Ω(ω), and ℘(ζ)= Ψ(ζ) ∆Ω(ζ)=Ω(ζ)\ Ψ(ζ). Thus, (℘,I)=(Ω,I) 
＊

~
\

 (Ψ,I). 

23) (Ψ, I) ⊆̃ (Ω, Ş) ⟹(Ψ, I) 
＊

~
∆

(Ω,Ş) ⊆̃ (Ω,Ş) 
＊

~
\

 (Ψ,I).    

Proof: Let (Ψ, I) ⊆̃ (Ω, Ş). Then,  I ⊆Ş, and so the first condition for the soft subset is satisfied. Moreover, since  (Ψ, I) ⊆̃ (Ω, Ş),  

∀ζ∊I, Ψ(ζ)  ⊆ Ω(ω).  Let (Ψ, I) 
＊

~
∆

(Ω, Ş)=(℘,I). Then, ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\Ş=∅ 
℘(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩Ş=I 

Let (Ω,Ş) 
＊

~
\

 (Ψ, I)=(T,Ş).  Then, ∀ζ∊Ş, 

                Ψ’(ζ),                 ζ∊Ş\I 
T(ζ)= 
                Ω(ζ) \ Ψ(ζ),     ζ∊Ş∩I=I 
Since ∀ζ∊I, Ψ(ζ)  ⊆ Ω(ω), thus Ψ(ζ) ∆Ω(ζ)=Ω(ζ)\ Ψ(ζ). Therefore, (℘,I) ⊆̃ (T,Ş). 
In classical theory, F ∆(F ∩ G)=F\G. As an analogy, we have: 

24) (Ψ,I) 
＊

~
∆

[(Ψ, I)
＊

~
∩

(Ω,I)]=(Ψ, I) 
＊

~
\

(Ω,I). 

Proof: Let (Ψ, I)
＊

~
∩

(Ω,I)=(℘,I). Then, ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\I=∅  
℘(ζ)= 
                Ψ(ζ) ∩Ω(ζ),       ζ∊I∩I=I 

Let, (Ψ,I) 
＊

~
∆

 (℘,I)=(T,I), where, ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\I=∅ 
T(ζ) 
                Ψ(ζ) ∆℘(ζ),       ζ∊I∩I=I 
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Hence, 
                Ψ’(ζ),                               ζ∊I\I=∅ 
T(ζ)= 
                Ψ(ζ) ∆[Ψ(ζ) ∩Ω(ζ)],   ζ∊I∩I=I 
So, 
                Ψ’(ζ),                  ζ∊I\I=∅ 
T(ζ)= 
                Ψ(ζ) \Ω(ζ),       ζ∊I∩I=I 

Thus, (T,I)=(Ψ, I) 
＊

~
\

(Ω,I).  

In classical theory, F∪ G = (F∆G) ∪(F∩G). As an analogy, we have: 

25) (Ψ, I)
＊

~
∪

(Ω,Ş)=[(Ψ,I) 
＊

~
∆

(Ω, Ş)]
＊

~
∪

[(Ψ, I)
＊

~
∩

(Ω,Ş)]. 

Proof: Since the PS of the SSs of both hand side is I, the first condition for the soft equality is satisfied. First let’s consider 

right side. Let (Ψ, I)
＊

~
∪

(Ω,Ş)=(℘,I). Then, ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\Ş 
℘(ζ)= 
                Ψ(ζ) ∪Ω(ζ),       ζ∊I∩Ş 

Now let’s consider left side. Let (Ψ, I)
＊

~
∆

(Ω,Ş)=(K,I). Then, ∀ζ∊I, 

                Ψ’(ζ),                  ζ∊I\Ş 
K(ζ)= 
                Ψ(ζ) ∆Ω(ζ),       ζ∊I∩Ş 

Let, (Ψ,I) 
＊

~
∩

 (Ω,Ş)=(T,I), where  ∀ζ∊I, 

                Ψ’(ζ),                   ζ∊I\Ş 
T(ζ)= 
                Ψ(ζ) ∩Ω(ζ),       ζ∊I∩Ş 

Now, let (K,I) 
＊

~
∪

 (T,I)=(S,I), where  ∀ζ∊I, 

                K’(ζ),                  ζ∊I\I=∅ 
S(ζ)= 
                K(ζ) ∪T(ζ),       ζ∊I∩I=I 
 
                  Ψ’(ζ) ∪Ψ’(ζ)                                    ζ∊(I\Ş) ∩(I\Ş) =I\Ş 
S(ζ)=        Ψ’(ζ) ∪[ Ψ(ζ) ∩Ω(ζ)],                   ζ∊(I\Ş)\∩(I∩Ş) =∅ 
                 [Ψ(ζ) ∆Ω(ζ)]∪Ψ’(ζ),                       ζ∊(I∩Ş)∩( I\Ş)=∅ 
                 [Ψ(ζ) ∆Ω(ζ)] ∪ [Ψ(ζ) ∩Ω(ζ)],      ζ∊( I∩Ş)∩( I∩Ş)= I∩Ş 
Thus, 
                Ψ’(ζ),                  ζ∊I\Ş 
S(ζ)= 
                Ψ(ζ) ∪Ω(ζ),       ζ∊I∩Ş 
Thus, (℘,I)=(S, I). This completes the proof. 
In classical theory, intersection distributes over symmetric difference from both left and right side, that is, 
F∩(G∆P) =(F∩G)∆(F∩P) and (F∆G) ∩P=(F∩P)∆(G∩P) for all F,G,P. As an analogy, we have the following two properties: 

26) (Ψ, I)  ∩R[(Ω,I) 
＊

~
∆

 (℘,I)]=[(Ψ, I) ∩R(Ω,I)]
＊

~
∆

 [(Ψ, I)  ∩R (℘,I)] 

Proof: Let’s first consider the left side. Let (Ω,I)
＊

~
∆

 (℘,I)=(M, I), where ∀ζ∊I;         

               Ω’(ζ),                            ζ∊I\I=∅ 
M(ζ)=  
               Ω(ζ)∆℘(ζ),                  ζ∊I ∩ I= I             
Assume that (Ψ, I) ∩R(M, I) =(N,I∩ I)=(N,I), where  ∀ζ∊I; N(ζ)=Ψ(ζ)∩M(ζ). Hence, 
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               Ψ(ζ)∩Ω’(ζ),                       ζ∊I \I=∅ 
N(ζ)= 
               Ψ(ζ)∩ [Ω(ζ)∆℘(ζ)],         ζ∊I ∩ I= I           

Now let’s consider the right side: [(Ψ, I) ∩R(Ω,I)]
＊

~
∆

[(Ψ, I)  ∩R (℘,I)]. Let (Ψ, I) ∩R (Ω, I)=(K,I∩I), where ∀ζ∊I, K(ζ)=Ψ(ζ)∩Ω(ζ). 

Let (Ψ, I) ∩R(℘,I)=(T,I∩I), where ∀ζ∊I; T(ζ)=Ψ(ζ)∩℘(ζ). Thus, (K,I)
＊

~
∆

 (T,I)=(L,I), where ∀ζ∊I; 

                K’(ζ),                            ζ∊I\I= ∅ 
L(ζ)= 
                K(ζ)∆T(ζ),                  ζ∊I∩ I=I 
 
Thus, 
 
              (Ψ(ζ)∩Ω(ζ))’,                             ζ∊I\I= ∅ 
L(ζ)=   
               [Ψ(ζ)∩Ω(ζ)]∆[Ψ(ζ)∩℘(ζ)],   ζ∊I∩ I=I         
Hence, (N,I)=(L,I). 

Here note that (Ψ, I)  ∩R[(Ω,Ş) 
＊

~
∆

 (℘,C)] ≠ [(Ψ, I) ∩R(Ω,Ş)]
＊

~
∆

 [(Ψ, I)  ∩R (℘,C)]. That is, restricted intersection distributes 

over complementary soft binary piecewise symmetric difference from left side only when the PSs of the soft sets are the 
same. 

27)[(Ψ, I) 
＊

~
∆

 (Ω,I)] ∩R(℘,I)= [(Ψ, I) ∩R(℘,I)] 
＊

~
∆

 [(Ω,I) ∩R (℘,I)] 

Proof: Let’s consider first the left side. Let (Ψ, I) 
＊

~
∆

 (Ω,I)=(M,I), where ∀ζ∊I; 

                  Ψ’(ζ),                    ζ∊I\I=∅ 
M(ζ) = 
                  Ψ(ζ) ∆Ω(ζ),         ζ∊I∩ I= I 
Now, let (M,I)

 
∩R(℘,I) =(N,I∩ I), where ∀ζ∊I; N(ζ)=M(ζ)∩℘(ζ). Thus, 

                Ψ’(ζ)∩℘(ζ),                           ζ∊I\I=∅ 
N(ζ)=   
                [Ψ(ζ) ∆Ω(ζ)]∩℘(ζ),             ζ∊I I∩ I= I        

Now let’s consider the right side: [(Ψ, I) ∩R(℘,I)] 
＊

~
∆

[(Ω,I) ∩R (℘,I)]. Let (Ψ, I) ∩R(℘,I)=(K,I∩I), where ∀ζ∊I, K(ζ)=Ψ(ζ)∩℘(ζ). 

Let (Ω,Ş)∩R (℘,C)=(T,I∩I), where ∀ζ∊I; T(ζ)=Ω(ζ)∩℘(ζ). Thus, (K,I) 
＊

~
∆

(T, I)=(W,I), where ∀ζ∊I; 

                  K’(ζ),                         ζ∊I\I=∅ 
W(ζ)= 
                  K(ζ) ∆T(ζ),              ζ∊I∩ I=I 
Thus, 
                 (Ψ(ζ)∩℘(ζ))’,                                      ζ∊I\I=∅ 
W(ζ)= 
                 [Ψ(ζ)∩℘(ζ)] ∆ [Ω(ζ)∩℘(ζ)],            ζ∊I∩ I= I   
Hence, (N,I)=(W,I).  

Here note that [(Ψ, I) 
＊

~
∆

(Ω,Ş)] ∩R(℘,C)≠[(Ψ, I) ∩R(℘,C)]
＊

~
∆

 [(Ω,Ş)∩R (℘,C)]. That is, restricted intersection distributes over 

complementary soft binary piecewise symmetric difference from right side only when the PSs of the soft sets are the same. 

Remark 3.7: In Remark 3.6., we show that (SA(U), 
＊

~
∆

 ) is an abelian group with identiy ∅A and every element is its own 

inverse. Hence, we can deduce that (SA(U), 
＊

~
∆

 ) is a semigroup. Moroever, in [3,5,17], it was proved that (SA(U), ∩R) is a 

commut ative monoid with identity UA. Hence, we can deduce that (SA(U), ∩R) is a semigroup. Moreover, by Theorem 3.5. 
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(26) and (27),  ∩R  distributes over 
＊

~
∆

 from both sides when the PSs of the soft sets are the same. Therefore, (SA(U), 
＊

~
∆

,  ∩R)  

is a semiring. Further, by Theorem 3.5. (4) (F,A)
＊

~
∆

 (G,A)= (G,A)
＊

~
∆

 (F,A). That is to say, 
＊

~
∆

 is commutative in SA(U) and 

(F, A)
＊

~
∆

 ∅A = ∅A

＊

~
∆

 (F, A) = (F, A) and (F, A) ∩R ∅A = ∅A ∩R (F, A) = ∅A. That is to say, ∅A is the zero element of 

(SA(U),
＊

~
∆

,  ∩R). Therefore, (SA(U),
＊

~
∆

,∩R) is a hemiring. Besides, since (F, A) ∩R UA = UA ∩R (F, A) = (F, A) and (F,A) ∩R 

(G,A)= (G,A) ∩R(F,A) (see [3,5,17]), (SA(U), 
＊

~
∆

,∩R)  is a commutative hemiring with identity UA. 

Also, since (SA(U), 
＊

~
∆

 ) is an abelian group by Remark 3.6., (SA(U), ∩R) is a semigroup by [3,5,17] and  ∩R   distributes over 

＊

~
∆

 from both sides when the parameter sets of the soft sets are the same by Theorem 3.5. (26) and (27), we can also deduce 

that (SA(U),
＊

~
∆

,∩R)  is a ring. Also, since (F, A) ∩R (G, A) = (G, A) ∩R (F, A) and (F, A) ∩R UA = UA ∩R (F, A) = (F, A), (see 

[3,5,17]),  (SA(U),
＊

~
∆

,∩R)  is a commutative ring with identity UA. Moroever, (F, A)2 = (F, A) ∩R (F, A) = (F, A) for all (F, A) ∈ 

SA(U). Thus, (SA(U),
＊

~
∆

,∩R)  is a Boolean ring and (F,A) 
＊

~
∆

(F,A)= ∅A and (F,A)∩R(G,A)=(G,A)∩R(F,A) is satisfied naturally as 

a result of being Boolean ring. 

Remark 3.8. (SA(U),∩ε)  is a commutative monoid (and so a semigroup) with identity UA by [5,17], (SA(U), 
 ~
∩ ) is a 

commutative monoid (and so a semigroup) with identity UA by [10]. Also, (SA(U),
＊

~
∩

) is a commutative monoid (and so a 

semigroup) with identity by [11]. Thus, by Remark 3.7. and by Theorem 3.5. (26) and (27), one can similary show that 

(SA(U),
＊

~
∆

,
 ~
∩ ), (SA(U),

＊

~
∆

,
＊

~
∩

) and (SA(U),
＊

~
∆

,∩ε )  are all commutative hemirings with identity UA and also Boolean rings. 

 
4. CONCLUSION 
 
Soft sets and soft operations are powerful parametric tools when dealing with uncertain objects. Creating new soft 
operations and deriving their algebraic properties and implementations provide new perspectives for solving problems with 
parametric data. In this regard, this work presents a new form of soft set operation. This is called complementary soft binary 
piecewise symmetric difference operation. The basic algebraic properties of the operation have been explored. Examination 
of the distribution rules reveals the relationship between this new soft set operation and the restricted intersection soft set 
operation. It has been shown that complementary soft binary piecewise symmetric difference and restricted intersection 
operations with a fixed set of parameters is both a commutative hemiring with identity and a Boolean ring. Future research 
may develop by introducing new variants of the soft set operations. As soft set operations are powerful mathematical tools 
for identifying uncertain objects, researchers may propose some new cryptographic or decision-making techniques as a 
result of this work. The operations described in this work can also be used to revisit the study of soft algebraic structures in 
terms of their algebraic properties. 
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