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1. Introduction

The presence of orthogonal polynomials is ubiquitous in various problems encountered in classical mathematical physics. For
instance, the Hermite polynomials manifest in the quantum mechanical treatment of harmonic oscillators, while the Laguerre
polynomials arise in the propagation of electromagnetic waves. However, the study of g-orthogonal polynomials is also a
crucial study topic and can be found in relevant literature [1, 2, 3, 4, 5].

Throughout the paper, it is supposed that 0 < |¢| < 1 and denote by N (C) the set of positive integers (complex numbers,
respectively). The g-shifted factorials are defined as

n—1 )
(@:q)o =1, (a:q)n = [](1 —aq"), (a:q)e = [](1 - aq")
k=0 k=0
and (ay,a2, - ,am;q)n = (a1;q@)n(a2;q)n - - (am;q)n, Where n is a non-negative integer or . The g-derivative of f(x) with
respect to x is defined by
f(x) — f(gx)
D{ )} = L,
According to the above definition, it is not difficult to verify
Dy{f(x)g(x)} = Dg{f(x)}g(x)+f(gx)Dg{g(x)} (1.1)
and the Leibniz rule for the product of two functions
n - [n —n n—
Dy s = X [3] iy et (1.2
= q
where
m @Dy nen (1.3)
K, (GG D)k
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is the Gaussian binomial coefficients, also see [6]. For any real number r, the g-shift operator 1y, is defined by

n;i{f(xlv"' axn)} :f(xla"' axifl7qrxi7xi+l7"' 7xn)~

Generalizing Heine’s series, or basic hypergeometric series , ¢ is defined by

ap,az, - ,ar oo (al;q)n...(ar;q)n " (”) I+s—r n
™ hE )= —1)%qt: . 1.4
) <b17b2,... by q Z) ’;)(bl;q)n"'(bﬁq)n(q;q)n {( )'q } Z (1.4)

Here and in what follows, (Z) represents the standard combination symbol. The series ¢, terminates if one of the numerator
parameters is of the form ¢, n € NU{0} and g # 0. If 0 < |¢| < 1, the series ¢ converges absolutely for all x if < s and
for |x| < 1if r = s+ 1. The famous g-binomial theorem

a o (@ q)n ,  (az39)
1q:2 | = = , 1, 1.5
1¢0 <_ q Z) ,;) (q,q)nz (Z;q)oo |Z| < ( )

is a g-analogue of Newton’s binomial series. This theorem can also derive the following two identities

o (=1)q)

oo Zn 1
= 7 |Z| < 17
,,;0 (@@)n  (Tq)= ;) (4:9)n

7' = (2q)e- (1.6)

The theory of basic hypergeometric series has been greatly developed for more than a century, and there are many effective
ways to study it, such as the Wilf-Zeilberg algorithm, transformation, inversion and operator, for example, see [6, 7, 8, 9, 10,
11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Ten years ago, Liu first introduced the g-partial differential equation
method to study g-series. This innovative approach has attracted the attention of numerous mathematicians, For further details,
please refer to [26, 27, 28, 29, 31, 32, 33]. To this end, we initially define the g-partial derivative [28].

Definition 1.1. A g-partial derivative of a function of several variables is its g-derivative with respect to one of those variables,
regarding other variables as constants.

For convenience, the g-partial derivative of a function f with respect to the variable x is denoted by D, {f}. In [28], Liu
proved the following theorem.

Theorem 1.2. If f(x,y) is a two-variable analytic function at (0,0) € C2, then, f can be expanded in terms of homogeneous
Rogers-Szegd polynomials (for definition see (5.1)) if and only if f satisfies the q-partial differential equation Dy {f} =

Dyy{f}-

We should point out that the above theorem has developed a new theory for calculating the g-identity and demonstrated its
universality when applied to many types of g-orthogonal polynomials, including Rogers-Szegd polynomials, Hahn polynomials,
Stieltjes-Wigert polynomials and Askey-Wilson polynomials, as well as classical orthogonal polynomials such as Hermite
polynomials (cf. [30]). Later, some related works by Abdlhusein, Arjika, Aslan, Cao, Jia, Li, Mahaman, Niu and Zhang also
fall into Liu’s theory. Readers interested can see [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Hahn [48] first discovered the g-Laguerre polynomials, according to Koekoek and Swarttouw [49], they are defined by

a+1. -n
Lga)(xm) _ (¢ ,Q>n1¢1 ( qa-H; 7, _qn+a+1x> o> —1. (1.7)
q

(@ @)n

Askey pointed out [50] that the g-Laguerre polynomials converge to the Stieltjes-Wigert polynomials for o¢ — oo thus the g-
Laguerre polynomials are sometimes called the generalized Stieltjes-Wigert polynomials [49]. The explicit form of g-Laguerre
polynomials can write as

(a) _ (‘10H1§LI)'1 = (n qk2+ka k
L (qu) - W};) k qm(_x) . (1.8)

To study g-Laguerre polynomials from the perspective of g-partial differential equations following Liu’s ideas, it is necessary
to introduce homogeneous g-Laguerre polynomials

1t =[] Loty -1 19)
7 k=0 k q(‘]oH_l;‘Dk ’
Obviously,

L ) = Dl e pla), L 1he) = ), L 0url) =

(q% L) "
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This paper is organized as follows. Section 2 shows that an analytic function satisfies a system of g-partial differential
equations, if and only if it can be expanded in terms of homogeneous g-Laguerre polynomials (see Theorem 2.3). Section 3 is
an application of Theorem 2.3, where we use the method of g-partial differential equations to prove the generating functions of
homogeneous g-Laguerre polynomials with different weights. Section 4 presents that an analytic function can be expanded in
terms of homogeneous little g-Jacobi polynomials (see Theorem 4.2) if and only if it satisfies a system of g-partial differential
equations. In section 5, we obtain some identities by applying Theorems 2.3 and 4.2, which generalize famous formulas such
as Ramanujan g-beta integrals and Andrews-Askey integrals.

2. Homogeneous g-Laguerre polynomials and g-partial differential equations

Firstly, Proposition 2.1 presents an important property of homogeneous g-Laguerre polynomials.

Proposition 2.1. For n € NU{0}, the homogeneous g-Laguerre polynomials satisfy the g-partial differential equation

Dyl = g*m) {11 (¥1a) } = 4" 02Dy, {LIP (x310) | @1

namely,

Dy {Lr(za) (x,Ylq) *q“L;(za)(qx,qu)} =—q"""Dyy {Lﬁa)(qzx’qu)} -

Proof. Let LHS denote the left-hand side of the equation (2.1), and by using the formula D, {x"} = (1 —¢")x"~!, we can
obtain

- kN qkz%a kyn—k - k|1 k qk2+ka k—1,n—k
LS = Dq’x{k;)(_l) L‘L @ e } :k;(_l) [kL(l “DgEmgn” 7
Similarly, use RHS to denote the right-hand side of the equation (2.1). Through simple calculation, we have
J ko

RHS = _anqu { Zn: (_l)k [Z} (q(qzx)kynk}
q

k=0 qOH—l;q)k

(k+1)2+(k+ 1)

_ nil(il)k+l [l’l:| (17 n—k)q x](yn—k—l
ki, 1 (@* gk

k| B k+1 qk2+ka k—1 n—k
— —1 =g — " y""
LD |:k1:|q( )(QO‘HQQ)k—l

From the definition of the g-binomial coefficients (1.3), it is easy to verify that
n k| I _ on—k+1
[kLu q>[k_1L<1 7). @2

It follows from (2.2) that LHS = RHS, which completes the proof. O
In order to prove Theorem 2.3, we need the following proposition (for example, see [51, p.5]).

Proposition 2.2. If f(x1,x2,--- ,xi) is analytic at the origin (0,0,...,0) € C, then, f can be expanded in an absolutely and
uniformly convergent power series,

(o]
_ ny n n
FO,x,.0x) = Z Ay Xy X7 XK
nyny,...,ng=0

The main result of this section is Theorem 2.3.

Theorem 2.3. If f(x1,y1, - ,Xk, V&) is a 2k-variable analytic function at (0,0,---,0) € C?K, then, f can be expanded
Z )Lnl RIS Li(ltlx”(xl » V1 \61) o Lﬁl(/?k) (xkayk|q)a

where Ay, ... n, are independent of x1,y1,--- , X, Yk, if and only if f satisfies the g-partial differential equations
Dy (1= g% ) {f} = =402 Dy {1} 2.3)

forje{1,2,... k}.
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Proof. We employ mathematical induction. When k = 1, it follows from Proposition 2.2 that f can be expanded in an
absolutely and uniformly convergent power series in a neighborhood of (0,0). Therefore, there exists a sequence {A,,,}
independent of x| and y; for which

f(xhyl) = Z 2'm,nxrlnyrll = Z x]ln Z A'm,nyrll' (24)
= =0

m,n=0

Substituting the above equation into the following g-partial differential equation

Do, (1= g% M) {1, 31)} = —g“ 0 Dy, {F(x1,31)} (2.5)
we obtain
Z "M A =g"x Y Ayt = =M Y, Dy, { Yy Am,ny’f} : (2.6)
m=1 n=0 m=0 n=0

Equating the coefficients of x’l’"l in (2.6), we have

2 (g% 1)
Am,nyn:
L At =

q2(m71) oo
qm-&-m)(l_qm)quVl r;)lm—lﬂyl .

Iteration m — 1 times yields

o (_qa1+1)mqm(m—1)

z'mnn - a()n

,;o ’yl (q;q)m(q""*‘;cm o Z M
(1" = (D

- Y Aonr 5

(@ Dm(@ @) m =" (@ @)™

o

m2+mocl

q _
mao n n’l.
Z " |: :|q(‘1al+IQQ)my1

Noting that the series in (2.4) is an absolutely and uniformly convergent series, substituting the above equation into (2.4) and
interchanging the order of the summation, we find

n - m qm2+ma1 n—m
fly) = ZX"Z (=1 )LOn|: ] G

ap+1.
n=m q q 1+ ’q)m

m2+m05|

nl ¢ _
%7 (_l)m [ } xmyn m
n;() an:ZO m q (6]“1+1;6])m e

Y AonLi™ (x1,y1lq):
n=0

The above calculation shows that the sufficiency of Theorem 2.3 is correct. Conversely, if f(x1,y|) can be expanded in terms

of Lf,al)(xl ,¥1|¢q), then using Proposition 4.1, we find that f(x;,y;) satisfies (2.3). So we can prove the case of k = 1.
Next, we assume that Theorem 2.3 is true for the case k — 1. Since f is analytic at (0,0) and satisfies (2.5). Thus, there exists a
sequence {c,, (x2,¥2,...,%,ykx)} independent of x; and y; such that

f(x17y17~--7xk7yk) = Z Cnl(x27y2a xkvyk>L< )(XI,YIW) (27)
n1=0

Putting x; = 0 in (2.7) and using L,(,(lxl) (0,y1]g) = y|', we obtain

f(O,YI»XZaYZa---vkak) = Z cnl('x2)y2a"'7-xk?yk)y}ill
n|:0

Using the Maclaurin expansion theorem, we have

8n1f<07)’17x27)’27- "7xkayk)
nyldy ™ n=0

cnl (X27)’27- ”a-xk7yk) =
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Since f(x1,Y1,---,Xk, %) is analytic near (x1,y1,...,x,yk) = (0,...,0) € C%, it follows from the above equation that
Cny (¥2,¥2, .-, Xk, yk) is analytic near (x2,y2,...,X¢,yk) = (0,...,0) € C?k=2 Substituting (2.7) into (2.3), we find that for
=2,k

o o

Z Dq,Xj(l_qaanj){cn] (x27y27'"7xk7yk)}L£lal)(x17y1|q): Z( OCJrln)%]) q,yj {cn] ('x25y2a"'7xk7yk)}Ll<1al)(xl7yl|q)'

n1:0 n1:0

(o

By equating the coefficients of L, )(xl ,¥1|q) in the above equation, we obtain

(Xj+l

Dq,Xj(l _Clajnx_i) {Cnl (x27y27"' a-xk7yk)} =—-q n)?qu,yj {Cnl (x27)’27- "7xk7yk)}'

Therefore, there exists a sequence {A,, »,, ”k} independent of x2,y7, ... ,xg, yx for which

(%)
k

Cny (X27Y27---,xk7Yk) = Z ln],nz.,....,nkLﬁlgcz)(~x2a)72‘q)"'Ln (Xk,_)’k‘é])-

Then substituting the above equation into (2.7), we proved the sufficiency of Theorem 2.3. Conversely, if f can be expanded in

( (o

terms of L,Z(lm(xl Vilq) L, )(xk, Yklg), it follows from Proposition 2.1 that f satisfies (2.3). This completes the proof. [

Remark 2.4. Theorem 2.3 implies that all solutions to q-partial differential equation (2.3) can be represented as linear
combinations of homogeneous q-Laguerre polynomials. Its applications are discussed in Sections 3 and 5.

3. Generating functions for homogeneous g-Laguerre polynomials

Since the Stieltjes and Hamburger moment problems corresponding to the g-Laguerre polynomials are indeterminate there
exist many different weight functions, see [2, 52, 53, 54] for details. Theorem 3.2 will use Theorem 2.3 to prove the following
generating functions of homogeneous g-Laguerre polynomials with different weights. We often refer to the following Hartog’s
theorem (see [55, p. 28]) to determine if a given function is an analytic function in several complex variables.

Theorem 3.1. If a complex valued function f(z1,22, - ,2u) is holomorphic (analytic) in each variable separately in a domain
U € C", then, it is holomorphic (analytic) in U.

Theorem 3.2. (1) We have

= (-1q®) g - atl
9 19 1) = (ty: ) cq—q% x| . 3.1)
n);b Gon (Y@t = (ty:9)e 092 o
(2) For arbitrarily given v, and for |ty| < 1, we have
- (1 @)n (o) _ (1my:9)= 4 atl
L, (x 1 q,— tx|]. (3.2)
,,;) @™ = g oy &7

Proof. For part (1), denote the right-hand side of (3.1) by f(x,y). It follows from Theorem 3.1 that f(x,y) is an analytic
function of x and y. Thus f(x,y) is analytic at (0,0) € C?. On the one hand, we have

o0 n+1 ("33
Dol =40 {F(5.9)} = 19" ). T - (g

On the other hand, according to (1.1),

_ OhL])C[)”,

> g [(—1)g()P
Pao b)) = 05a)- ;) (‘LC]IO?JFE(;‘])ln)(l;]’QQ)]nJrl

from which we obtain

3n 1) (2) 3
" Dy {f(x )} =14 (17:4)e Z. (q, ZOH[(I"])) (fy;fl])nﬂ (=g 'x)" = Dyx(1 = ¢*m) {f(x,)} -

Therefore, by Theorem 2.3, there exists a sequence {A, } independent of x and y such that

(ty:9)=092 <q“+_1 iq,— ) Z AL (x,yq). 3.3)

)1y



64 Fundamental Journal of Mathematics and Applications

Putting x = 0 in the above equation, using L (O ylg) = y" and (1.6), we find that

5 2 = ()= ¥ (=1yq®?
n=0

(ty)".
a0 (@)
Equating the coefficients of y" in the above equation, we have A, = (—1)"q(3) /[t"(¢;¢)n). Then substitute it into (3.3) and
equation (3.1) follows.

For part (2), denote the right-hand side of (3.2) by f(x,y). It follows from Theorem 3.1 that f(x,y) is an analytic function of x
and y for |ty| < 1. Thus f(x,y) is analytic at (0,0) € C2. On the one hand, we have

ng()2
Dq,x(l—qanx){f(xd)} = Dq,x{ 'J;l;’qq“: oc+1 Y 11()qq}’ty]q) (— QOHIXZ‘)H}

g* M (1y:9)w Z (Vs @)n+1( 1)”‘](2)}2‘]2" _ oc+1xt)n
(ty q) (4,95 @)n (VY3 @)ns1

On the other hand, according to (1.1),

(139w & (1wt [(—1)7gB)2 gy
(tyi @)oo = (4,91 @)n (VY @)t ’

2Dtm {f(xd’)} =

from which we obtain

(Z+l

(3)12,2n
e g ()" = Dy (1 =) 5]

—g%tn2p
q Ny Pay {f(x’y)} (ty q) a+1 (Vty q)n+l

Hence, by Theorem 2.3, there exists a sequence {4, } independent of x and y such that

3q) Y
m1%< a+177’t »qs— ) Z)L L x)’|¢] . (3.4

Putting x = 0 in the above equation, using L (O y|lg) = y" and (1.5), we find that

Z pyt = A3 en Z (Y;q)n(ty)n_

;@) 1= (q:9)n

Equating the coefficients of y" in the above equation, we obtain A, = " (¥;¢)»/(¢;q)n. Then substitute it into (3.4), which
completes the proof of (3.2). O

Remark 3.3. (1) Taking y = 1, Theorem 3.2 degenerates into generating functions of q-Laguerre polynomials [49, p.109].
(2) Taking v = 0 in (3.2), we can obtain a simpler generating function for Lf,a) (x,¥]q):

w r(a) —
Ly (x, )’|‘1) a+l1
1 q,— . 3.5
ngb (@0 @ cJ) 0¢1< art> &4 xr) G

4. Homogeneous little g-Jacobi polynomials and g-partial differential equations

A g-analogue of Jacobi polynomials was introduced by Hahn [48] and later studied by Andrews and Askey [56, 57], and
named by them as little g-Jacobi polynomials:

7",06 n+1
PLP) (xlg) = 201 (q ocl;q ;q,qx> : 4.1)

As g — 1, the little g-Jacobi polynomials tend to a multiple of Jacobi polynomials. The little g-Jacobi polynomials with 8 =0
are g-analogs of Laguerre polynomials and are orthogonal with respect to a discrete measure on a countable set, called little
g-Laguerre (or Wall) polynomials. Moreover, the little g-Legendre polynomials are little g-Jacobi polynomials with ¢« = 8 = 1.
If we set B — —a !¢~ B, in the little g-Jacobi polynomials and then take the limit & — O we obtain the alternative g-Charlier
polynomials. For more details about g-Jacobi polynomials, see [49].

To establish the relationship between little g-Jacobi polynomials and g-partial differential equations, similar to Section 2, we
naturally introduce homogeneous little g-Jacobi polynomials

n n+l.
(,B) _ k(k-+1-2n)/2 m (aBqg"" s q)k _ \k—k 4.2)
M X, = E — = T (—x . .
P ( qu) k:()q k . (aq,q)k ( ) y
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Evidently,

(a,B)(

PP (x,ylg) =y PSP (e /ylq), PP (x,11q) = PSP (xlg), PP (0,31q) = ¥ 4.3)

Firstly, Proposition 4.1 shows an important property of homogeneous little g-Jacobi polynomials.

Proposition 4.1. The homogeneous little g-Jacobi polynomials satisfy the g-partial differential equation

Dyt = am) { P (x310) } = =4y (157" — qapnd) { PP (51a) }. (44

namely,

Dy.x {pﬁa’ﬁ '(x,ylq) — api™P) (qx,qu)} =—qDgy {Pﬁa’ﬁ '(x,v/ala) — qaBpi*P )(qzxyy\q)} :

Proof. If we use LHS to denote the left-hand side of the equation (4.4), we have

Dy x { i (—1)kgktkt1=2m/2 m Mxkynk}
q

k=0 (0q:q)i—1

LHS

_ Sk k(kE1-2n)2 [ (1-¢")(aBg" s q) klyn—k
;( e [kL (0tq3q)—1 Y

Similarly, use RHS to denote the right-hand side of the equation (4.4). By simple calculation, we obatin

Y - (B @it g ni
RHS = @7 (71)k+1q(k+1)(k+2 2n)/2 {n] —yﬂ‘y"
qy{kzb k q (aq;q)k

n

_ (= 1)kH gl Dk 2-2m) 2 [n] (1=g" ") (aBg™ " q)rrs iy
q

k=0 k (aq;q)x
_ i(_l)qu(k+l2n)/2|: n } (1=g"*(aBg""sq) Pyt
k=1 k—1 q (aq;q)k-1
It follows from (2.2) that LHS = RHS. O]

The main result of this section is Theorem 4.2.

Theorem 4.2. If f(x1,y1, - ,Xk, V&) is a 2k-variable analytic function at (0,0,---,0) € C?K, then, f can be expanded

Y A PP yilg) - P (il g),

=0

where Ay, ... n, are independent of xi,y1,- -+ , X, Yk, if and only if f satisfies the g-partial differential equations

Dyi; (1= M) {f} = —qDyy; (05" = qoyBimi ) {13 (4.5)
Sfor je{1,2,... k}.

Proof. We use mathematical induction. When k = 1, it follows from Proposition 2.2 that f can be expanded in an absolutely
and uniformly convergent power series in a neighborhood of (0,0). Therefore, there exists a sequence {A,,, } independent of
x1 and y; for which

fxi,y1) = Z Ao n X'y} = mezzrmnh (4.6)

m,n=0

Substituting the above equation into following g-partial differential equation

Dy, (1= 01 m)) {f(x1,31)} = —qDqy, (0, — qau fping ) {f(x1,31)}- 4.7

The left-hand side of (4.7) can be written as

Zl—alq lzlmn)ﬁ Z O‘lqmﬂ)(l mH Zlmﬂn}’ly

m=1 m=0
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and right-hand side of (4.7) can be expressed as

61)1 { Z Z - _Oﬂlﬁlqzm—H mnxrlny?} Z Z
m=0

m=0n= n=0

Therefore, we obtain

oo

Z(l—alq"’+1)(l m+1 mz)bm+1ny1 Z Z

m=0 n=0 m=0n=

Equating the coefficients of x" in (4.8), we can easily see that

(I—¢™)(1—oyqg™ Z)Lm”yl__qz n+1 —(n+1)

From the recurrence relation of the above equation, we can derive

1=g"N(1-aagd" )Y Ay} = —qZ g
n=0

(1*61”'_2)(1*0514’"_2)Zlmfz,nyql = 7qz n+1
n=0

_qz n+1
_qz n+1

(1= (1=oug”) Y, o)
n=0

(1—q)(1—aiq) Y, MY}
n=0

— o By

—(n+1)

—(n+1)

—(n+1)

—(n+1)

- 2m+1 1
—0615161 mr ))Lmnxrlny? .

7a1ﬁ q2m+1)l .men 1.

q2<m71>+1)/1m71}n+1yr11-

2)+1
—a1Big 2Hm= YAm—2.n11Y15

— o Bi "IN A i1

2-1+1
—ouBig " ) Ayt

— a1 Big® " ) Ao pi1

By equating the coefficients of y} on both sides of (4.9)-(4.12), we easily deduce that

—q(l _qn+1)(q—(n+l) _ 061516]2("’_1>+1)

Afmfl.,nJrlv

= (1= (1~ g™
o = —q(l _qn+l)(q7(n+]) _ alﬁlqz(m72)+l)
’ (1—gm (1 —oug")
s — —q(l— n+1)(q (n+1) _ 061131612 1+1)
(1-¢*)(1-aiq?)
e — —q(l— n+l)( —(n+1) a1ﬁ1q2-0+1)
’ (1-g)(1-aiq)

By iterating the above equations m — 1 times, we can deduce that

N 76](17qn+1)(q—(n+l)7a1ﬁ1q2(m—1)+1) 76](17

= X

A'm—ZA,n+17

2vl,n+1 ’

AO,n-ﬁ-l-

qn+2)(q—(n+2) _ alﬁqu(m—Z)—H)

(1—=¢m)(1—ag™)

—q(1— g1 (g =1 — oy Big? '+ —g(1—

(1—gm~

qn+m) (qf(ner) —o ﬁl q2~0+l )

D —agm)

) (-1 — i) .
_ (_Q)m(an’Q)m —(n+1) _ 2(m—1)+1 -
T (@ )m(0ng;@m a1prg )=l
m(1—2n—m)/2 %An+m(_1)m(q;q)m+n -« m-+n
q
(@D m(@ (g q)m ( P

= q

(

(n+m)

1 —q)(l _alq) AO.n+m

— 0 .Bl 612'0+1 )AOJH»m

+1)”'(1_a1ﬁ1q2m+n)

= M,)1+m(1)mqm(l_2n_m)/2|: m

(01q;:q)m
Therefore,

n

|
E’J

) A()n-ﬁ-mq 1 n= m)/ |:

= Y (—1)"Agug” m(1—2n-+m)/2 [m}

Z XY
n=0

q

n+ m} (a1 Bi1g" " q)m
q

m

+m} (g™ ™
q

y
(g @)m

(alﬁlqn+l;Q)m n—m

(ouqg;q)m

1

(4.8)

4.9)

(4.10)

4.11)

(4.12)
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Noting that the series in (4.6) is an absolutely and uniformly convergent series, substituting the above equation into (4.6) and
interchanging the order of the summation, we obtain

_ yrgnti-2nmy/2 [1] (PG5 @)m 1o
fan) le Z% Mq CYT

m m n—+m n a n+1; m._m.n—m
ZAO"Z (1-2n+ )/2{ ] (a1 Big q) !
q

0 m (019:9)m

= Z 2o PP (x1,v110).
n=0

The above calculation shows that the sufficiency of Theorem 4.2 is correct. Conversely, if f(x;,y;) can be expanded in terms

of pﬁ,al ’m(xl ,¥1|g), then using Proposition 4.1, we find that f(x;,y;) satisfies (4.7). So we can prove the case of k = 1.
Next, we assume that Theorem 4.2 is true for the case k — 1. Since f is analytic at (0,0). Thus, there exists a sequence

{cn, (x2,¥2,. .., %k, k) } independent of x| and y; such that
f(xla)’ly--ka»Yk) = Z Cnl(x27y2a xkayk)pl(’l] 7ﬁ1)(x17)’1|9)~ (413)
n|:0

Putting x; = 0 in (4.13) and using pS,II Pr) (0,y1]g) = y|', we obtain

f(ovyl » X2, Y250 - 7xk>yk) = Z Cny ()CZ,yZ, oo 7xk7yk)yr1ll
Vl1=0

Using the Maclaurin expansion theorem, we have

anlf(07y17x27y27 ce axkayk)
nldy ™ n=0

Cny (x27y27-~~axkayk) =

Since f(x1,y1,...,%, k) is analytic near (x1,y1,...,%,yk) = (0,...,0) € C%*, it follows from the above equation that
Cny (¥2,¥2, .- Xk, yk) is analytic near (x2,y2,...,%,y) = (0,...,0) € C?=2_ Substituting (4.13) into (4.5), we find that
for j=2,...,k,

Y. Dy (1= 1) {em (2,32, - 3090} P (3131 )

n1=0
= Y (=9)Dygy;(ny,' —qaPni ) {en (x2,32,.- i) } PP (a1 g).
ny =0
By equating the coefficients of pS, A (x1,¥1]q) in the above equation, we obtain

ﬂ%xj(l*anxj){cnl (x27y27"'axkayk)} qD ,y,(n qaﬁnx ){Cnl (x27y27 xkayk)}'

Therefore, by the inductive hypothesis, there exists a sequence {ln] T, ”k} independent of xy, y», ..., X, Y& such that
e (X2,32, - X yk) = Y, Pony oo PSP (2,21 q) -~ AP (v, ).
ny,...,n=0

Substituting this equation into (4.13), we proved the sufficiency of the theorem. Conversely, if f can be expanded in terms of

pﬁ,‘l’“ ’ﬁ1>(x1 Vilg) - p,(qk"’ﬁ" (xk,Yklq), it follows from (4.4) that f satisfies (4.5). This completes the proof of Theorem 4.2. [J

Remark 4.3. Theorem 4.2 implies that all solutions to q-partial differential equation (4.5) can be represented as linear
combinations of homogeneous little g-Jacobi polynomials. See Section 5 for the application of this theorem.

At the end of this section, we will present the generating function of homogeneous little g-Jacobi polynomials.
Proposition 4.4. Generating function for homogeneous little g-Jacobi polynomials:

n(n— 1)/21‘"

q (@.8) -, bla,—
pn " (a,blg) = ; ¢, —Qqat 1q,—at | .
(@ Baa) (a,blg) = o1 (aq q,—0q >2¢1 ( By )

s

n
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Proof. Tt follows from [49] that

oo [ n n(nfl)/Ztn _ 1/a,—
Y —Tﬁa’ﬁ)(ﬂlhl) =0 1q,aqat | 201 / sq,at | .
aq Ba

= (@.Ba:q)n
If a is replaced by a/b in the above equation, we have

oo (_l)nqn(nfl)/Ztn

CLI ba—
= (@Bgn Fn (a/b|‘1)—0¢1<aq,q,aqat/b> 2¢1< By J]ﬂf/b)-

Letting further # — —¢b in the above equation gives

= g"n=1)/2 b/a,—

7L L yplah) Ya/blg) =001 |  :q.~agar |26, ' sg,—at .
; (4:B4:9)n oq Ba

Finally, we can deduce the conclusion by combining the above equation with (4.3). [

By using Proposition 4.1, we can determine that the right-hand side of the equation in Proposition 4.4 satisfies the g-partial
differential equation (4.4). Hence, we have the following Corollary 4.5, which will be applied in Section 5.

D 1 . b/aa .
q,a( - and) 0¢| aq’ q,—0qat 2¢1 ﬁq s q,—at
= —qDgp(n, ' —qapng) {odJl ((;q;q,—aqat> 201 ( /gq_;q,—at> }

5. Applications of Theorems 2.3 and 4.2

Corollary 4.5. We have

The Rogers-Szeg6 polynomials are famous g-polynomials which play an essential role in the theory of orthogonal polynomials.
Liu [28] studied the homogeneous Rogers-Szeg6 polynomials from the perspective of g-partial differential equations, which
are defined as

hn(x,ylq) =Y m oy Tk (5.1)
q

Further, the homogeneous Hahn polynomials

n

¥ (eylg) = Y m (a:g)rry"™ (5.2)
q

k=0

are a generalization of homogeneous Rogers-Szegd polynomials. They were first studied by Hahn [48], and then by Al-Salam
and Carlitz [1]. So they are also called Al-Salam-Carlitz polynomials. The following generating functions will be frequently
used (cf. [1, 29])

3 (i )e gy g8

= (@ (xt,yt:)0

When a = 0, (5.3) degenerates into the generating function of homogeneous Rogers-Szegd polynomials

o fn (X, 1
Z (x )"q);n: , max{|xt|,|yf|} < 1. (5.4)
= (@) (xt,y13q)co

We present two famous Ramanujan g-beta integrals [58, 59].

Proposition 5.1. Form € R, 0 < g = e~ 2 < 1, supposing that [yzq| < 1, we have

—2mki.

4)en (5.5)

—02+2m6

2mki.
oo e 40 — m? (—yqe™™:q) (—2q€
- - =/ Te -
I (g 220 ) (2 228 ). VT )

(v24:q)

Supposing that max{|yq'/>¢*™¥|, |zq'/2e=2"|} < 1, we have

+eo _0242mO( ., 2k6. —2k6. _ m? (vzq:9)e
J o e (—vqe™?;q)w(2qe 19)dB = \/Te g1 22mg) (g 2e2mrg). (5.6)
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The following Theorem 5.2 is a generalization of the Proposition 5.1.

Theorem 5.2. FormeRand a > —1,0< g= W <, supposing that |yzq| < 1, we have

2 o . .
/er o—07+2m0 Lgla) (x,y\q)hn(—qez’”k’,ql/zez"’e|q)de
(2q'/2e2k0; )00 =) (4:9)n
—2mki. _
2 (—zqe 1q)oo
N P il )L et =gz | (5.7)
(V295 9)e q

Supposing that max{|yq'/>¢*™|, |zq'/2e~2"|} < 1, we have

do

e - S 0 L (5. 31g)gn(—ge™®, /2> |q)
/ 020 (10 2ke;q)mz(_1)nq(2) n (%l9) ”(q~q) |
—oo n=0 B n

2 (Y243 q)e -
= \/Eem —— 0
(qu/ze—zmk;@m ¢ qa+

where g,(x,y|q) represent the homogeneous Stieltjes-Wigert polynomials:

L g —q x| (5.8)
y2qY

_ L [n o) kone
gn(x,ylq) =ha(x,ylg7") =Y M gF k= Ry =k
q

k=0

Proof. (1) We use f(x,y) to represent the right-hand side of (5.7). Obviously, f(x,y) is analytic near (0,0) € C?. It is evident
from (3.5) that f(x,y) satisfies

Dyx(1=¢*n) {f(0.9)} = 4% 03Dy { (7))

According to Theorem 2.3, there exists a sequence {A, } independent of x and y such that

2 (_qufzmki;q)w —
" i g, ALY 5.9
Ve (¥243q)eo ofr T Z @l 9

By letting x = 0 in the above equation and using L (O ¥|lg) =", we can derive that

_ —2mki. 0
N VS YW (5.10)
(243 @) o
Next, by using equations (5.4) and (5.5),
— [ 5] —02 2
\/Eemz (_qu 2mkz;q)w _ 1 /+ e 6°4+2mo 76
(v2g: ) (—yq€*™ 3 q)e0 J—co (vq'/2e?k0, 2g12e=2k0; ).,

dey". (5.11)

o /+w 6792+2m9 hn(_qumki7 ql/ZeZki9| q)
=0 27249 (4:9)n

Then comparing the y" coefficients of (5.10) and (5.11), we can obtain

oo (qu/

do.

too 6792+2m6 hn(_qe2mki ql/ZeZki9|q)
Ay = / . :
e (2q'2e72K0:q).. (4:9)n

Finally, substitute the above equation into (5.9) to complete the proof.
(2) Similarly, we use f(x,y) to represent the right-hand side of (5.8). Obviously, f(x,y) is analytic near (0,0) € C2. It is
evident from (3.1) that f(x,y) satisfies

Dya(1=q" ) {f(x,3)} = —q““n)?@q,y {fx,)}

According to Theorem 2.3, there exists a sequence {A, } independent of x and y such that

V" (y24:)- -
(agPe 2k g) 0% | ot 1 Z Al (x.314)- (5.12)



70 Fundamental Journal of Mathematics and Applications

By letting x = 0 in the above equation and using L (O ylg) =", we can derive that

(V23 q)e
Ve (g e g Zlny (5.13)

Next, by using equations (5.6) and [28, Theorem 3.1]:

had n

(59,1y34)e0 = E(—l)'lq(g)gn(svth) (q;yq)n :

So the left-side of (5.13) can be rewritten as
2 (V243 9)= 1/2 2mk
Ve (12 Pm ;q)m/
(2(11/2672}11k;q)OQ e

teo o B
_ / e 0 +2m6(Zq€ 2k9;q)w(yq1/262mk;q> ( quZkG q) de

—o0

+oo ) B
e 0 +2m9( yquk(-) Q)oo(qu 2k9;6])md9

oo B ) " g (ql/zez’"k,—quk9|q)y"
_ / 020 (100 2k9;q)m2(_l)nq(2) n : 40
—oo n=0 (@:@)n
o e, - n gn(q'/2e2™, —qe?®|g
_ Z/ e 0 +2me(qu‘ 2k6;q)m(7l)nq(2) ”l( - | )deyn'
=0/~ (4:9)n
Then comparing the y" coefficients of (5.13) and the above equation, we can obtain
Joo . 1/2 ,2mk _,,2k0
A :/ 6792+2m9(qufﬂce;q)m(_l)nq(z) gn(g'/~e™™, —qe |61)d9.
—eo (q:9)n
Finally, substitute the above equation into (5.12) to complete the proof. O

Remark 5.3. When x =0, (5.7) and (5.8) degenerate to (5.5) and (5.6), respectively. In the later Theorem 6.4, we will provide
an equivalent form of (5.7), and (5.8) is similar, which we leave for interested readers.

Now, we will present some applications of Theorems 2.3 and 4.2 in g-integral. The Jackson g-integral of the function f(x)
from a to b is defined as

[ 1= (1-0) X (70  ap(a g 614

n=0

If f is continuous on (a,b), then it is easily seen that

lim f ,,x_/f

qg—1-
The famous Andrews-Askey integral formula [60, Theorem 1] can be stated in the following proposition.

Proposition 5.4. For max{|bul,|bv|, |cul,|cv|} < 1, we have

/V (gx/u,qx/viq)es (1 =q)v(q,u/v,qv/u,beuviq)-
u  (bx,ex;q)e 7 (bu,bv, cu,cv;q)e

In [29, Theorem 4.4], Liu extended Proposition 5.4 and proved the following g-integral formula.

Proposition 5.5. If there are no zero factors in the denominator of the integral, we have

[[llantiBene,_ (-drauiujueding § bied i) ¥ (a,blg)
w  (ax,bx,cx,dx;q)e 7 (cu,cv,du,dv;q)e (g:9)n
with
o (n] (avbvig@)k k pk
W, (a,b,u,v|q) = [] By /A VU (5.15)
i 7) k;() k g (abuv;q)y

The main results of this section is the following Theorems 5.6 and 5.9.
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Theorem 5.6. For max{|cul, |cv],|dul,|dv]|,|bzul,|bzv|} < 1, we have

/-u WT(B7y;D"'Z){(b e 0¢1< a_+1§q7_q0!+lazx>}dqx

L—q)v(q,u/v,qv/u,cduv;q)ew v Wy(c,d,u,v|q ¥,2|lq
(1—q)v(g.u/ /. Z )P (I) @ (4 blg)
(cu,cv,du,dv;q)w (@:9)n

with

oo

T(B,y;D ):

k:O

quz ,

it is called the Cauchy augmentation operator [61, (1.2)].

Proof. We use I(a,b) to represent the left-hand side of the equation in Theorem 5.3, then we have

Y (qx/u,qx/viq)e - ot
1 =T ;D 5, — dyx ;. 5.16
(Cl7b) (ﬁ?y’ q,z) {,/u (C)C7d.x, bzx, q)oo O(P] qa+1 s C], q azx qx ( )

It is evident that the function in braces in (5.16) is analytic near (0,0) € C? for max{|cul,|cv|,|dul, |dv|, |bzul,|bzv|} < 1,
therefore I(a,b) is also analytic. By using

n (B )k knk n
T(B,y: Dy ){2"} = go(q,q)k DL =P (3,2l)

and (3.5), then (5.16) can be rewritten as

V(gx/u,qgx/v;q)e > ﬁ,a)a
Hap) = /M (qx/u,9%/v3q) T(B,y;%,z){ZL ( ,blq)(xz)n}dqx

(cx,dx; q)e = (@9
[ (anfugx/vig)e & L (a,0l9) P (v2la)
= X'dyx. 5.17)
w  (exdx;q)e 5 (@:9)n

(0‘)(

According to the definition of g-integral, it can be seen that (5.17) is a linear combination of Lj

= [vgm(vg™ Ju, g™ s q) & L (a, 7
et = (1_Q)Z [ i Ecgqm,cjvég‘Q);Q) n=0 | ng)Q)n e g™’

m=0

a,b|q), namely,

_ g g i) % L b0 02l |
(cug™ duq™:q)e = (4:4)n

Since D, is a difference operator, it follows from the above equation and Proposition 2.1 that
Dya(l—q*na) {I(a,b)} = —4* 03Dy {I(a,b)}.

Then by Theorem 2.3, there exists a sequence {4, } independent of a and b such that

v (gxfu,qx/viq)e & LS (a,b]q) PP (v,2]q)
/u (cx,dx; q)eo g’o (4:¢)n Xdgx *n;)l AL (a.blg). (5.18)

Putting @ = 0 in the above equation, using Lﬁla) (0,b|q) = b" and (5.3), we find that

_ [ (gx/u,qx/viq)e wlq ny o / Y (gx/u,qx/viq)e  (Bybx;q)e n
10.5) _/u (cx,dx;q)e = (bx)'dgx = w  (ex,dx;q)e (YDX,7DX;q) e dgx = Z b (5.19)

Substituting @ — yb and b — zb in Proposition 5.5 yields the following result

/ v (qx/u,qx/v, Bybx;q)e

(1 —q)v(g,u/v,qv/u,cduv;q)e Z (c.d,u,v]q) ¥ (y,2|61)b
(ybx,zbx, cx,dx;q)e '

d =
a* (cu,cv,du,dv;q)w (4:9)n

By combining the above g-integral with (5.19) and equating the coefficients of ", we can obtain

5 = (L=a)vig.u/v.qv/u, cduviq)e Walc,d,u v]g)¥) y,ZIQ)
e
(cu,cv,du,dv;q)ew (:9)n
Substituting the above equation into (5.18), Theorem 5.6 follows. O
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Remark 5.7. (1) When a =b =y =z =0, Theorem 5.6 immediately reduces to the Proposition 5.4, so Theorem 5.6 is really
an extension of the Andrews-Askey integral.

(2) When a =0 and b = 1, Theorem 5.6 becomes Proposition 5.5.

(3) Wheny =0, z =1 and combining (3.5), we obtain

Y (qx/u,qx/v;q)e - a+l
e 1q,— d
/u (bx,cx,dx;q) 01 g% ! Gmq x| det

_ (1—q)v(q,u/v,qv/u, cduvqmz cduv|q)

b 2
(cu,cv,du,dv;q)o = (g:9)n n (a ). (5.20)

(4) Setting d = 0 in (5.20) and noticing that Wy (c,0,u,v|q) = ‘PELCV) (u,v|q). We immediately obtain following corollary.

Corollary 5.8. For max{|cul,|cv|,|bu|,|bv|} < 1, we have

v . — _ . oo plev) ()
[ (qx/u,qx/v,q>wo¢l< . qa+1ax> e = =@/ va/icq) 5 W Gl L™ (0. bla)
u n=0

(bx,cx;q)eo g (cut,cv1q)es (4:9)n

Theorem 5.9. For max{|au|,|av|,|cul|,|cv|,|dul,|dv], |eq|,|Bq|} < 1, we have

v (gx/u, qx/v;q)e - b/a,—
Pt A LA ; g, —0gax 1q,—ax | dyx
/M (cx,dx:g)m 091 g q,—oqax | 29 By q 4

_ (=g vav/udawig) 5 ¢W(d e url) (wp) g
(du,dv,cu,cv;q)o o} (2:Bg:)n !

Proof. We use I(a,b) to represent the left-hand side of the equation in Theorem 5.9. Clearly, I(a, b) is analytic near (0,0) € C2.
According to the definition of g-integral, we have

o L (vt u, n+1; - _ b/a7_
I(a,b) = (1Q)Z[q(q [u.4" ) 0¢1< ;q,aavq”+1>z¢1< 5 g, —avq"

= (cvg™,dvq";q)e aq Bq

n n+1 n+1. — b -
_uq"(uq"" /v.q )’Q)wO‘Pl( ;q,—aauq”“>z¢1< /a ;q,—auq"ﬂ- (5.21)

(cuq",duq™;q)e ag Bg

By setting t = vg" in Corollary 4.5, we obtain

_ b/a,—
it an foo ( aaa oo (-t )}

= —qDyp(n;," qaﬁm){o¢1< —aavq" > 201 (b/a’_;%avq")}- (5.22)
q Ba
Similarly,
— bla. —
Dya(l—o0ng) {o¢1 (aq;q,—aauan) < /ﬁq q, —auq ) }
= —qDgu(n, " —qapng) {04’1 ( g, aauq”“) 201 (b/a’_;% auq") } (5.23)
' aq Ba

Since D, is a difference operator, it follows from equations (5.21)-(5.23) that

Dya(l—0na) {I(a,b)} = —qDyp(n, ' —gaBng){I(a,b)}.

By Theorem 4.2, there exists a sequence {A,} independent of a and b such that

Y (qx/u,qx/v;q)e - b/a,— B
/»f(cac,d;c;qxc‘”’l(aq’q"“q“") 2¢1< By ) = an PP (a.blg). (524)

Letting a = 0 into (5.24) and using pf,""ﬁ) (0,b|g) = b", we can find

v o _n(n—1)/2 n . o n(n—1)/2pn v x
1(0717):/ q (bx)" (gx/u, gx/vig)en | q b / " (gx/u, %/ v;q)e dyx = Zk b (5.25)

= (q.Bxa)n  (exdxg)e T = (q,Bgq)n (cx,dx;q)es
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We note that interchange the order of summation and the g-integral in (5.25) is reasonable, since

oo n n—1)/2pn
BV g [,
~ (q,B4:9)n (ex,dx;q)oo

can easily infer that they are converges absolutely and uniformly by using the ratio test. Then by g-integral [17, (3.4)]:

[P (= avanls udens).
u

= W, (d .
(dx,cx;q)e 1 (du,dv,cu,cv;q)e n(dsc.u,vlq)

Substituting the above equation into (5.25), we have

o0 n n— 1)/2bn 1— d .
Z ( q)v(q,u/v,qv/u, cuv,q) d c,u v|q Z A bn
i=0 (4. Ba:q)n (du,dv,cu,cv;q)e
Equating the coefficients of 4" on both sides of the above equation, we obtain

(1—q)v(q,u/v,qv/u.dcuv;q)e ¢""~V/2W,(d, c,u,v|q)
(du,dv,cu,cviq)e (9,B9:9)n

A=

Finally, substituting the above equation into (5.24) and Theorem 5.9 follows. O

Remark 5.10. (1) When a = b = 0, Theorem 5.9 immediately reduces to the Andrews-Askey integral.
(2) Setting d = 0 in Theorem 5.9, we immediately obtain the following corollary.

Corollary 5.11. For max{|cul,|cv|,|aqg|,|Bq|} < 1, we have

Y (qx/u, gx/viq)e - bla,—
/u WO(I)] <aq’ q,—aqax) 201 < By ,q,—ax) dgx

_ . oo n(n—1)/2
_ (1—q)v(q,u/v,qv/u;q)w q ‘PE,CV)(u,v\q)p,(za’ﬁ)(a,bm).

(cu,cviq)e = (Bg:9)n(q:9)n

6. Concluding remark

1. This article interprets homogeneous g-Laguerre polynomials and homogeneous little g-Jacobi polynomials mainly from the
perspective of g-partial differential equations, providing a new method for studying these two g-orthogonal polynomials. This
research method also belongs to Liu’s theory of g-partial differential equations.

2. We notice that homogeneous g-Laguerre polynomials and homogeneous Hahn polynomials appear in the Corollary 5.8. To
calculate their generating function, we introduce the general double basic hypergeometric series is defined as follows [6, p.
282]

QABC | A" bpicc " o v (@@ min(bB:q)m(cciq)n
DEF[ E’fF mz()nzb dp; )m+n<q7eE, )m(q7fF9q)n
m-+n - m - n 1 -
x| (—1ymeg(": )]D ! [(fl)mq(z)}w C[arg®] T ey 6.1)

where ay abbreviates the array of A parameters aj,ay,- - ,da, etc, and ¢ # 0 when min{D —A,1+E —B,1+F —C} <0. The
series (6.1) converges absolutely for |x|,|y| < 1 when min{D —A,1+E —B,1+F —C} >0 and |g| < 1. The series (6.1) is
called the g-Kampé de Fériet series when B=C and E = F.

Theorem 6.1. [f max{|uyt|,|vyt|} < 1, then, we have

a+1

—xvtq
n=0 (4:q)n (uyt,vyt;q)e

= O VgL (elg) o (Buytig)e goor [ B0
Z t 2:1;0 o+l P s UG
0,4 : Buyt;—

Proof. Firstly, applying the g-partial derivative operator D',;J to act both sides of the equation (5.3), and then using the formula
(1.2), we deduce that

- ‘Piﬁ)k(MIq) L (But;q)e & [K] (Bt q9); s
n;o (2:9)n "= (ut,vt:q)e 4 OH W g (6.2)
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Let LHS to denote the left-hand side of the equation in Theorem 6.1, we have

o (B n 12 +ka
Wy (Mv"\CI) k[”:l q k. n—k
LHS = Y 2 VD myn oy A
,Z‘O (q:9)n kgz) k], (g% ')
o oo n 2
_ ¥ 3 CUE e wlg)
== (@)1 )k
(—xr)kg ke = ) (uvg)

= (4,95 = (@9

ngk

()"

Letting t — yr in (6.2), then substituting it into the above equation yields

- 2
s - ¥ (=xt)* g (Buyt;q)eo & m CRLT TN
= (4,9 q)k (uyt,vytiq)e = LJ), (Byutiq);
(Buyt:q)o o q* DL (B yur: g) j(—xtu)] (—xev)*
(e, vyt q)e =020 (@) j(@:9) j(@a)i(Buytsq);
which is equivalent to the right-hand side of the equation in Theorem 6.1. O

Remark 6.2. (1) Lettingt — 1, x — a, y — b and B — cv in Theorem 6.1, and then substituting that into the equation in
Corollary 5.8, we obtain

QY . —
/ —(qx/u,qx/v,q)mgq)l ( ar10 9 —ClaHax) dgx
q

u  (bx,ex3q)e

(1 _Q)V<q7u/vv qv/mbcuv;q)oo 0:2;1 - bV;O
= q’z:l;o

. g —au a+l7_av o+1 )
(bu,bv,cu,cv;q)ew 0,¢%"" : beuv; — 1 1 I

(2) Letting B = 0 in Theorem 6.1, and we immediately obtain the following corollary.

Corollary 6.3. If max{|uyt|,|vyt|} < 1, then, we have

- hn(u,v\q)Lﬁ,a)(x,yM) 1 0:1:1 [ —:wyt;0

"=
- 2:0,0 o+l . .
qu T

o 1 a+l
s q;—xutq®t —xvtq .
o (4:4)n (uyt,vyt;q)es ’

Applying Corollary 6.3 to (5.7), we immediately arrive at the following theorem. The proof will be omitted.

Theorem 6.4. FormceRand o > —1,0< g= e < 1 and lvzg| < 1, we have

o0 6792+2m6 oLl | — qul/2€2ki9'0 ki o '
o Hap 42 okif at3)2
/_N (yq' 26210 q) (2" 2e~2k0 ). X D500 0.g%H s 1 s qxe”™ g% —xve™g do
2mki. ~2mki. _
2 (—yqe™"";q)-—2qe 1q)oo
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