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ABSTRACT

By J.F. Nash’s Theorem, any Riemannian manifold can be embedded into a Euclidean ambient
space with dimension sufficiently large. S.-S. Chern pointed out in 1968 that a key technical
element in applying Nash’s Theorem effectively is finding useful relationships between intrinsic
and extrinsic elements that are characterizing immersions. After 1993, when a groundbreaking
work written by B.-Y.Chen on this theme was published, many explorations pursued this
important avenue. Bearing in mind this historical context, in our present project we obtain
new relationships involving intrinsic and extrinsic curvature invariants, under natural geometric
conditions.
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1. Introduction

It might seem surprising that some elementary inequalities could provide an insight into the problem of the
best possible immersion of a space into another ambient space. This idea definitely deserves an accessibile
illustration. By J.F. Nash’s Theorem (going back to 1956 [19], a historical period depicted in the Beautiful
Mind movie), any Riemannian manifold can be embedded into a Euclidean ambient space with dimension
sufficiently large.

While working on the proof of this important result, John F. Nash, Jr. was motivated by the hope that such
a tool, when proved, will usher in a powerful pathway to investigate the deformation of space, by allowing
one to regard any abstract Riemannian manifold as a subspace of some Euclidean space. S.-S. Chern pointed
out (see e.g. p.13 in [12]) that a key technical element in applying Nash’s Theorem effectively is finding
useful relationships between intrinsic and extrinsic elements that are characterizing immersions. In a fragment
inviting reflection even today, Chern and Osserman wrote [13]: “First, Ricci made the surprising discovery
that there are simple necessary and sufficient conditions on a two-dimensional metric for it to be realizable on
a minimal surface in E3. For higher-dimensional minimal submanifolds, various necessary conditions on the
metric have been given by Pinl-Ziller [20] and Barbosa-Do Carmo [2], but they are clearly far from sufficient."
Many decades later, there is still work to do.

In the visionary paper [10] (see relation (3.6) in Lemma 3.2), B.-Y. Chen proved that for a submanifold Mn in
a space form Rn+m(c) of constant sectional curvature c the scalar curvature satisfies at a point the fundamental
inequality

δ(2) = scal − inf(sec) ≤ n2(n− 2)

2(n− 1)
|H|2 + (n+ 1)(n− 2)

2
c, (1.1)

where |H| represents the magnitude of the mean curvature vector, and inf(sec) represents the infimum of
all the scalar curvature taken over all 2-planes at that respective point. Recall that for any orthonormal
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basis e1, ..., en of the tangent space TpM in a Riemannian manifold Mn, the scalar curvature is defined to be
scal(p) =

∑
i<j sec(ei ∧ ej). The quantity δ(2) is today called Chen’s first curvature invariant. Chen’s inequality

reminded above is important because it illustrated the kind of relationships it would be interesting to obtain:
between intrinsic geometric quantities, by one hand (the terms in the left), and extrinsic geometric quantities
by the other (in the right). This is the kind of relations we are interested in finding out.

In this spirit, we are interested to obtain a new relationship involving intrinsic and extrinsic curvature
invariants, in the spirit of B.-Y. Chen’s fundamental inequalities (for the most general form, see [11], relations
(13.28) in Theorem 13.3, et al.).

Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth map σ. The interest in the geometry of
hypersurfaces rose to a wider attention after a series of works by É. Cartan following [6]. Let p be a point on
the hypersurface. Denote σk(p) = ∂σ

∂xk
, for all k from 1 to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss

frame of the hypersurface, where N denotes the normal vector field. We denote by gij(p) the coefficients of the
first fundamental form and by hij(p) the coefficients of the second fundamental form. Then we have

gij(p) = ⟨σi(p), σj(p)⟩, hij(p) = ⟨N(p), σij(p)⟩.

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote by (hij(p))1≤i,j≤n the matrix

associated to Weingarten’s map, that is:

Lp(σi(p) = hki (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation convention. Weingerten’s
operator is self-adjoint, which implies that the roots of the algebraic equation

det(hij(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal curvatures of the hypersurface. They
are the roots k1(p), k2(p), ..., kn(p) of this algebraic equation. The mean curvature at the point p is

H(p) =
1

n
[k1(p) + ...+ kn(p)],

and the Gauss-Kronecker curvature is

K(p) = k1(p)k2(p)...kn(p).

The hypersurface is said to be minimal if the geometric quantity H(p) vanishes at every point p.

2. The Particular Context of Three-Dimensional Hypersurfaces

The three dimensional smooth hypersurfaces represent a really particular case. Let σ : U ⊂ R3 → R4 be a
hypersurface given by the smooth map σ. Let p be a point on the hypersurface. Denote σk(p) = ∂σ

∂xk
, for all k

from 1 to 3. Consider {σ1(p), σ2(p), σ3(p), N(p)}, the orthonormal Gauss frame of the hypersurface, where N
denotes the normal vector field to the hypersurface at every point.

The quantities similar to κ1 and κ2 in the geometry of surfaces are the principal curvatures, denoted λ1, λ2, λ3.
They are introduced as the eigenvalues of the so-called Weingarten linear map, as we will describe below. Since
our discussion is focused on the curvature quantities of three-dimensional smooth hypersurfaces in R4, we
start by introducing these quantities. Similar to the geometry of surfaces, the curvature invariants in higher
dimensions can also be described in terms of the principal curvatures. The mean curvature at the point p is

H(p) =
1

3
[λ1(p) + λ2(p) + λ3(p)],

and the Gauss-Kronecker curvature is
K(p) = λ1(p)λ2(p)λ3(p).

In Riemannian geometry, a third important curvature quantity is the scalar curvature ([11], p.19) denoted by
scal(p), which intuitively sums up all the sectional curvatures on all the faces of the trihedron formed by the
tangent vectors in the Gauss frame:

scal(p) = sec(σ1 ∧ σ2) + sec(σ2 ∧ σ3) + sec(σ3 ∧ σ1) = λ1λ2 + λ3λ1 + λ2λ3.
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The last equality is due to the Gauss equation of the hypersurface σ(U) in the ambient space R4 endowed with
the Euclidean metric.

The question of which quantities are intrinsic and which extrinsic is settled e.g. in [17], p.33, in the following
way. Denoting by σi the elementary symmetric functions of n variables, the curvatures of the hypersurface are
given by Ki = σi(λ1, . . . , λn), 1 ≤ i ≤ n. In [17] it is pointed out that the principal curvatures are determined
up to a sign common to all of them, because the Weingarten map is determined up to a sign, according to the
choice of the normal. It follows that the curvatures of odd order are determined up the a sign, whereas the ones
of even order are determined uniquely. In the case when we have just a 3-dimensional surface in R4, we have
n = 3, and K1 leads to the mean curvature, while K3 corresponds to the Gauss-Kronecker curvature. It is the
scalar curvature that is intrinsic, and we are interested in isolating it aside in one term of an inequality. This
research idea pursues the direction outlined in works like e.g. [5, 14, 21, 22, 23, 24].

3. Chen-Type Inequalities Under a Bonnet-Type Curvature Condition

In 1855, Ossian Bonnet [3] investigated the compactness of a surface with Gaussian curvature bounded below
by a positive constant. This condition attracted the interest of S. Myers [18], who produced an interesting
theorem with topological consequences in Riemannian geometry [16]. The classical Myers condition is about
the Ricci curvature being bounded below by a constant away from zero. Note that the classical Myers’ Theorem
[18] asserts the sufficient conditions to determine the compactness of the Riemannian manifold; for a recent
interpretation in terms of Cauchy-Schwarz inequality, see [4]. In our investigation we will return to a Bonnet-
type curvature condition on the sectional curvatures, with the goal of obtaining inequalities between intrinsic
and extrinsic geometric quantities of a hypersurface.

We prove the following.

Theorem 3.1. Let (M3, g) be a three-dimensional smooth hypersurface isometrically embedded into a four-dimensional
real space endowed with the canonical metric. Suppose on (M3, g) the sectional curvature at every point is bounded below
by ε > 0. Denote the scalar curvature scal, its mean curvature H , and its Gauss-Kronecker curvarture K. Then at every
point p ∈M :

ε2scal ≥ 3εKH −K2 + ε3. (3.1)

Equality holds at a point p if and only if at p the sectional curvatures are all equal to ε.

Proof. Let p be a point of the hypersurface M immersed into R4 endowed with the canonical metric.
Let e1, e2, e3 an orthonormal frame at p, that diagonalizes the Weingarten operator. Suppose the principal
curvatures at p are a = κ1(p), b = κ2(p), c = κ3(p). The the sectional curvature on the plane spanned by ei and
ej is κiκj , for i ̸= j, i, j ∈ {1, 2, 3}. Then the hypothesis is equivalent to ab ≥ ε, bc ≥ ε, ac ≥ ε.

Henceforth
(ab− ε)(bc− ε)(ca− ε) ≥ 0,

which by a straightforward calculation yields

(abc)2 + ε2(ab+ bc+ ca)− abcε(a+ b+ c) ≥ ε3.

This last relation turns into
K2 + ε2 · scal − 3εKH ≥ ε3,

which is the relation we claimed.
It would be interesting to see what happens if we impose a Bonnet-type curvature restriction for the principal

curvatures on the three-dimensional hypersurface.

Theorem 3.2. Let (M3, g) be a three-dimensional smooth hypersurface isometrically embedded into a four-dimensional
real space endowed with the canonical metric. Suppose on (M3, g) the principal curvatures at every point are bounded
below by ε > 0. Denote the scalar curvature scal, its mean curvature H , and its Gauss-Kronecker curvarture K. Then at
every point p ∈M :

εscal ≤ K + 3ε2H − ε3. (3.2)

Equality holds at a point p if and only if at p the sectional curvatures are all equal to ε.

dergipark.org.tr/en/pub/iejg 148

https://dergipark.org.tr/en/pub/iejg


B. D. Suceavă & D. Tran

Proof. Let p be a point of the hypersurface M immersed into R4 endowed with the canonical metric.
Let e1, e2, e3 an orthonormal frame at p, that diagonalizes the Weingarten operator. Suppose the principal
curvatures at p are a = κ1(p), b = κ2(p), c = κ3(p). The condition we have is that at every point a ≥ ε > 0,
b ≥ ε > 0, c ≥ ε > 0.

The condition we have is
(a− ε)(b− ε)(c− ε) ≥ 0.

Then, by a direct calculation
abc− ε(ab+ bc+ ca) + ε2(a+ b+ c) ≥ ε3.

In terms of curvature invariants, this is

K − ε · scal + ε2 · 3H ≥ ε3.

This last relation can we rewritten in the form presented in the statement.

4. Darij Grinberg’s Inequality for Convex Smooth Hypersurfaces

The argument used in this section appears in [1], p.176-177 and belongs to Darij Grinberg. Pursuing the line
of thinking inspired by the study of the relationships between intrinsic and extrinsic geometric quantities, we
feel this inequality has a particularly interesting geometric meaning, which we intend to investigate. Therefore,
we obtain the following.

Theorem 4.1. Let (M3, g) be a three-dimensional convex smooth hypersurface isometrically embedded into a four-
dimensional real space endowed with the canonical metric. Denote the scalar curvature scal, its second fundamental
form by h, and its Gauss-Kronecker curvarture K. Then at every point p ∈M :

scal ≤ K +
||h||2 + 1

2
(4.1)

Equality holds at a point p if and only if at p the principal curvatures are all equal to 1.

Proof. Let p be a point of the hypersurface M immersed into R4 endowed with the canonical metric.
Let e1, e2, e3 an orthonormal frame at p, that diagonalizes the Weingarten operator. Suppose the principal
curvatures at p are a = κ1(p), b = κ2(p), c = κ3(p). The convexity condition started in the hypothesis means that
at every point a ≥ 0, b ≥ 0, c ≥ 0. Without any loss of generality we can assume that c ≤ a and c ≤ b. As in [1],
p. 176, consider the function

f(a, b, c) = a2 + b2 + c2 + 2abc+ 1− 2(ab+ bc+ ca).

A direct calculation yields

f(a, b, c)− f(
√
ab,

√
ab, c) = (

√
a−

√
b)2

(
a+ b+ 2

√
ab− 2c

)
≥ 0,

where the last step is due to the assumption that c is smaller than a and b. On the other hand, it turns out that
f(t, t, c) ≥ 0, ∀t ∈ R, which in particular holds for t =

√
ab. The argument is that

f(t, t, c) = c2 + 2t2c+ 1− 4tc = (c− 1)2 + 2c(t− 1)2 ≥ 0,

where in the last step it is essential that c ≥ 0. The equality holds for a = b = c = 1.
The inequality (4.1) can be rephrased as follows.

Corollary 4.1. Let (M3, g) be a three-dimensional convex smooth hypersurface isometrically embedded into a four-
dimensional real space endowed with the canonical metric. Denote the scalar curvature scal, its second fundamental form
by h, and its Gauss-Kronecker curvarture K. Then at every point p ∈M :

4scal ≤ 2K + 9H2 + 1 (4.2)

Equality holds at a point p if and only if at p the principal curvatures are all equal to 1.

Proof. To see this now relation, note that ||h||2 = a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca) = (3H)2 − 2scal.
The calculation follows immediately.
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5. Three Dimensional Smooth Hypersurfaces in Space Forms with Bonnet-Type Curvature
Conditions

Consider Σ a hypersurface of (M̄, ḡ) and denote by ι : Σ → M̄ an isometric immersion. If ∇̄ and ∇ are
the Levi-Civita connections of M̄ and Σ, respectively, then the Gauss formula and Weingarten formula are,
respectively

∇̄XιY = ι∇XY + g(AX,Y )ξ,

∇̄Xξ = −ιAX,

where locally ξ represents a choice of the unit normal to Σ, X,Y are tangential vector fields to Σ, and A is the
shape operator.

Suppose the ambient space (M̄, ḡ) is a space form of constant sectional curvature ψ. Denoting by R the
curvature tensor of Σ, the Gauss equation is

R(X,Y )Z = ψ[g(Y,Z)X − g(X,Z)Y ] + g(AY,Z)AX − g(AX,Z)AY.

The principal curvatures κi are the eigenvalues of the shape operator. From the Gauss equation follows
immediately that for e1, e2, e3 an orthonormal frame at p, that diagonalizes the shape operator we have (see
e.g. [15], pp.70-71)

R(ei, ej)ej = (ψ + κiκj)ei

which yields immediately that
sec(ei ∧ ej) = ψ + κiκj .

In this context we have the following.

Theorem 5.1. Let (M3, g) be a three-dimensional smooth hypersurface isometrically embedded into a four-dimensional
real space form of constant sectional curvature ψ. Denote the scalar curvature scal, its mean curvature by H , and its
Gauss-Kronecker curvature K. Suppose at every point p ∈M and in every scalar direction the sectional curvature is
bounded below by ε. Then at every point p ∈M :

(ψ − ε)2(scal − 3ψ) ≥ 3K(ψ − ε)H −K2 − (ψ − ε)3. (5.1)

Equality holds at a point p if and only if at p the sectional curvatures are all equal to ε.

Proof. Denote a = κ1(p), b = κ2(p), c = κ3(p). Since sec(ei ∧ ej) ≥ ε, it follows that at p we have three
conditions ψ + ab ≥ ε, ψ + bc ≥ ε, and ψ + ca ≥ ε. Then we have

(ψ + ab− ε)(ψ + bc− ε)(ψ + ca− ε) ≥ 0.

That is
(ψ − ε)3 + (abc)2 + (ψ − ε)2(ab+ bc+ ca)− abc(ψ − ε)(a+ b+ c) ≥ 0.

Now we take into account that scal(p) = 3ψ + ab+ bc+ ca, as a direct consequence of Gauss equation, while
the mean curvature is 3H = a+ b+ c, and the Gauss-Kronecker curvature is K(p) = abc. A direct calculation
yields the claimed inequality.

With a stronger curvature condition, we obtain an extrinsic upper bound for the scalar curvature, as it is to
be expected for Bang-Yen Chen-type inequalities, as follows.

Theorem 5.2. Let (M3, g) be a three-dimensional smooth hypersurface isometrically embedded into a four-dimensional
real space form of constant sectional curvature ψ. Denote the scalar curvature scal, its mean curvature by H , and its
Gauss-Kronecker curvature K. Suppose at every point p ∈M the principal curvatures are bounded below by ε. Then at
every point p ∈M :

ε · scal ≤ 3εψ +K + 3Hε2 − ε3. (5.2)

Equality holds at a point p if and only if at p the principal curvatures are all equal to ε.

Proof: The argument follows the same lines as the derivation of (3.2), with the notable difference that in this
geometric context of a space form t scal(p) = 3ψ + ab+ bc+ ca, which accounts for an additional term in the
right hand side.
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