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Merve Kara∗

1Department of Mathematics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.

Received: 26-09-2023 • Accepted: 19-01-2024

Abstract. In this paper, we investigate the following general difference equations

xn+1 = h−1
(
h (xn)

Ah (xn−1) + Bh (xn−2)
Ch (xn−1) + Dh (xn−2)

)
, n ∈ N0,

where the parameters A, B,C,D and the initial values x−Φ, for Φ = 0, 2 are real numbers, A2 + B2 , 0 , C2 + D2, h
is a strictly monotone and continuous function, h (R) = R, h (0) = 0. In addition, we obtain closed-form solutions
of aforementioned difference equations. Finally, numerical applications are given.
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1. Introduction

Let N, N0, Z, R, C, means the set of natural, non-negative integer, integer, real and complex numbers, respectively.
If Φ,Ψ ∈ Z, Φ ≤ Ψ the notation α = Φ,Ψ stands for {α ∈ Z : Φ ≤ α ≤ Ψ}.
The difference equations are of interest by many authors in these days [2, 11–14, 16, 17, 19, 24–27, 29–35].

Well-known important difference equation is

xn+2 = γxn+1 + δxn, n ∈ N0, (1.1)

where the parameter γ, δ and the initial conditions x0, x1 are real numbers. De Moivre solved the homogeneous linear
second-order difference equation (1.1) in [4]. The general solution of the sequence (xn)n∈N0

, is given by

xn =
(x1 − λ2x0) λn

1 − (x1 − λ1x0) λn
2

λ1 − λ2
, n ∈ N0, (1.2)

when δ , 0 and γ2 + 4δ , 0,

xn = ((x1 − λ1x0) n + λ1x0) λn−1
1 , n ∈ N0, (1.3)

when δ , 0 and γ2 + 4δ = 0, where λ1 and λ2 are the roots of the polynomial P (λ) = λ2 − γλ − δ = 0. Also, the roots

of characteristic equation are λ1,2 =
γ±
√
γ2+4δ
2 .

The difference equation, which transforms into equation (1.1) using the appropriate transformation is

xn+1 =
αxn + β

γxn + δ
, n ∈ N0, (1.4)
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for γ , 0, αδ , βγ, where the initial value x0 is real number. Equation (1.4) is called Riccati difference equation.
Similarly, the difference equation, which becomes equation (1.4) using the change of variable is

xn+1 = ζxn +
Υxnxn−1

Φxn−1 + Ψxn−2
, n ∈ N0, (1.5)

where the initial conditions x−2, x−1, x0 are positive real numbers and the parameters ζ, Υ, Φ, Ψ are positive constants.
The behavior of the solution of equation (1.5) is investigated in [10].

Type of difference equations in (1.5) have been generalized in various ways by lots of authors in [1,3,5–9,20–23,28].
The generalizations are increasing order, adding constant or periodic parameters, etc. The other way to expand is
increasing dimensional. There are difference equations systems which are the type of difference equations in (1.5) in
literature (see, e.g. [15, 18]).

A natural question is if equation (1.5) generalize by using different way. Here we give a positive answer. Another
way to generalize is the form of the following equation:

xn+1 = h−1
(
h (xn)

Ah (xn−1) + Bh (xn−2)
Ch (xn−1) + Dh (xn−2)

)
, n ∈ N0, (1.6)

where the initial values x−Φ, for Φ = 0, 2 are real numbers, the parameters A, B,C,D ∈ R, A2 + B2 , 0 , C2 + D2, h is
a strictly monotone and continuous function, h (R) = R, h (0) = 0.

Our aim to show that equation (1.6) is solvable in closed form according to states of parameters by changing of the
variable. Also, we give numerical applications, which indicate some things in [10] are not correct.

2. Closed-Form Solution of Equation (1.6)

Theorem 2.1. Suppose that A2 + B2 , 0 , C2 + D2. So, the equation (1.6) is solvable in closed form.

Proof. If at least one of the initial conditions x−θ = 0, for θ ∈ {0, 1, 2}, then the solution of equation (1.6) is not defined.
Moreover, suppose that xn0 = 0 for some n0 ∈ N0. In addition, by using (1.6) we get xn0+1 = 0. These facts along with
(1.6) imply that xn0+3 is not defined. Hence, for every well-defined solution of (1.6) , we have

xn , 0, n ≥ −2. (2.1)

From (2.1) we get
h (xn) , 0, n ≥ −2.

Now, we investigate the solution of equation (1.6) for two cases.

2.1. Case 1. First, assume that AD , BC and C , 0. Let

yn =
h (xn)

h (xn−1)
, n ≥ −1. (2.2)

From (1.6) and monotonicity of h, we obtain

h (xn+1) = h (xn)
Ah (xn−1) + Bh (xn−2)
Ch (xn−1) + Dh (xn−2)

, n ∈ N0. (2.3)

By using the change of variables (2.2) in (2.3) we get

yn+1 =
Ayn−1 + B
Cyn−1 + D

, n ∈ N0. (2.4)

Let
z( j)

m = y2m+ j, m ∈ N0, j ∈ {−1, 0}. (2.5)
Then, from (2.4) and (2.5) we obtain

z( j)
m+1 =

Az( j)
m + B

Cz( j)
m + D

, (2.6)

for m ∈ N0, j ∈ {−1, 0}. The equation (2.6) is named a Riccati type difference equation in literature.
Let

z( j)
m =

u( j)
m+1

u( j)
m

+ g j, m ∈ N0, j ∈ {−1, 0}, (2.7)
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for some g j ∈ R, j ∈ {−1, 0}.
From (2.6)-(2.7) we obtain u( j)

m+2

u( j)
m+1

+ g j

 C u( j)
m+1

u( j)
m

+Cg j + D

 − A
u( j)

m+1

u( j)
m

+ Ag j + B

 = 0,

for m ∈ N0, j ∈ {−1, 0}.
Let

g j = −
D
C
, j ∈ {−1, 0}.

Then, we have
C2u( j)

m+2 −C (A + D) u( j)
m+1 + (AD − BC) u( j)

m = 0, (2.8)

for m ∈ N0, j ∈ {−1, 0}.
Assume that ∆ := (A + D)2 − 4 (AD − BC) , 0. Then, by employing equality (1.2) we get

u( j)
m =

(
u( j)

1 − λ2u( j)
0

)
λm

1 −
(
u( j)

1 − λ1u( j)
0

)
λm

2

λ1 − λ2
, (2.9)

for m ∈ N0, j ∈ {−1, 0}, where λ1,2 =
(A+D)±

√
∆

2C , is the general solution to (2.8).
By using (2.9) in (2.7), we get

z( j)
m =

(
u( j)

1 − λ2u( j)
0

)
λm+1

1 −
(
u( j)

1 − λ1u( j)
0

)
λm+1

2(
u( j)

1 − λ2u( j)
0

)
λm

1 −
(
u( j)

1 − λ1u( j)
0

)
λm

2

−
D
C

=

(
z( j)

0 +
D
C − λ2

)
λm+1

1 −
(
z( j)

0 +
D
C − λ1

)
λm+1

2(
z( j)

0 +
D
C − λ2

)
λm

1 −
(
z( j)

0 +
D
C − λ1

)
λm

2

−
D
C
,

for m ∈ N0, j ∈ {−1, 0}, from the last equality with (2.5) we get

y2m+ j =

(
y j +

D
C − λ2

)
λm+1

1 −
(
y j +

D
C − λ1

)
λm+1

2(
y j +

D
C − λ2

)
λm

1 −
(
y j +

D
C − λ1

)
λm

2

−
D
C
, (2.10)

for m ∈ N0, j ∈ {−1, 0}.
From (2.2) and (2.10), we obtain

h
(
x2m+ j

)
=


(

h(x j)
h(x j−1) +

D
C − λ2

)
λm+1

1 −

(
h(x j)

h(x j−1) +
D
C − λ1

)
λm+1

2(
h(x j)

h(x j−1) +
D
C − λ2

)
λm

1 −

(
h(x j)

h(x j−1) +
D
C − λ1

)
λm

2

−
D
C

 h
(
x2m+ j−1

)
,

for m ∈ N0, j ∈ {−1, 0}.
From (2.2) we easily get

h
(
x2m+ j1

)
= y2m+ j1 y2m+ j1−1h

(
x2m+ j1−2

)
, (2.11)

for m ∈ N0, j1 ∈ {0, 1}.
Hence,

h (x2m) = h (x−2)
m∏

i=0

y2iy2i−1,

h (x2m+1) = h (x−1)
m∏

i=0

y2i+1y2i,

for m ∈ N0, and consequently

x2m = h−1

h (x−2)
m∏

i=0

y2iy2i−1

 , (2.12)
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x2m+1 = h−1

h (x−1)
m∏

i=0

y2i+1y2i

 , (2.13)

for m ∈ N0, where

y2my2m−1 =


(

h(x0)
h(x−1) +

D
C − λ2

)
λm+1

1 −
(

h(x0)
h(x−1) +

D
C − λ1

)
λm+1

2(
h(x0)
h(x−1) +

D
C − λ2

)
λm

1 −
(

h(x0)
h(x−1) +

D
C − λ1

)
λm

2

−
D
C


×


(

h(x−1)
h(x−2) +

D
C − λ2

)
λm+1

1 −
(

h(x−1)
h(x−2) +

D
C − λ1

)
λm+1

2(
h(x−1)
h(x−2) +

D
C − λ2

)
λm

1 −
(

h(x−1)
h(x−2) +

D
C − λ1

)
λm

2

−
D
C

 , (2.14)

y2m+1y2m =


(

h(x−1)
h(x−2) +

D
C − λ2

)
λm+2

1 −
(

h(x−1)
h(x−2) +

D
C − λ1

)
λm+2

2(
h(x−1)
h(x−2) +

D
C − λ2

)
λm+1

1 −
(

h(x−1)
h(x−2) +

D
C − λ1

)
λm+1

2

−
D
C


×


(

h(x0)
h(x−1) +

D
C − λ2

)
λm+1

1 −
(

h(x0)
h(x−1) +

D
C − λ1

)
λm+1

2(
h(x0)
h(x−1) +

D
C − λ2

)
λm

1 −
(

h(x0)
h(x−1) +

D
C − λ1

)
λm

2

−
D
C

 (2.15)

for m ∈ N0. By using formulas (2.14)-(2.15) in equations (2.12)-(2.13), we acquire the solution to equation (1.6) if
∆ , 0.

Suppose that ∆ = (A + D)2 − 4 (AD − BC) = 0. So, by employing equality (1.3) we have

u( j)
m =

((
u( j)

1 − λ1u( j)
0

)
m + λ1u( j)

0

)
λm−1

1 , (2.16)

for m ∈ N0, j = −1, 0 where

λ1 =
A + D

2C
, 0.

Note that equation (2.16) is the solution to the equation (2.8). From (2.7) and (2.16), we obtain

z( j)
m =

((
u( j)

1 − λ1u( j)
0

)
(m + 1) + λ1u( j)

0

)
λ1(

u( j)
1 − λ1u( j)

0

)
m + λ1u( j)

0

−
D
C

=

((
z( j)

0 +
D
C − λ1

)
(m + 1) + λ1

)
λ1(

z( j)
0 +

D
C − λ1

)
m + λ1

−
D
C
, (2.17)

for m ∈ N0, j ∈ {−1, 0}. From (2.5) and (2.17) we obtain

y2m+ j =

((
y j +

D
C − λ1

)
(m + 1) + λ1

)
λ1(

y j +
D
C − λ1

)
m + λ1

−
D
C
, (2.18)

for m ∈ N0, j ∈ {−1, 0}. From (2.2) and (2.18) we have

h
(
x2m+ j

)
=


((

h(x j)
h(x j−1) +

D
C − λ1

)
(m + 1) + λ1

)
λ1(

h(x j)
h(x j−1) +

D
C − λ1

)
m + λ1

−
D
C

 h
(
x2m+ j−1

)
,

for m ∈ N0, j ∈ {−1, 0}.
We also have

y2my2m−1 =


((

h(x0)
h(x−1) +

D
C − λ1

)
(m + 1) + λ1

)
λ1(

h(x0)
h(x−1) +

D
C − λ1

)
m + λ1

−
D
C


×


((

h(x−1)
h(x−2) +

D
C − λ1

)
(m + 1) + λ1

)
λ1(

h(x−1)
h(x−2) +

D
C − λ1

)
m + λ1

−
D
C

 , (2.19)
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y2m+1y2m =


((

h(x−1)
h(x−2) +

D
C − λ1

)
(m + 2) + λ1

)
λ1(

h(x−1)
h(x−2) +

D
C − λ1

)
(m + 1) + λ1

−
D
C


×


((

h(x0)
h(x−1) +

D
C − λ1

)
(m + 1) + λ1

)
λ1(

h(x0)
h(x−1) +

D
C − λ1

)
m + λ1

−
D
C

 (2.20)

for m ∈ N0.
We offer the solution to equation (1.6) by using formulas (2.19)-(2.20) in equations (2.12)-(2.13), if ∆ = 0.
Now, suppose that C = 0. So, D , 0 and equation (2.4) turns into

yn+1 =
A
D

yn−1 +
B
D
, n ∈ N0.

Hence,

z( j)
m+1 =

A
D

z( j)
m +

B
D
, m ∈ N0, j ∈ {−1, 0}. (2.21)

If A = D, then from (2.21) we obtain

z( j)
m =

B
D

m + z( j)
0 , m ∈ N0, j ∈ {−1, 0},

so

y2m+ j =
B
D

m + y j, m ∈ N0, j ∈ {−1, 0},

from which along with (2.2) and (2.11) it follows that

h (x2m) =
(

B
D

m +
h (x0)
h (x−1)

) (
B
D

m +
h (x−1)
h (x−2)

)
h (x2m−2) ,

h (x2m+1) =
(

B
D

(m + 1) +
h (x−1)
h (x−2)

) (
B
D

m +
h (x0)
h (x−1)

)
h (x2m−1) ,

where m ∈ N0. After some calculations in the last two equations, we get

h (x2m) = h (x−2)
m∏

j=0

(
B
D

j +
h (x0)
h (x−1)

) (
B
D

j +
h (x−1)
h (x−2)

)
,

h (x2m+1) = h (x−1)
m∏

j=0

(
B
D

( j + 1) +
h (x−1)
h (x−2)

) (
B
D

j +
h (x0)
h (x−1)

)
,

for m ∈ N0, and consequently

x2m = h−1

h (x−2)
m∏

j=0

(
B
D

j +
h (x0)
h (x−1)

) (
B
D

j +
h (x−1)
h (x−2)

) , (2.22)

x2m+1 = h−1

h (x−1)
m∏

j=0

(
B
D

( j + 1) +
h (x−1)
h (x−2)

) (
B
D

j +
h (x0)
h (x−1)

) , (2.23)

for m ∈ N0. Hence, the equalities in (2.22)-(2.23) are solutions of the equation (1.6) in this case.
Suppose that A , D. By using (2.21), we get

z( j)
m =

( A
D

)m

z( j)
0 +

B
A − D

(( A
D

)m

− 1
)
, m ∈ N0, j ∈ {−1, 0}.

That is,

y2m+ j =

( A
D

)m

y j +
B

A − D

(( A
D

)m

− 1
)
, (2.24)

for m ∈ N0, j ∈ {−1, 0}.
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From (2.2), (2.11) and (2.24) we have

h (x2m) =
[( A

D

)m h (x0)
h (x−1)

+
B

A − D

(( A
D

)m

− 1
)]

×

[( A
D

)m h (x−1)
h (x−2)

+
B

A − D

(( A
D

)m

− 1
)]

h (x2m−2) ,

h (x2m+1) =
[( A

D

)m+1 h (x−1)
h (x−2)

+
B

A − D

(( A
D

)m+1

− 1
)]

×

[( A
D

)m h (x0)
h (x−1)

+
B

A − D

(( A
D

)m

− 1
)]

h (x2m−1)

for m ∈ N0.
Hence

h (x2m) = h (x−2)
m∏

s=0

[( A
D

)s h (x0)
h (x−1)

+
B

A − D

(( A
D

)s

− 1
)]

×

[( A
D

)s h (x−1)
h (x−2)

+
B

A − D

(( A
D

)s

− 1
)]
,

h (x2m+1) = h (x−1)
m∏

s=0

[( A
D

)s+1 h (x−1)
h (x−2)

+
B

A − D

(( A
D

)s+1

− 1
)]

×

[( A
D

)s h (x0)
h (x−1)

+
B

A − D

(( A
D

)s

− 1
)]
,

for m ∈ N0, and consequently

x2m = h−1
[
h (x−2)

m∏
s=0

[( A
D

)s h (x0)
h (x−1)

+
B

A − D

(( A
D

)s

− 1
)]

×

[( A
D

)s h (x−1)
h (x−2)

+
B

A − D

(( A
D

)s

− 1
)]]
, (2.25)

x2m+1 = h−1
[
h (x−1)

m∏
s=0

[( A
D

)s+1 h (x−1)
h (x−2)

+
B

A − D

(( A
D

)s+1

− 1
)]

×

[( A
D

)s h (x0)
h (x−1)

+
B

A − D

(( A
D

)s

− 1
)]]
, (2.26)

for m ∈ N0. Then, the solution of equation (1.6) is given by equations (2.25)-(2.26) in this case.

2.2. Case 2. Suppose that AD = BC. If A = 0, then B , 0. This means C = 0 and D , 0. In this case, from equation
(1.6), we obtain

xn+1 = h−1
( B

D
h (xn)

)
, n ∈ N0. (2.27)

From (2.27) we easily get

xn = h−1
(( B

D

)n

h (x0)
)
, (2.28)

for n ∈ N0.
If A , 0 and B = 0, then D = 0, from which it follows that C , 0. Thus,

xn+1 = h−1
( A
C

h (xn)
)
, n ∈ N0. (2.29)

From (2.29) we have

xn = h−1
(( A

C

)n

h (x0)
)
, (2.30)
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for n ∈ N0.
If D = 0, so C , 0. It means A , 0, B = 0. Then, we have equation (2.29). Moreover, equation (2.30) is a solution

of equation (2.29). Suppose that C = 0, so D , 0. It means A = 0, B , 0. So, we obtain equation (2.27). In addition,
(2.28) is a solution of equation (2.27).

Assume that ABCD , 0. It means A = BC
D . Then, we have equation (2.27). Similarly, it means B = AD

C , then we get
equation (2.29). □

3. Numerical Applications

Behaviour of solutions to equation (1.5) is mentioned in [10]. But we notice some wrong arguments in [10].
Equation (1.5) can be expressed as

xn+1 = xn
ζΨxn−2 + (ζΦ + Υ) xn−1

Φxn−1 + Ψxn−2
, n ∈ N0. (3.1)

Firstly, the authors of [10] studied to obtain the equilibrium point of the equation. Then, using a great deal calculations,
they found x = 0. If

(1 − ζ) (Φ + Ψ) , Υ,
an unique equilibrium point of equation (1.5) is x = 0.

Suppose that an equilibrium point of equation (1.5) is x. So, we get the following equation

x = ζx +
Υx2

(Φ + Ψ) x
. (3.2)

From (3.2), we see that it must be
(Φ + Ψ) , 0 and x , 0.

This exterminates the probability x = 0.
Suppose that x , 0. Moreover, equation (3.2) means

x
(
1 − ζ −

Υ

Φ + Ψ

)
= 0,

so we have
1 − ζ −

Υ

Φ + Ψ
= 0. (3.3)

From equation (3.3), the equilibrium point of the difference equation is x , 0. It implies that the idea in [10] Theorem
2.1, under the condition, the zero equilibrium point of equation (1.5) is local asymptotic stable is not correct, because
it is not an equilibrium point at all.

Moreover, Theorem 3.1 in [10] is expressed as:

Theorem 3.1. The equilibrium point x of equation (1.5) is global attractor if Φ (1 − ζ) , Υ.

The particular case of equation (1.6) is equation (3.1) with

h (x) = x, A = ζΦ + Υ, B = ζΨ, C = Φ, D = Ψ.

Example 3.2. Keep in mind the equation (1.5) with

ζ = 2, Υ = −3, Φ = 1, Ψ = 4,

and then, we get the following equation

xn+1 = xn
8xn−2 − xn−1

xn−1 + 4xn−2
, n ∈ N0. (3.4)

Equation (3.4) is derived from equation (1.6) with h (x) = x and x ∈ R,

A = −1, B = 8, C = 1, D = 4. (3.5)

By using (3.5) in equation (2.8), we get the following characteristic polynomial to the corresponding linear equation in
(2.8)

p1 (λ) = λ2 − 3λ − 12,
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and its roots are

λ1 =
3 +
√

57
2

and λ2 =
3 −
√

57
2

.

Then, we obtain
Φ (1 − ζ) − Υ = 2 , 0,

the restriction Φ (1 − ζ) , Υ in Theorem 3.1 is valid.
By using the parameters A, B,C,D are as in (3.5) and (2.12)-(2.15), where h (x) = x and x ∈ R, we get

x2m = x−2

m∏
i=0

y2iy2i−1, (3.6)

x2m+1 = x−1

m∏
i=0

y2i+1y2i, (3.7)

for m ∈ N0, where

y2my2m−1 =


(

x0
x−1
+ 4 − λ2

)
λm+1

1 −
(

x0
x−1
+ 4 − λ1

)
λm+1

2(
x0
x−1
+ 4 − λ2

)
λm

1 −
(

x0
x−1
+ 4 − λ1

)
λm

2

− 4


×


(

x−1
x−2
+ 4 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 4 − λ1

)
λm+1

2(
x−1
x−2
+ 4 − λ2

)
λm

1 −
(

x−1
x−2
+ 4 − λ1

)
λm

2

− 4

 , (3.8)

y2m+1y2m =


(

x−1
x−2
+ 4 − λ2

)
λm+2

1 −
(

x−1
x−2
+ 4 − λ1

)
λm+2

2(
x−1
x−2
+ 4 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 4 − λ1

)
λm+1

2

− 4


×


(

x0
x−1
+ 4 − λ2

)
λm+1

1 −
(

x0
x−1
+ 4 − λ1

)
λm+1

2(
x0
x−1
+ 4 − λ2

)
λm

1 −
(

x0
x−1
+ 4 − λ1

)
λm

2

− 4

 (3.9)

for m ∈ N0.
Note that

lim
m→∞


(

x0
x−1
+ 4 − λ2

)
λm+1

1 −
(

x0
x−1
+ 4 − λ1

)
λm+1

2(
x0
x−1
+ 4 − λ2

)
λm

1 −
(

x0
x−1
+ 4 − λ1

)
λm

2

− 4


= lim

m→∞


(

x−1
x−2
+ 4 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 4 − λ1

)
λm+1

2(
x−1
x−2
+ 4 − λ2

)
λm

1 −
(

x−1
x−2
+ 4 − λ1

)
λm

2

− 4


= λ1 − 4 =

−5 +
√

57
2

> 1,

when
x−p

x−(p+1)
, λ2 − 4 =

−5 −
√

57
2

, p = 0, 1. (3.10)

By selecting positive initial conditions providing (3.10) and using equations in (3.6)-(3.9), we obtain

lim
m→∞

xm = ∞.

Then, the solutions are not convergent. It is a counterexample to the claim in Theorem 3.1.

Example 3.3. Keep in mind the equation (1.5) with

ζ = Υ = Φ = Ψ = 1,

and then, we get the following equation

xn+1 = xn
xn−2 + 2xn−1

xn−1 + xn−2
, n ∈ N0. (3.11)
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Equation (3.11) is derived from equation (1.6) with h (x) = x and x ∈ R,

A = 2, B = C = D = 1. (3.12)

By using (3.12) in equation (2.8), we get the following characteristic polynomial to the corresponding linear equation
in (2.8)

p2 (λ) = λ2 − 3λ + 1,

and its roots are

λ1 =
3 +
√

5
2

and λ2 =
3 −
√

5
2
.

Then, we obtain

Φ (1 − ζ) − Υ = −1 , 0,

the restriction Φ (1 − ζ) , Υ in Theorem 3.1 is valid.
By using the parameters A, B,C,D are as in (3.12) and (2.12)-(2.15), where h (x) = x, x ∈ R, we have that the

relations in (3.6)-(3.8) valid for m ∈ N0, where

y2my2m−1 =


(

x0
x−1
+ 1 − λ2

)
λm+1

1 −
(

x0
x−1
+ 1 − λ1

)
λm+1

2(
x0
x−1
+ 1 − λ2

)
λm

1 −
(

x0
x−1
+ 1 − λ1

)
λm

2

− 1


×


(

x−1
x−2
+ 1 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 1 − λ1

)
λm+1

2(
x−1
x−2
+ 1 − λ2

)
λm

1 −
(

x−1
x−2
+ 1 − λ1

)
λm

2

− 1

 , (3.13)

y2m+1y2m =


(

x−1
x−2
+ 1 − λ2

)
λm+2

1 −
(

x−1
x−2
+ 1 − λ1

)
λm+2

2(
x−1
x−2
+ 1 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 1 − λ1

)
λm+1

2

− 1


×


(

x0
x−1
+ 1 − λ2

)
λm+1

1 −
(

x0
x−1
+ 1 − λ1

)
λm+1

2(
x0
x−1
+ 1 − λ2

)
λm

1 −
(

x0
x−1
+ 1 − λ1

)
λm

2

− 1

 (3.14)

for m ∈ N0.
Note that

lim
m→∞


(

x0
x−1
+ 1 − λ2

)
λm+1

1 −
(

x0
x−1
+ 1 − λ1

)
λm+1

2(
x0
x−1
+ 1 − λ2

)
λm

1 −
(

x0
x−1
+ 1 − λ1

)
λm

2

− 1


= lim

m→∞


(

x−1
x−2
+ 1 − λ2

)
λm+1

1 −
(

x−1
x−2
+ 1 − λ1

)
λm+1

2(
x−1
x−2
+ 1 − λ2

)
λm

1 −
(

x−1
x−2
+ 1 − λ1

)
λm

2

− 1


= λ1 − 1 =

1 +
√

5
2

> 1,

when
x−p

x−(p+1)
, λ2 − 1 =

1 −
√

5
2
, p = 0, 1. (3.15)

By selecting positive initial conditions providing (3.15) and using equations in (3.13)-(3.14) we obtain

lim
m→∞

xm = ∞.

Since, the solutions are not convergent, which is a counterexample to the claim in Theorem 3.1 in the case min {ζ,Υ,Φ,Ψ} >
0.



M. Kara, Turk. J. Math. Comput. Sci., 16(1)(2024), 126–136 135

4. Conclusion

In this study, we have solved general non-linear difference equation of third-order in closed form. The solutions are
found according to following states of parameters

(1) if AD , BC,
(a) if C , 0, (A + D)2 − 4 (AD − BC) , 0,
(b) if C , 0, (A + D)2 − 4 (AD − BC) = 0,
(c) if C = 0, A = D,
(d) if C = 0, A , D,

(2) if AD = BC,
(a) if A = 0,
(b) if A , 0,
(c) if D = 0,
(d) if D , 0,
(e) if ABCD , 0.

Moreover, we have given an application.
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