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 The researchers investigate some phenomena by continuously observing physical variables, 
i.e., time series. Nowadays, the Least-Squares Spectral Analysis (LSSA) technique has been 
preferred for the analysis of time series to conduct more reliable analysis. This technique uses 
the least-squares principle to estimate the hidden periodicities in the time series. Based on the 
previous investigations, LSSA gives more reasonable results in the experimental time series 
that have disturbing effects such as the datum shifts, linear trend, unequally spaced data and 
etc. The LSSA method is a unique method that can overcome these problems without pre-
processing the original series. However, a practical and user-friendly software package in C 
programming language is not available for scientific purposes to implement the LSSA method. 
In this paper, we review the computational scheme of the LSSA method, then a software 
(LSSASOFT) package in the C programming language is developed in the view of the simplicity 
of the method and compatibility of all types of data. Finally, LSSASOFT is applied in two sample 
studies for the determining hidden periods in the synthetic data and sea level observations. 
Consequently, the numerical results indicate that LSSASOFT is a useful tool that can efficiently 
predicting hidden periodicity for the experimental time series that have disturbing effects. 
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1. Introduction  
 

It is customary to analyse the successive observations 
which are ordered chronologically, i. e., time series. 
There are two main aims of the time series analysis: (i) 
understanding the nature of the phenomena represented 
by the sequence of observations, and (ii) predicting the 
future from the observed time series variables [1-3].  

The spectral analysis of any time series means that 
the hidden periodicities are determined in the data, 
particularly, the researchers investigate some 
phenomena in order to identify the physical processes 
that cause periodic behaviours. For this purpose, a 
variety of methods have been recently developed and 
inter-compared in the literature such as Fourier, singular 
spectrum, wavelet, and least-squares spectral analysis 
[3-5].  

Occasionally, the time series originating from certain 
experiments (experimental measurements) have many 
disturbances that directly affect the analysis. Some 
disturbing effects are the presence of datum shift, trend, 
short gap, unequally spaced data, and weighted data in 
the time series. In practice, several temporary solutions 

are performed to overcome these difficulties. For 
instance, (i) the trend (linear) is removed before the 
analysis; (ii) if the data includes two or more datum 
shifts, every datum is analysed separately, which means 
the disorder of complete analysis; (iii) when the time 
series have short gaps or unequally spaced data, the gaps 
or certain values are predicted and filled by using the 
harmonic analysis or any interpolation technique [5]. 
The whole solutions discussed above change the spectral 
content of the time series. Thus, an alternative technique 
is developed without the corruption of data originality, 
which is called “Least Squares Spectral Analysis (LSSA)”. 
The previous investigations indicate that the LSSA 
method gives more reasonable results in the 
experimental time series, compared with other spectral 
analysis methods [5-8].  

The LSSA method was first invented and published by 
Petr Vanicek who is one of the most famous geodesists 
[9,10]. Therefore, this method was also so-called 
“Vanicek Spectral Analysis” in geodetic literature [11].  

Later, Vanicek and his colleagues released an 
improved version of the method furnished with a 
primitive FORTRAN codes [12]. Many researchers 
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successfully applied this technique in some fields, 
especially, in geodesy and related disciplines such as 
electronic distance measurement, tidal data, 
superconducting gravimeter data, star positioning, 
earth-quake, temperature estimating, and seismic data 
[4, 13-18]. However, a practical and user-friendly 
software package in the C programming language is still 
not publicly available for the scientific communities, 
although a MATLAB code can be found in the literature 
[17]. As is known, FORTRAN programming is an old 
fashion language which is not easily understandable for 
new generation programmers. Hence, as an alternative, 
an open-source scientific program is developed in the C 
platform and presented to global users by adding a new 
algorithm and some elective options as well as 
considering the former FORTRAN codes written by [12]. 

The manuscript begins with a brief review of the 
computational scheme of the LSSA method in section 2. 
Then, the software which employs the LSSA approach 
with the new algorithm is presented and discussed in 
section 3. Afterwards, the paper is followed by two 
numerical applications based on the simulated and real 
data, respectively, in section 4. Finally, a short summary 
concludes the paper in section 5.  

 
2. Least-squares spectral analysis  

 
This section shortly discusses the general structure of 

any time series, then, briefly reviews the computational 
scheme of the LSSA method which is used in the software.  

 
2.1. Basic approach 

 
The LSSA method is an application of the least-

squares approach in the spectral analysis of time series. 
This method utilises the least squares approximation to 
minimize the norm of the residual vector of the time 
series by estimating the periodic components as well as 
non-periodic ones [19]. 

The empirical time series consist of signal and noise. 
The noise which is the disturbing effect on the 
observation is divided into two components: random 
(white) and systematic (coloured). An ideal noise called 
“white noise” is uncorrelated with any dependent 
variable. Nevertheless, in practice, a systematic noise 
called“coloured noise”occurs and is correlated with 
one or more variables. Systematic noise can be defined 
by mathematical functions, but their magnitudes are not 
known in the time series. It is categorized into two types: 
periodic and non-periodic. The main aim of the LSSA 
method is to be able to determine these systematic noises 
(both periodic and non-periodic) simultaneously [19]. 

 
2.2. Mathematical theory 

 
The mathematical background of the spectral analysis 

can be described as follows;  
1. vector of observation time: 𝑡𝑖, 𝑖 =  1, 2, . . . 𝑛 
2. vector of observables: f (𝑡𝑖) 
3. vector of frequencies for which spectral values are 

desired: 𝜔𝑗 , 𝑗 = 1, 2, . . . 𝑚 

The s(𝜔𝑗) vector which is the spectral value of the 𝜔𝑗 

frequency, is sought by the spectral analysis. There are a 
wide range of ways of calculating a spectrum from the 
time series. Here, we simply state the problem in the 
Least Squares Approximation (LSA). Thus, the time 
series can be modelled by Equation 1. 

 
g = Ax (1) 

 
where A is the coefficients matrix designing the 

mathematical relationship between the vectors of 
observations and unknown parameters. The elements of 
the design matrix are summarized by Equation 2: 

 

A= [

cos𝜔𝑗 𝑡1 sin𝜔𝑗 𝑡1
cos𝜔𝑗𝑡2 sin𝜔𝑗𝑡2

 ⋮                 ⋮
cos𝜔𝑗 𝑡𝑛 sin𝜔𝑗𝑡𝑛

] (2) 

 
where n represents maximum number of elements. 
For computing these parameters by the least-squares 

approximation, the square root of differences between f 
and g functions should be minimum. Using the standard 
least-squares notation [20], we can write it as (Equation 
3). 

 
r ̂ = f − ĝ = f − A(ATPA)−1ATPf (3) 

 
where r̂ is the residual vector, ĝ is the best 

approximation of f by the least squares method. A 
spectral value can be calculated by the ratio (Equation 4), 

 

s =
fTĝ

fTf
 (4) 

 
where T denotes transpose of the matrix. 
In the case where the spectral value is desired to 

compute for a frequency 𝜔𝑗 , the result is calculated by 

(Equation 5). 
 

s(𝜔𝑗) =
fTĝ(𝜔𝑗)

fTf
 (5) 

 
In the parameter estimation methodology through 

the least-squares approximation, it is essential important 
to evaluate the results, statistically. Therefore, another 
great advantage of the LSSA method is that the 
significance of peaks in the spectrum can be tested 
statistically in a rigorous manner, which is called 
confidence level.  

Pagiatakis [21] introduces a test as follows: a 
statistical test of null hypothesis 𝐻0 : 𝑠(𝜔𝑗) = 0 can be 

tested with a decision function by Equation 6. 
 

𝑠(𝜔𝑗) {
< (1 + (𝛼−2𝑚/𝑣 − 1)−1)−1   ; accept 𝐻0

> (1 + (𝛼−2𝑚/𝑣 − 1)−1)−1  ; reject 𝐻0

 (6) 

 
where α is the significance level (usually 5%), 𝑚 is 

the number of frequencies participated in 
simultaneously estimation of the LSSA, 𝑣 is the degree of 
freedom. 
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2.3 LSSA with the known constituents 
 
For some applications, it is known that there are some 

constituents (e. g. datum shift) in the time series. In this 
case, we should know something about constituents to 
deal with them more efficiently. In other words, we know 
the type of base functions 𝜙𝑖(𝑡), but do not need to know 
the magnitudes of the constituents in the experimental 
time series. Hence, it is given by Equation 7. 

 

  f(𝑡) = ∑𝑐𝑖𝜙𝑖(𝑡)

𝑁𝐾

𝑖

 (7) 

 
where NK is the number of known constituents, 𝑐𝑖 are 

the unknown parameters. We know all the 𝜙𝑖(𝑡), but not 
the coefficients 𝑐𝑖 in any time series. Thus, the design 
(coefficients) matrix can be divided into the known 
constituents and spectral functions (𝑐𝑜𝑠 𝜔𝑗  , 𝑠𝑖𝑛 𝜔𝑗). The 

design matrix A can be extended as follows (Equation 8). 
 

A =

[
 
 
 
𝜙1 𝜙2 … 𝜙𝑁𝐾 cos𝜔𝑗 𝑡1 sin𝜔𝑗 𝑡1
𝜙1 𝜙2 … 𝜙𝑁𝐾 cos𝜔𝑗 𝑡2 sin𝜔𝑗 𝑡2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝜙1 𝜙2 … 𝜙𝑁𝐾 cos𝜔𝑗 𝑡𝑛 sin𝜔𝑗 𝑡𝑛]
 
 
 

 (8) 

 
Thereby, the known constituents are not necessary to 

be removed from f before the evaluation of the spectrum 
[10]. 

Accordingly, three types of known constituents are 
inserted into the software. [12] explains their base 
functions in detail. They are concisely reviewed as 
follows: 

• datum bias (𝜙(𝑡) =  1): For example, a tide gauge 
is moved to other places a few times during the 
sea level observations. The dates of the 
movement are well-documented, but the vertical 
relationship of the movement is not reported 
properly. 

• linear trend (𝜙(𝑡) =  𝑡): For example, the dock 
where a tide gauge is located, is slowly sinking 
into the seabed. Another reason may be that the 
mean sea level is rising due to global warming. 

• forced period (𝜙1(𝑡) =  𝑐𝑜𝑠 𝜇𝑡 and 𝜙2(𝑡) =
𝑠𝑖𝑛 𝜇𝑡). For example, it is known that the time 
series consists of some frequencies, so we desire 
to remove these frequencies from the series and 
to analyse what is remained. 

 
The known constituents mentioned above can be 

modelled and removed from the given time series 
simultaneously, then, the residual time series is 
examined by the LSSA method. 

 
3.  LSSASOFT: Software for Estimating Periodicities 

in Time Series 
 
This section is dedicated to providing a 

comprehensive explanation of the structure of the 
software, named 'Least Squares Spectral Analysis 
SOFTware (LSSASOFT),' which is encoded in the C++ 
platform. Furthermore, the author has rigorously 

integrated a new approach into the software to 
accelerate the LSSA procedures. 

 
3.1 Functions of the software 

 
The LSSASOFT comprises a main function and four 

sub-functions (subroutines): SPEC, BASE, CHLS, and 
HELP. Below are brief descriptions of these functions: 
• MAIN function: At first, it takes the data file name and 

all options from the command line (i.e. console user 
interfaces). In the data file, every record should 
include the time and variable, respectively. The 
program enables the evaluation of the weighted data 
in the case that the third column should be the weight 
of the observation. In this case, user do not need to 
revise the software namely, it directly reads the third 
column. Afterwards, considering the options and the 
other parameters, all periodic components obtained 
from the time series are reflected to the screen 
sequentially. 

• SPEC function: It computes the spectral values of the 
frequencies determined at the beginning of the MAIN 
function. Wells et al. [12] introduces two algorithms 
that estimate the spectral values: the first is for 
equally spaced data and the other is for unequally 
spaced data. The algorithm for unequally spaced data 
covers that for equally spaced data. Nevertheless, the 
algorithm for equally spaced data is faster than the 
other with respect to the computation time [12]. In 
the current software, the algorithm for unequally 
spaced data was preferred by considering the 
advances in today’s computer technology, because 
the time differences between two algorithms can be 
comfortably neglected. 

• BASE function: It calculates the functional values of 
the known constituents stated in the user’s options. 
This function concerns three types of known 
constituents, i. e., the datum bias, linear trend, and 
forced period. Indeed, the type of known constituent 
in the time series may be more than three, in this case, 
the interested users can easily adopt a new 
constituent (e. g. an exponential trend) according to 
their experiences. 

• CHLS function: It computes the inversion of the 
normal equation matrix through the use of Cholesky 
decomposition. Cholesky decomposition is integrated 
into LSSASOFT due to its compatibility with 
symmetric and positive-definite matrices. Interested 
readers can replace the function with a more efficient 
algorithm such as the LU (Lower-Upper) 
decomposition.  

• HELP function: It offers an overview of the software. 
When you input the '-h' option or unexpected options, 
the HELP function becomes active. It elaborates on 
how LSSASOFT functions alongside different options 
and outlines the necessary parameters for each 
option. 
 

3.2 New algorithm 
 
In order to expedite the computational procedures of 

the LSSA method, a new algorithm designed by the 
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author is adapted to the LSSASOFT. This algorithm 
automatically enables the determination of the periods in 
the time series. 

The normal procedure of the LSSA method is 
following: firstly, the time series and its constituents 
(linear trend, datum shifts, and forced periods) are read 
from the data and options files, then the spectral values 
of the whole frequencies determined by the user are 
computed, finally, the peaks over the confidence level are 
manually determined as indicators of the periodicities. 
Every periodicity determined in the previous step is 
sequentially suppressed by adding it to a forced period 
for the purpose of detecting other un-catched 
periodicities manually [22]. Moreover, the user should 
know the approximate spectral band to determine the 
periodicities very well, which means that analyst should 
be expert on the subject. These procedures are time 
consuming and laborious tasks for the analysts to get 
reliable results.  

Considering all these limitations, a new algorithm was 
developed in this study as: 
1. start, 
2. get the parameters from the command line (LT: linear 

trend, NDAT: number of datum bias, DAT: times of 
datum bias, NPER: number of forced periods, PER: 
forced periods), and read the data file (f(t)),  

3. produce all periods (P) ranging from 0.5 
(corresponding to the nyquistik frequency) and N/2 
(the half-length of the data), 

4. compute the spectral value of every period (S(P)) 
increased by δt, 

5. determine the period (p) corresponding to the 
highest spectral value (Smax), 

6. if this spectral value is lower than the confidence level 
(CL), exit to the program successfully. 

7. otherwise, zoom this period (p) by giving 1 to the 
interval, i. e., the new spectral band is ranging from p 
− 1 to p + 1 in order to determine the period more 
precisely, 

8. compute the spectral values of all periods in the new 
interval, 

9. promote the period whose spectral value is the 
highest in all, to the forced period, and print to screen, 

10. return to item 3. 
 
The flow chart of the algorithm is pictured in Figure 

1. In order to assess the performance of this algorithm, 
two example applications are done in the next section. 
The data files are provided together with the program in 
the case that the user re-simulates the results and checks 
the implementations. 

 
4. Numerical applications 

 
In order to exemplify the capabilities of the LSSASOFT 

and the usefulness of the new algorithm in the studies, 
two representative sample data were analysed 
separately. In the first example, we used synthetic data 
which comprises 300 records. In the second example, we 
utilized the hourly sea level observations obtained from 
the Antalya tide-gauge in 1990, Türkiye. Hence, it was 

shown whether the periods estimated by the software 
are reliable or not. 
 

 
Figure 1. The flow chart of new algorithm added to the 

software. 
 
4.1 Testing the software on synthetic data 
 

In this example, synthetic data representing a typical 
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coloured time series, was generated from Equation (9) 
which is partly used by [12]. This series was equally 
spaced and equally weighted with no covariance 
information, subsequently, it was chosen to perform the 
statistical testing at the 99% confidence level, which is 
the most rigorous option in geodetic literature. 

The mathematical illustration of the test time series is 
given as: 

𝑓(𝑡) =  𝑐 𝑖 +  0.01𝑡 + ∑(𝑎𝑗𝑐𝑜𝑠 𝜇𝑗𝑡 + 𝑏𝑗  𝑐𝑜𝑠 𝜇𝑗𝑡)

4

𝑗=1

 (9) 

 
where 𝑡 is the time (unit: year), 𝑐𝑖 is the datum bias, 

𝜇𝑗 is the periodic component, 𝑎𝑗 and 𝑏𝑗 are the 

coefficients of the periodic components. 
Three hundred values of f, which spans 50 years were 

calculated and grouped into four sub-intervals consisting 
of equally spaced data, that is 

 

𝑡 𝜖 𝐷𝐾 , 𝑘 =  1, 2, 3, 4,  
 
where 
 

𝐷1 ≡ [ 0.1, 0.2, . . . , 10.0]   years   (100 values) 
𝐷2 ≡ [20.1, 20.2, . . . , 25.0] years ( 50 values) 
𝐷3  ≡ [28.1, 28.2, . . ., 40.0] years (120 values). 
𝐷4  ≡ [47.1, 47.2, . . ., 50.0] years (30 values) 

       
The datum biases are 𝑐1  =  1.0, 𝑡 𝜖 𝐷1;  𝑐2  =

 −1.0, 𝑡 𝜖 𝐷2;  𝑐3  =  3.0, 𝑡 𝜖 𝐷3, 𝐷4. The coefficients of the 
trigonometric terms are 𝑎𝑗 = 0.5, 1.0, 0.0, −0.25; 𝑏𝑗 =

1.0, 0.5, 1.0, 0.0, respectively. The periods are 𝑝𝑗 =  2𝜋/

𝜇𝑗 = 2.759, 3.636, 5.714, 18.0 years. Figure 2 displays 
the behaviour of test series under investigation. 

 

 
Figure 2. Graph of the test time series. 

 

According to these parameters, the software run with 
the following options: 

 

./LSSASOFT test.dat -d3/0.1/20.1/28.1 -l 
 

where the “test.dat” file contains the test time 
series made of time and value which are available along 
with the software package; the “d” option denotes the 
number of datum bias and times of datum biases in 
sequence; the “l” option means that the time series 
posses the linear trend. The numerical results from the 
analysis are listed in Table 1. 

According to Table 1, the periodicities in the test 
series were successfully determined by the LSSASOFT. 
The differences between the real and estimated values 
are very small, which is negligible in the numerical 
analysis. 

Table 1. The numerical results from running the 
LSSASOFT by the first test time series. 

Number Real 
period 

Estimated 
period 

Spectral 
value 

Differences 

1 2.759 2.758 94.81 0.001 

2 3.636 3.629 44.13 0.007 

3 5.714 5.726 43.09 0.012 

4 18.00 17.671 52.69 0.329 

 
4.2 Sea level observations 
 

In the second example, we utilized the real sea level 
observations supplied from the Antalya tide-gauge in 
1990 in Türkiye. These observations were selected as 
test data because they inherently involved all kinds of 
disturbances due to the fact that the tide-gauge had a 
classical instrument. 

Before the analysis, the general structure of the sea 
level data should be considered more closely. 
Accordingly, the sea level observations are decomposed 
to three components (Equation 10) [23]: 

 
Observation = mean sea level + tides+  

atmospheric residuals 
(10) 

 
where all components are related with the different 

physical process and uncorrelated with each other. The 
mean sea level is determined by averaging hourly data at 
least 20 years long since the longest period of tidal 
components is 18.6 years. Accordingly, the tides are the 
periodic sea level changes that are consistent with some 
geophysical effects, and are of the certain amplitude and 
phase [24]. Atmospheric residuals are irregular 
variations related with weather conditions, which is the 
so-called “surge effect”. 

The tides mentioned above are simply explained by 
Newton’s gravity force. This force (F) is summarized by 
(Equation 11). 

 

𝐹 = −𝐺
𝑚1𝑚2

𝑟2
 (11) 

 
where G denotes the Newtonian gravitation constant, 

r represents the distance between 𝑚1 and 𝑚2. Provided 
that the masses of the Earth and the Moon, and also the 
distance between the planets are inserted to the 
equation, the result is the gravitational force between 
them. The gravitation between the Earth and Sun can be 
achieved similarly. Both gravitations affect the sea level 
changes in the same periods with the movements of the 
Sun and the Moon [25]. Accordingly, tidal components 
are demonstrated in Table 2. 
        

Table 2. The primary short tidal components [26]. 
Tidal 

components 
Real 

Period 
Description Explanation 

M2 12.4206 Principal lunar Semi-diurnal 
S2 12.0000 Principal solar Semi-diurnal 
N2 12.6584 Larger Lunar elliptic Semi-diurnal 
K2 11.9673 Luni-solar Semi-diurnal 
K1 23.9344 Luni-solar diurnal Diurnal 
Q1 25.8194 Principal lunar diurnal Diurnal 
P1 24.0659 Principal solar diurnal Diurnal 
Q1 26.8684 Larger Lunar elliptic Diurnal 
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Before the numerical analysis of our sea level 
observation, the observations were plotted month by 
month. While the observations are examined carefully, it 
is clear that there is a variety of difficulties (e. g. gappy 
data, linear trend) in the time series (Figure 3).  
 

 
Figure 3. A sample data from the Antalya tide gauge 

(April 1990). 
 

The hourly sea level data obtained from every month 
was analysed in a sequence. As a result of this analysis, 
two dominant periods were successfully estimated in the 
sea level observations (Table 3). Unfortunately, others 
are not determined due to the data length (i. e. one month 
long).   

 
Table 3. The numerical results from the running the 

LSSASOFT by the sea level series. 
  Month Period 1  Period 2 

January  11.998 12.416 

February  12.009 12.437 

March  11.957 12.393 

May  11.860 12.337 
June  12.325 12.386 
July   11.987 12.405 

August  11.987 12.418 
September  11.971 12.393 

October  11.982 12.405 
November   12.048 12.447 
December   12.418 
Average   12.013 12.412 

Std.  0.11 0.037 

 
In order to check whether the results are compatible 

with astronomical counterparts, a test was carried out by 
using the student distribution (t test). A statistical test of 
null hypothesis 𝐻0:  �̅� =  𝜇0 can be tested through a 
decision function by Equation 12. 

 

𝑡𝑡𝑒𝑠𝑡 =
|�̅� − 𝜇0|

𝜎𝑥 ∕ √𝑛
{
≤ 𝑡𝛼,𝑓  ; accept 𝐻0

> 𝑡𝛼,𝑓  ; reject 𝐻0
 (12) 

 
where α is the significance level (5%), f is the degree 

of freedom, 𝜎𝑥 is the standard deviation of the 
periodicity, �̅� denotes the average value of the 
periodicity, 𝜇0 represents the astronomical value of the 
periodicity.  

As a result of the test, all periods derived from the 
analysis are well-consistent with the astronomical 

counterparts at a confidence level of 95%. This result 
indicates that the software is successful on the 
determination of the hidden periodicity in the time series 
induced by the disturbing effects. 

Although there are totally eight diurnal and semi-
diurnal tidal components, two of them could be 
determined by using the program in the current study, 
which are compatible with a previous study done by 
FORTRAN codes [27]. The reasons of incomplete 
frequencies are evaluated that the other components 
might have low amplitudes, or that the dock structure 
and geographical position of the tide gauge might be 
unsuitable to sense the other tidal components. 

On the other hand, nowadays the least squares 
principle has been frequently employed in some geodetic 
problems such as gravimetric geoid determination 
[28,29].  

 

4. Conclusion  
 

The present contribution has reviewed the 
fundamental theory of the LSSA approach to spectral 
analysis of time series. The LSSA is an efficient method to 
determine the periodicities in the empirical time series 
that have difficulties. Then, an open-source software 
package developed according to the mentioned theory of 
the LSSA approach is presented by adding a new 
algorithm with a range of elective options. Lastly, the 
present paper is continued by two numerical 
applications based on the synthetic and real data, 
respectively. The numerical analyses point out that the 
LSSASOFT produces considerably reasonable results in 
both time series. 

The current contribution focuses on the significant 
computational aspects of the LSSA approach. To 
determine the best solution for estimating periodicities 
using LSSASOFT, we strongly encourage interested users 
to run the software with their data, experiment with 
various modifications, compare the results, and draw 
conclusions based on their test results. 

From another perspective, the software is 
intentionally designed to consist of a range of different 
sub-routines. This structure enables end users to replace 
their specific sub-routines (e.g., adding an alternative 
base function and inverse function for normal equation 
matrix etc.) without adversely affecting the remaining 
components of LSSASOFT. 

As a result, the software is highly structured and user-
friendly, making it suitable for academic purposes. We 
hope that the availability of LSSASOFT will encourage 
researchers in various scientific fields to apply the LSSA 
method to their data, including disciplines such as GNSS 
(Global Navigation Satellite Systems) coordinate time 
series, which mostly exhibit discontinuities (offsets) and 
linear trends due to tectonic phenomena. 

As a future work, it is noteworthy mentioned here 
that the extended version of LSSA, such as Least Squares 
Wavelet Analysis [30] can be also developed in the C 
programming language. Hence, a rich C/C++ library 
about spectral analysis may be created for the scientific 
communities. 
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