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Abstract 

Sign language is a primary and widely used means of communication for individuals with hearing impairments. Current sign 

language recognition techniques need to be improved and need further development. In this research, we present a novel deep 

learning architecture for achieving significant advancements in sign language recognition by recognizing isolated signs. The 

study utilizes the Isolated Sign Language Recognition (ISLR) dataset from 21 hard-of-hearing participants. This dataset 

comprises 250 isolated signs and the x, y, and z coordinates of 543 hand gestures obtained using MediaPipe Holistic Solution. 

With approximately 100,000 videos, this dataset presents an essential opportunity for applying deep learning methods in sign 

language recognition. We present the comparative results of our experiments, where we explored different batch sizes, kernel 

sizes, frame sizes, and different convolutional layers. We achieve an accuracy rate of 83.32% on the test set. 

© 2023 DPU All rights reserved. 
Keywords: Sign language recognition; deep learning; landmarks; ISLR 

1. Introduction 

Sign Language Recognition (SLR) is an essential field of research that aims to develop technology to recognize 

sign language and translate it into written or spoken language [1]. Sign language (SL) is an essential tool for 
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communicating with individuals in the deaf community. In sign language, communication is achieved using visual 

language such as hand gestures, facial expressions, and body language. Sign language varies in structure and syntax 

between different countries and regions. SLR is necessary to increase communication between deaf individuals and 

the hearing world and to facilitate the inclusion of deaf individuals into society [2]. 

Recognizing sign language has various difficulties. In order to distinguish meanings in sign language, it is 

necessary to make a detailed analysis of body parts, especially hands, arms, and facial movements [3]. Sign language 

meanings may vary due to signs made by different people when creating a data set. The same sign may appear 

differently due to position, speed, and acceleration variability during sign movements. Environmental factors such as 

lighting and background can also make it difficult to recognize signs. 

SLR research is divided into two main branches: isolated and continuous [4]. The system, known as isolated SLR, 

is designed to recognize a single sign performed without any other signs or movements. Isolated SLR is used in 

applications where single signs need to be recognized, for example, in sign language dictionaries or educational 

environments. On the other hand, continuous SLR means that the system recognizes sign language sentences or 

multiple signs performed sequentially. Continuous SLR is often used in applications such as sign language 

translation systems or real-time communications [5]. 

In recent years, deep learning has emerged as a powerful tool to overcome the challenges of sign language 

recognition. Deep learning models, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) and their variations, have demonstrated the state-of-the-art in isolated and continuous sign 

language recognition tasks [6]. 

Sign language recognition can be made using landmarks, defined as points corresponding to important joint 

points on the human body. Landmarks are extracted from video data using computer vision techniques and used to 

train machine learning models for sign language classification. Landmark-based SLR has gained popularity recently 

due to its simplicity and effectiveness. Using landmarks to represent sign language movements makes it possible to 

capture significant spatiotemporal information without requiring large amounts of training data or complex deep 

learning models. 

This work presents a new CNN-based high-performance deep learning architecture for isolated sign language 

recognition. Our unique architecture, focused on American Sign Language, uses Convolutional Neural Network 

(CNN) to identify input signals from video-derived point data, achieving the best performance in the current 

benchmark dataset for ISLR. This work demonstrates the effectiveness of our new CNN-based deep learning 

architecture combined with landmark-based features for isolated sign language recognition. It provides a basis for 

further research in this exciting and rapidly evolving field. 

2. Related Works 

Sign language recognition has become a popular research topic in recent years. Sign language recognition studies 

for various regions have been carried out in the literature using CNN, LSTM models, and transformer structures.  

Aly and colleagues [2] introduced a framework employing DeepLabv3+ and BiLSTM for recognizing Arabic 

sign language, yielding promising outcomes. Sincan et al. [3] established a foundation for assessing the performance 

of CNNs and LSTM models in Turkish Sign Language by comparing various architectural approaches. De Coster et 

al. devised a system that combines OpenPose, a real-time pose estimation framework with transformers, and multi-

headed attention to recognize sign language in a Flemish Sign Language dataset, achieving state-of-the-art results 

[7]. Rastgoo et al. proposed a cascading model for recognizing Persian sign language, focusing on static and 

dynamic movements. They employed the Single Shot Multi-Box Detector (SSD) and LSTM [8]. Rastgoo et al. 

introduced a multimodal deep learning model utilizing RGB and depth videos for sign language recognition across 

three publicly available datasets, demonstrating improved accuracy [9]. Sharma et al. suggested a deep transfer 

learning approach for continuous sign language sentence recognition. They leveraged pre-trained models to enhance 

performance [8]. Aloysius et al. conducted a comprehensive review of the literature on vision-based continuous sign 
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language recognition, emphasizing recent advancements in deep learning techniques and evaluating their 

effectiveness [5]. 

Hu et al. introduced a hand model recognition framework that considers the distinctive characteristics of hand 

joints for recognizing isolated sign language gestures [11]. Zhou et al. proposed an innovative method to address 

motion blur issues in video sequences using (2+1) D and 3D ResNet, incorporating blur detection to improve sign 

language recognition [9]. Yang et al. introduced the KSL dataset, a valuable resource for researchers interested in 

Korean sign language recognition, thereby contributing to the field with a large-scale dataset [13]. 

In wearable-based systems, Zhang et al. harnessed a multimodal CNN and bidirectional LSTM to achieve end-to-

end continuous American Sign Language (ASL) recognition. Their MyoSign system demonstrated high accuracy at 

both word and sentence levels, leveraging data from Myo armband sensors [14]. Saunders et al. introduced an 

innovative approach for sign language generation (SLP) using the Progressive Transducer architecture. They 

converted spoken language sentences into continuous 3D multi-channel sign pose sequences, setting new 

benchmarks in this area [15]. Several recent studies have also proposed new datasets for sign language recognition. 

Fink et al. presented two new sign language datasets, LSFB-CONT and LSFB-ISOL, for continuous and isolated 

sign language recognition in French Belgian Sign Language [16]. Das et al.  proposed a hybrid model for Bangla 

Sign Language recognition and evaluated it on two new datasets, Ishara-Bochon and Ishara-Lipi, providing a 

valuable resource for the Bengali sign language research community [17]. Rajalakshmi et al. proposed a hybrid 

neural network architecture for recognizing Indian and Russian sign language and created a new multi-signer dataset 

for evaluation, promoting research in these underrepresented sign languages [18]. 

Finally, some recent studies have proposed novel techniques for sign language recognition based on shape 

trajectories analysis, attention mechanisms, and batch normalization. Fakhfakh et al. developed a shape trajectories 

analysis approach based on deep learning for recognizing isolated word sign language, demonstrating the 

effectiveness of shape trajectory analysis in recognizing dynamic gestures [19]. Fang et al. proposed an adversarial 

multi-task deep learning framework that incorporated multiple modalities and solved the problem of signer 

independent SLR, improving the generalizability of the recognition system [20]. Luqman et al. proposed an efficient 

two-stream network for isolated sign language recognition using accumulative video motion, capturing both static 

and dynamic gesture features for improved recognition [21]. Sarhan and Frintrop proposed a novel method using 

spatial attention for isolated SLR, enabling the model to focus on relevant regions of the input images for better 

recognition performance [22]. Takayama et al. proposed a masked batch normalization technique to improve 

tracking-based sign language recognition using graph convolutional networks, addressing the issue of variable-

length sequences in sign language recognition [23]. Wang et al. proposed a framework for multimodal sign language 

recognition under small sample conditions based on key-frame sampling. This approach combined spatial and 

temporal features for effective recognition in scenarios with limited training data, providing a viable solution for 

under-resourced sign languages [24]. Boukdir et al. proposed a deep learning approach for isolated video-based 

recognition of Arabic sign language, specifically Moroccan sign language, using 2D convolutional recurring neural 

networks (2DCRNN) and 3D convolutional neural networks (3DCNN) to classify video sequences with high 

accuracy [25]. Pariwat et al. developed a multi-stroke Thai finger-spelling sign language recognition system using 

deep learning with vision-based techniques, achieving impressive average accuracies for one, two, and three-stroke 

alphabets [26]. Furthermore, Rajalakshmi and colleagues proposed a hybrid deep neural network for recognizing 

Indian and Russian sign gestures, utilizing a combination of spatial feature extraction, attention-based Bi-LSTM, 

and a modified autoencoder for feature extraction, demonstrating better performance than existing frameworks [27]. 

These advancements in sign language recognition methods showcase the continuous improvement and innovation in 

the field, with various techniques and approaches being explored for effective and accurate sign language 

recognition systems. 

In summary, recent research in sign language recognition has covered a wide range of techniques and 

approaches, including deep learning models, novel architectures, attention mechanisms, and the development of new 

datasets. These studies demonstrate the ongoing progress in the field and the potential for further advancements in 
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sign language recognition technology. In our study, we performed sign language recognition on a large newly 

published landmark-based data set. We conducted a study that will contribute to the literature with our CNN model 

and our accuracy rate on the new data set. 

3. Material and Methods 

3.1. Dataset 

This study used Isolated Sign Language Recognition (ISLR) Corpus (version 1.0) dataset. The ISLR dataset is 

published by the Georgia Institute of Technology, the dataset consists of approximately 100,000 isolated signs 

performed by 21 deaf users using American Sign Language (ASL). Users performed cues from a 250-word 

vocabulary with hand, face, and pose landmarks obtained via MediaPipe (version 0.9.0.1). The ISLR dataset was 

primarily designed to be used in educational games aimed at helping deaf children, and their families learn ASL 

[28]. 

Videos represent the beacons in the dataset, each taken from a different user and shot in various environments. 

These videos were collected via smartphone apps without any review for accuracy or quality. Each video contains 

the coordinates of key points identified in the hands, faces, and poses of the users during the execution of the signs. 

This landmark data is input into machine-learning models to analyze and recognize signs. Landmark data is 

represented as x, y, and z coordinates. 

 

Fig. 1. MediaPipe landmarks for hand [29]. 

Each frame in the videos contains a total of 543 landmarks. These landmarks are distributed as follows: face 

(468), left hand (21), pose (33), and right hand (21). Example landmarks of the hand are presented in Fig. 1. Videos 

in the ISLR dataset vary in the number of frames that describe each sign. The maximum number of frames is about 

330, the minimum is 4, and the average is 38. This study aims to contribute to the development of more effective 

and user-friendly educational tools for deaf individuals by taking advantage of the ISLR dataset. 

3.2. Preprocessing of the ISLR Dataset 

In the ISLR dataset, the number of frames per video varies, necessitating a preprocessing step to ensure 

compatibility with the deep learning network used in this study. To facilitate training, a reference frame count of 6 

was selected. In this preprocessing stage, videos with more than 6 frames were down sampled by averaging 
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consecutive frames to reduce the total number of frames to the reference value. Conversely, for videos with fewer 

than 6 frames, zero-padding was employed by adding frames consisting of zeros until the target frame count was 

reached. This approach standardized all videos to have 6 frames, thereby enabling efficient training of the deep 

learning network on the ISLR dataset. 

Additionally, from the original 543 landmark points in each frame, 118 dominant landmarks were identified 

based on their importance in sign language communication. These dominant landmarks predominantly include key 

points from hands, lips, and pose, which are known to carry significant information in sign language. By focusing on 

these 118 landmarks, the computational complexity of the deep learning model is reduced while maintaining the 

essential features required for accurate sign recognition. This refined set of landmarks further enhances the 

efficiency and effectiveness of the deep learning network's training on the ISLR dataset. 

In the final stage, the processed data for each sign consists of 6 frames, each containing 118 landmarks and their 

corresponding 3-dimensional (x, y, z) coordinates. This standardized data representation ensures consistent input for 

the deep learning model, enabling accurate and efficient sign recognition in the ISLR dataset. 

3.3. Proposed Method 

In this study, a novel architecture based on CNN is proposed for recognizing isolated sign language (see Fig. 2). 

The architecture consists of four total blocks, each containing a Conv1D layer, a Batch Normalization layer, and a 

ReLU activation function. 

 

 

Fig. 2. Proposed model. 
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In our proposed model, dilation convolution is used in certain blocks. Dilation convolution is a technique that 

modifies traditional convolutional operations. In regular convolution, the kernel computes with a fixed stride size 

over the data. In this case, the kernel size is the same as the stride size. However, gaps are inserted between steps on 

the kernel in dilation convolution. This gap allows the convolution operation to have a wider receptive field. The 

dilation factor determines the size of this gap. Specifically, dilated convolutions are used in the third and fourth 

blocks to create an expanded receptive field. This allows the model to capture longer-range dependencies and larger-

scale features [30]. Our input data consists of 94477 samples, each comprising 6-frames. Each frame contains 3-

dimensional location data (x, y, z) for 118 individual landmarks and their derivative information. Therefore, the 

input data size is 6 x 118 x 6 = 4248.  The total number of parameters in our deep learning model is 10,806,746. 

The model blocks are described below: 

Low-Level Feature Block 1: At this level, two Conv1D layers with 32 filter sizes and the following batch 

normalization layers were used. Batch Normalization stabilizes the training process by normalizing the data. Then, 

the MaxPooling layer with 3 filter sizes and the dropout layer, which deactivates neurons by 30%, were applied. 

Dropout helps reduce overfitting and helps the model learn more generalized features.  

Low-Level Feature Block 2: Similarly, two Conv1D layer with 64 filter size is added, followed by the Batch 

Normalization layer. The MaxPooling layer with size 3 is applied. The Dropout layer deactivates 40% of the 

neurons randomly. 

Middle-Level Feature Block 1,2, and 3: These blocks use dilated convolutions to expand the receptive field. The 

dilation convolution is performed by leaving gaps between steps on the kernel, with a dilation_rate=2. Each block 

includes two Conv1D and two Batch Normalization layers. The filters applied to the conv1d layers are 128,256 and 

384, respectively. The MaxPooling1D layer implements a pooling operation of size. The Dropout layer deactivates 

50% of the neurons randomly. 

High-Level Feature Block 1: The layers in this section consist of two Conv1D layers with 512 filters, two Batch 

Normalization layers, a MaxPooling1D layer, and a Dropout layer. The MaxPooling1D layer implements a pooling 

operation of size 3. The Dropout layer deactivates 50% of the neurons randomly. 

Classification Head: The Flatten layer flattens the 1D outputs. Then, a two-layer, fully connected structure is 

added. Each layer consists of 1024 and 512 neurons, respectively. Batch Normalization and Dropout layers are 

added after each fully connected layer. Finally, a Dense layer with the number of output classes (250) is added. The 

SoftMax activation function is used in this layer. The model performs convolution and pooling operations with 

consecutive blocks and then performs classification with fully connected layers. 

The ReLU (Rectified Linear Unit) activation function was used in all model layers except the last layer. ReLU is 

a simple activation function where negative values equal zero and positive values remain unchanged. This function 

helps the network learn nonlinear features. The SoftMax activation function was used in the last layer, Dense (250). 

SoftMax is an activation function used in multiclass classification problems. It obtains a probability distribution 

representing the class probabilities at the output. This allows the model to make the most probable prediction across 

multiple classes. 

3.4. Hyper-parameter Settings 

AdamW optimizer, a derivative of the Adam optimizer with weight decay support, was applied. Weight decay 

controls the magnitude of weight parameters while updating the network's loss to optimize. This can encourage 

weight parameters for generalization and prevent overfitting. Essentially, it incorporates weight decay into the 

update steps of the Adam algorithm by adding a term. The term for weight decay is typically multiplied by a factor 

of the sum of squares of weight parameters and added to the total loss function [31]. 

Below is the description of the parameters used in the optimizer initialization: 
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 learning rate: This parameter determines the step size used in each optimization step. It controls how 

quickly the optimizer adjusts the model weights based on the computed gradients. A learning rate of 1e-3 

(0.001) is used in this case. 

 weight decay: This parameter determines the strength of weight decay regularization. It is a multiplying 

coefficient for the weight decay term added to the loss function. A weight decay of 1e-5 (0.00001) is used 

in this case. 

 clip norm: This parameter is used to limit the gradients during optimization. It prevents them from growing 

too large by capping the norm (magnitude) of the gradients. In this case, a clip-norm value of 1.0 is used. 

The Sparse Categorical Cross Entropy Loss function was combined with label smoothing to address the problem 

[32]. Label smoothing aims to correct harsh label classification errors, allowing the model to generalize better and 

reduce the risk of overfitting. Sparse Categorical Cross Entropy Loss is a commonly used loss function in multi-

class classification problems. However, it can encounter issues when working with complex labels. For example, in 

some cases, the model may make harsh classification errors in overly confident classes, which can negatively impact 

the training process. Label smoothing is a technique used to reduce such harsh classification errors by smoothing the 

labels. Instead of using a label value for each class, this technique represents the actual labels using one-hot 

encoding, and low but unequal probabilities are assigned to all classes. This allows the model to learn a more 

balanced class distribution and make more generalized classifications. This loss function calculates the cross-

entropy between the predicted probabilities and the true labels, measuring how well the predicted classes match the 

true labels. The cross-entropy is then averaged across all the samples to give the total loss. The goal during model 

training is to minimize the loss value. The equation for sparse categorical cross entropy loss is: 

 

𝐿𝑜𝑠𝑠 =  
−1

𝑁
 ∑ ∑ 𝑦𝑖𝑗 log 𝑦𝑖𝑗

′𝑀
𝑗

𝑁
𝑖                    (1) 

 

Here, 𝑁 represents the total number of samples, 𝑀 represents the number of classes, 𝑦𝑖𝑗 represents the 𝑗th class of 

the 𝑖th sample's true label, and 𝑦𝑖𝑗
′  represents the predicted probability of the 𝑗th class for the 𝑖 th sample. The 

negative sign indicates that the goal is to minimize the loss. During the optimization process, the model's parameters 

are updated iteratively to minimize the loss function.  

A learning rate scheduling strategy called Linear Warmup and Cosine Decay was applied. This strategy gradually 

increases the learning rate at the beginning of model training and slowly decreases it from a specific turning point. 

This practice helped the model achieve a better balance and achieve better results. The model was trained for 300 

epochs. 

4. Experimental Results 

The proposed CNN architecture was evaluated for recognizing isolated sign language using landmark data. Table 

1 presents the evaluation metrics for the proposed model, including Sparse Categorical Accuracy, Sparse Top-5 

Accuracy, and Sparse Top-10 Accuracy. Sparse Categorical Accuracy measures the percentage of correct 

predictions for a given sample set. It is called "sparse" because the predicted classes and actual tags are encoded as 

integers. To calculate Sparse Categorical Accuracy, the number of correct predictions is divided by the total number 

of samples. 

Table 1. Proposed models benchmark results. 

Model Properties Model Type Loss Sparse Accuracy Top 5 Top 10 

 

 
 

 

Batch Size 64 2.4967 0.8290 0.9350 0.9516 

Batch Size 96 2.4942 0.8310 0.9325 0.9516 
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Half Dilated Conv 

Frame Size 6 

Kernel Size 7 

Batch Size 128 2.5132 0.8220 0.9312 0.9485 

Batch Size 196 2.5368 0.8118 0.9272 0.9462 

Batch Size 256 2.5427 0.8098 0.9263 0.9453 

Batch Size 384 2.5699 0.8022 0.9218 0.9427 

Batch Size 512 2.5762 0.7986 0.9231 0.9440 

      

 

Half Dilated Conv 

Frame Size 6 

Batch Size 96 

Kernel Size 5 2.5109 0.8249 0.9332 0.9508 

Kernel Size 7 2.4942 0.8310 0.9325 0.9516 

Kernel Size 9 2.5085 0.8332 0.9320 0.9476 

Kernel Size 11 2.5156 0.8262 0.9295 0.9454 

      

 
Kernel Size 9 

Frame Size 6 
Batch Size 96 

Normal Conv 2.4963 0.8289 0.9317 0.9472 

Half Dilated Conv 2.5085 0.8332 0.9320 0.9476 

Full Dilated Conv 2.5249 0.8229 0.9292 0.9449 

      

Half Dilated Conv 

Kernel Size 9 
Batch Size 96 

Frame Size 4 2.6125 0.8021 0.9185 0.9389 

Frame Size 6 2.5085 0.8332 0.9320 0.9476 

Frame Size 8 

 

2.532 0.8198 0.9245 0.9428 

 

Sparse Top-5 Accuracy represents a versatile evaluation metric compared to Sparse Categorical Accuracy. It 

offers the flexibility to deem a prediction correct if the true label falls within the top five predicted classes. This 

metric accommodates scenarios where the actual label might not be the most apparent or direct choice. To compute 

Sparse Top-5 Accuracy, we tally the count of correct predictions (where the accurately guessed class resides among 

the top five) and divide it by the total number of samples. Similarly, Sparse Top-10 Accuracy gauges the percentage 

of instances where the accurately guessed class ranks within the top ten predicted classes. This metric enhances the 

model's predictive adaptability further. To calculate Sparse Top-10 Accuracy, we assess the number of correct 

predictions (where the accurately guessed class is among the top ten) and divide it by the overall sample count. 

The model was trained using different batch sizes, kernel sizes, and convolutions, as shown in the table. Based on 

the test results, the highest accuracy was achieved using a batch size of 96, a kernel size of nine, and dilated 

convolutions in the middle layers. 

In the first stage, we carried out training in different batch sizes (64,96,128,196,256,384,512) with the addition of 

semi-dilated conv, that is, dilatation factor, to the intermediate layers, with Kernel size seven and frame size six 

determined. As a result of this training, we found the highest sparse accuracy rate in test data at 83.10% in 96 batch 

sizes. While the batch size was 96, we also tried different kernel sizes (7,9,11), and we reached 83.32% accuracy 

with nine kernel sizes. We observed that the accuracy rate did not increase when tested by applying normal conv to 

the layers. We applied and tested dilated conv (full dilated conv) on all layers, and as a result, we found that the 
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accuracy rate was lower than half dilated conv. We trained by changing the number of frames in the dataset to four 

and eight and achieved maximum accuracy when the frame size was six. 

As a result of these comparisons, our model with the best sparse categorical accuracy rate (83.32%) was obtained 

by applying kernel size 9, batch size 96, frame size six, and half dilation convolution. Additionally, we found the top 

5 accuracies at 93.20% and the top 10 accuracies at 94.76%. 

5. Conclusions 

In conclusion, this study introduced a CNN architecture for recognizing isolated sign language using landmark 

data. The model was evaluated on a dataset consisting of 94,477 video clips, each containing 118 landmarks with x, 

y, and z coordinate information. The results demonstrated good accuracy on the validation set, with a sparse 

categorical accuracy of 83.32%. The top-5 accuracy achieved 93.20% on the validation set, while the top-10 

accuracy reached 94.76%. 

As the dataset used in this study is newly shared, no existing studies are found in the literature that specifically 

applied this dataset. Therefore, there is a potential to enhance the model's performance by exploring different 

preprocessing techniques tailored to this dataset. Additionally, future work could consider selecting different hand, 

face, and pose landmarks and experimenting with varying the number of frames in the video clips to improve 

accuracy rates. It could be tested on different sign language datasets to evaluate the proposed model further. Since 

the dataset used in this study involves many classes, the observed increase in accuracy rate needed to be more 

substantial. This may be attributed to the need for a well-established standard due to the novelty of the dataset. 

This study provides valuable insights into the challenges and potential solutions for recognizing sign language 

using landmark data. The proposed model and findings can serve as a reference for future research in this field, 

contributing to the advancement of sign language recognition techniques. 
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