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Abstract: Digital pathology refers to image-based environment in which acquisition, extraction and interpretation of pathology 
information is supported by computational techniques. It has a huge potential to facilitate the diagnostic process, however, big 
data size and necessity of large storage areas are challenging. Therefore, in this research, Compressed Sensing (CS) scheme is 
studied with digital pathology images in order to reduce the amount of data for reconstruction. CS requires the sparsity of 
signals for a successful recovery which means that different sparsifying bases can alter the final performance. Wavelet, 
Contourlet and Shearlet Transforms are investigated to sparsify the digital pathology images, it is seen that Contourlet 
Transform is superior. Alternating Direction Method of Multipliers (ADMM) is chosen for reconstruction since it is a robust 
and fast convex optimization method. Despite the fact that digital pathology images are less sparse than classical images, CS 
reconstruction is satisfactory, which emphasizes the potential of CS for digital pathology. This study can be pioneering in the 
field of CS with digital pathology so it can encourage further studies of CS based imaging with different type of microscopes 
or at different wavelengths. 
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Dalgacık, Contourlet ve Shearlet Dönüşümleri Kullanılarak Çarpanların Alternatif Yön 
Yöntemi ile Dijital Patoloji Görüntüsü Geriçatılması 

  
Öz: Dijital patoloji, patoloji bilgilerinin elde edilmesi, çıkarılması ve yorumlanmasının hesaplamalı tekniklerle desteklendiği 
görüntü tabanlı ortamı ifade eder. Teşhis sürecini kolaylaştırma açısından büyük bir potansiyele sahiptir ancak büyük veri 
boyutu ve geniş depolama alanlarının gerekliliği zorlayıcıdır. Bu nedenle, bu araştırmada, yeniden yapılandırma için veri 
miktarını azaltmak amacıyla Sıkıştırılmış Algılama (CS) şeması dijital patoloji görüntüleri ile incelenmiştir. CS, başarılı bir 
kurtarma için sinyallerin seyrekliğini gerektirir; bu, farklı seyrekleştirici bazların nihai performansı değiştirebileceği anlamına 
gelir. Dijital patoloji görüntülerini seyrekleştirmek için Dalgacık, Contourlet ve Shearlet Dönüşümleri incelenmiştir, Contourlet 
Dönüşümünün üstün olduğu görülmüştür. Geriçatma için Alternatif Yön Çarpan Yöntemi (ADMM) sağlam ve hızlı bir 
dışbükey optimizasyon yöntemi olduğundan seçilmiştir. Dijital patoloji görüntülerinin klasik görüntülere göre daha az seyrek 
olmasına rağmen CS geriçatması tatmin edicidir, bu da CS'nin dijital patoloji için potansiyelini vurgulamaktadır. Bu çalışma, 
dijital patoloji ile CS alanında öncü olabilir ve farklı tipte mikroskoplarla veya farklı dalga boylarında CS tabanlı 
görüntülemeye yönelik daha ileri çalışmaları teşvik edebilir. 
 
Anahtar kelimeler: Sıkıştırılmış Algılama, Dijital Patoloji, Dalgacık Dönüşümü, Contourlet Dönüşümü, Shearlet Dönüşümü. 
 
1. Introduction 
 

Medical imaging is a general term for using several different technologies to view the human body or human 
specimens in order to diagnose, monitor, or treat medical conditions. Through medical images, the area of the 
human body that is invisible or too small to be observed with the naked eye can be visualized and examined. 
Medical images provide very important data in the treatment process. Digital pathology is a dynamic branch of 
medical imaging which enables the acquisition, extraction and interpretation of pathology information using a very 
high-resolution picture of a microscope slide containing a sample of tissue in a digital environment [1]. The 
collaboration and engagement of professionals from different medical institutions are facilitated by digital 
pathology methods. The clinicians in other locations can easily be consulted for second opinion and obviously 
time and cost for diagnose are saved considerably. Besides, the risks associated with physically transporting slides 
are eliminated. The COVID-19 pandemic's emphasis on leveraging digital infrastructure for remote patient 
monitoring [2] also underscored the potential of digital pathology, which can allow pathologists to analyze and 
diagnose disease from anywhere, improving both healthcare accessibility and efficiency. Moreover, there are lots 
of studies to develop automated pathology techniques to make the diagnosis less subjective and less time 
consuming [3]. It is estimated that the global digital pathology market size will reach USD 1.74 billion by 2030, 
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registering a CAGR of 7.5% [4]. However, digital pathology slide images are big in size and need large storage 
areas therefore both the storage and the transmission of pathological images for diagnosis and monitoring purposes 
are still challenging. One of the solutions for reducing the data is compressing the images after they are sampled 
at Nyquist rate [5,6].  On the other hand, the drawback of these conventional compression methods is that acquiring 
too much data in a fast way is hard and quite expensive due to physical constraints. Besides, there is an obvious 
question asking whether there is a way of getting the data which contains information directly. The efforts for 
answering this question have led to a novel sensing paradigm called as Compressed Sensing (CS) in 2006. CS 
basically claims that signals can be reconstructed with lower sampling rates than Shannon-Nyquist theorem 
dictates [7, 8]. In other words, the signal is compressed at the time of sensing [9] so the number of measurements 
for reconstruction, acquisition time and energy are reduced. 

CS has applied to a wide range of areas such as astronomy, communications, signal processing and imaging 
beyond the visible band.  It is claimed that CS has a big potential on medical imaging [10]. In fact, first application 
of CS was reducing the measurement time of data acquisition for MRI [11]. The technology using CS in MR 
imaging has been quite mature so that in 2017, FDA has approved the clinical usage of Compressed Sensing MRI 
[12]. It is indicated that cardiac cine imaging is reduced from 4 minutes to just 16 seconds if CS is applied to 
acquire the required data. In addition to MRI, compressed sensing methods are also intensively studied in medical 
fields such as x-ray, computed tomography, ultrasound imaging, and compression of ECG/EEG signals [10],  
Another application area of CS is the possibility of imaging with single-pixel architecture at different wavelenghts 
such as THz or infrared [13]. Advances in CCD and CMOS technology made it much easier and cheaper to obtain 
high resolution images in digital cameras. However, at wavelengths where silicon cannot be used, cameras are still 
too expensive and/or too large in size. Therefore, there is a need for inexpensive and accessible microscopes that 
can be used for imaging biological samples, for quality control in industry or for research in materials science. In 
order to satisfy this need, single pixel microscope with compressed sensing techniques has drawn attention in 
academia [14]. Besides, CS with different type of microscopes such as electron, fluorescence, photoacoustic and 
laser scanning are also promising since they reduce the measurement time and increase the quality of imaging [15–
17]. In this study, compressed sensing of digital pathology images with different sparsifying transforms is 
considered. Wavelet, Contourlet and Shearlet Transforms are studied as sparsifying bases. Contourlet and Shearlet 
Transforms are multi resolution and multi scale, therefore these transforms are attractive for medical imaging 
applications.  Alternating Direction Method of Multipliers (ADMM) [18] is selected for the reconstruction part. It 
is a robust convex optimization algorithm that breaks the problem into smaller pieces, each of which is easier to 
handle. In the previous work [19], CS based single pixel microscope configuration was studied, Gaussian and 
Bernoulli random matrices were used as measurement matrices, during that study it was observed that, random 
matrices require large storage and cause slow reconstruction. Moreover, total variation and ℓ1 norm minimization 
algorithms which were used for recovery part need the inverse matrix of the sparsifying transform. However, 
obtaining a compact single matrix when multi resolution and multi scale transformation is not possible. Therefore, 
in this study, reconstruction algorithm is changed to ADMM, another outcome of this choice is the possibility of 
studying higher resolution images than the previous work [19]. The performance of compressed sensing of digital 
pathology images is compared with classical peppers image and the quality of reconstruction is evaluated using 
different image similarity indices such as Structural Similarity Index (SSIM) [20], Haar Wavelet-Based Perceptual 
Similarity Index (HaarPSI) [21] and Peak Signal to Noise Ratio (PSNR). CS scheme ensures compression during 
the acquisition of data therefore digital pathology images could be reconstructed using fewer data, besides this 
study can encourage CS based microscopic configurations beyond the visible band or with different type of 
microscopes. 
 
2. Materials and Methods 
 
2.1 Compressed Sensing 

 
Compressed Sensing theory [7], [8] claims that if a signal is sparse or compressible, then the signal can be 

reconstructed using considerably less data than Shannon-Nyquist theorem states [5]. The data acquisition process 
can be modeled as in equation 1: 
 
𝑧 = 	𝑀𝑥                                                                                                                                                                  (1) 
 
where	𝑧 are measurements, 𝑀 is the measurement matrix or masking operator, 𝑥 is the signal that is desired to be 
reconstructed. In CS, the measurement matrix 𝑀 is not full rank, meaning that there will be infinitely many 
solutions corresponding to same 𝑧 due to the null space of 𝑀, so the reconstruction problem is an ill posed problem, 
however, these kind of problems can be solved by convex optimization methods [8], [9] thanks to the sparsity of 
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the signal 𝑥. The problem in Equation 1 is known to have a unique sparse solution if the masking operator 𝑀 
satisfies the Restricted Isometry Property (RIP) [22] which geometrically means that the projection of 𝑀 preserves 
the geometry of the set of sparse signals. Designing a combinatorial RIP matrix is unfortunately NP hard problem; 
however random matrices are known to satisfy RIP with high probability [23]. Although the problem of masking 
operator with RIP can be solved with random matrices, another key assumption for a successful reconstruction is 
that the signal 𝑥 should be sparse. In many real-life applications, the signal 𝑥 is not directly sparse but it becomes 
sparse if a suitable transform is applied. For images, Wavelet Transform (WT) [24] is the most prominent 
sparsifying transform, it is at the heart of JPEG2000 [6] which is widely used compression scheme. On the other 
hand, for cartoon-like images such as digital pathological ones, multilevel and multi scale transforms like shearlets 
and contourlets can represent the edges and curves better that are present in the image [25], [26].  
 
2.2 Wavelet, Contourlet and Shearlet Transforms 
 

Wavelet Transform is generally defined as a technique in which a signal/image is analyzed in the time/spatial 
domain by using shifted or contracted versions of a basis function called the mother wavelet.  By using a set of 
wavelet orthonormal basis functions constructed by Mallat and Daubechies [24], [27], [28] both the frequency and 
time/spatial information can be captured simultaneously. Therefore, following the introduction of wavelets, they 
have been applied to a diverse range of areas from seismic signal analysis to data compression, medical imaging, 
pattern recognition, computer graphics. Although it is used in a wide range of areas, one of the most popular 
applications of WT is in image processing. It specifically sparsifies the images by decomposing it in low and high 
frequencies. The detail parts of the image are represented by high frequencies whereas smooth parts of the images 
are decomposed in the low frequencies. In WT, the mother wavelet 𝜓	is dilated and translated to form a basis for 
image representation. In other words, the high frequency part of image is stored in the wavelet function  𝜓'( and 
the low frequency part is described by the scaling function 𝜑, as in (2) and (3): 
 
𝜑',((𝑥) = 2

'
./ 𝜑(2'𝑥 − 𝑘)                                                                                                                                     (2) 

𝜓',((𝑥) = 2
'
./ 𝜓(2'𝑥 − 𝑘)		                                                                                                                                   (3) 

 
Scaling functions are orthogonal to wavelet functions (〈𝜑',((𝑥), 𝜓',((𝑥)〉 = 0 for 𝑘 ≠ 𝑙). N-point Discrete Wavelet 
Transform of a function 𝑓(𝑥) can be written as in the equations (4) to (6) [29]: 

 
	𝑓(𝑥) = 8

√:
;∑ 𝑇>(𝑗@, 𝑘)𝜑'A,((𝑥) + ∑ ∑ 𝑇C(𝑗, 𝑘)𝜓',((𝑥).DE8

(F@
GE8
'F@

.DE8
(F@ H                                                                   (4) 

𝑇>(𝑗@, 𝑘) = 〈𝑓(𝑥), 𝜑(𝑥)〉 = 8
√:
∑ 𝑓(𝑥)𝜑(𝑥)I:E8
@                                                                                                    (5) 

𝑇C(𝑗, 𝑘) = 〈𝑓(𝑥), 𝜓',((𝑥)〉 =
8
√:
∑ 𝑓(𝑥)𝜓J,((𝑥)I:E8
@                                                                                              (6) 

 
The functions 𝑇>(𝑗@, 𝑘) are called scaling or approximation/low frequency coefficients and 𝑇C(𝑗, 𝑘) are called 
wavelet or detail/high frequency coefficients, 𝜑(𝑥)I  and 𝜓',((𝑥) are the duals of 𝜑(𝑥) and 𝜓(𝑥). The Wavelet 
Transform is a powerful and right tool for approximating and analyzing one-dimensional piecewise smooth 
signals. Thanks to the separable extension from 1-D bases, it can isolate the discontinuities at edge points for 
images. However, its performance degrades for contours or curvilinear singularities, therefore directional 
representational transforms such as contourlets and shearlets are introduced [25], [26]. Contourlet Transform uses 
non-separable filterbank approach in order to capture and represent the directional information present in the 
images. There are mainly two parts to obtain the Contourlet Transform representation of an image. In the first part, 
the image is decomposed into sub-bands by using Laplacian Pyramid and point discontinuities in the sub-band 
decomposition stage are captured. In the second part, the details of the image are analyzed by directional filter 
banks [25]. Shearlet Transform detects image saline features such as directional singularities and geometrical 
features by defining the direction using shearing matrices. This transform forms an affine system by generating 
one single function which is dilated by a parabolic scaling and a shear matrix and translated in the time domain 
[26]. The multiscale of shearlets are obtained using 𝐴L the parabolic scaling matrix and 𝑆N the shear matrix for 
𝑎 > 0 and 𝑠 ∈ ℝ [26] and the resulting shearlet system is given by (7) and (8) : 
 

𝐴L = T𝑎 0
0 √𝑎

U 𝑆N = V1 −𝑠
0 1 X                                                                                                                               (7) 
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Y𝜓'(Z(𝑥) = 2E'
[
\𝜓]𝑆E(𝐴^E'𝑥 −𝑚`: 𝑗, 𝑘 ∈ ℤ,𝑚 ∈ ℤ.c                                                                                        (8) 

 
where 𝜓 is a shearlet, 𝑗, 𝑘	and 𝑚 denote the scale, shear and translation parameters, respectively. In this study, to 
see the practical perspective of these three sparsifying transforms, a synthetic image of letters O, G, R and S which 
have contours or curvilinear properties have been considered. The transform coefficients have been computed and 
depicted in Figure 1.  

 
Wavelet Coefficients Contourlet Coefficients 

  
Shearlet Coefficients 

 
Figure 1. Wavelet, Contourlet and Shearlet Coefficients illustrations for letters O, G, R and S. 

 
2.2 Alternating Direction Method of Multipliers (ADMM) 
 

ADMM is a powerful convex optimization algorithm that combines the advantages of augmented Lagrangian 
and dual decomposition [18], [30]. ADMM is closely related to the Bregman iterative algorithms for ℓ1 problems, 
proximal methods and Douglas–Rachford splitting algorithms in the literature. The algorithm is basically formed 
on a decomposition-coordination procedure with a goal to find a solution to a large scale problem by solving small 
local subproblems [18]. ADMM solves the following constrained optimization problem: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓8(𝑥) + 𝑓.(𝑥)	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝐴𝑥 + 𝐵𝑦 = 𝑐                                                                                               (9) 
 
where 𝑥 ∈ ℝn , 𝑦 ∈ ℝZ, 𝐴 ∈ ℝo×n,  𝑐 ∈ ℝo, 𝑓8, 𝑓. are convex functions. As it is seen, the main difference of (9) 
from the general linear equality-constrained problem is that the variables have been split into two parts. 
The problem in (9) takes the form in (10) for compressed sensing or lasso or our image reconstruction problem: 
 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝜏‖𝑧 −𝑀𝑥‖.. + ‖𝑦‖8	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝑦 = 𝛷𝑥                                                                                            (10) 
 
where 𝑧 are measurements, 𝑀 is masking operator and 𝛷 is the sparsifying operator which is Wavelet, Contourlet 
or Shearlet Transform in our study. There are three main steps in ADMM: 𝑥-minimization step, 𝑦-minimization 
step and dual variable update. As the name of ADMM implies, the variables 𝑥 and 𝑦 are updated in an alternating  
manner [18]. The steps of ADMM of the convex minimization problem in (10) can be expressed as in the equations 
(11) to (13): 
 
𝑥-minimization step: 
 
𝑥(t8 = 𝑎𝑟𝑔𝑚𝑖𝑛w	𝜏‖𝑧 −𝑀𝑥‖.. +

x
.
‖𝑦( − 𝛷𝑥 + 𝑢(‖..                                                                                        (11) 

 
𝑦-minimization step: 
 
𝑦(t8 = 𝑎𝑟𝑔𝑚𝑖𝑛y	‖𝑦‖8 +

x
.
‖𝑦 − 𝛷𝑥(t8 + 𝑢(‖..                                                                                                  (12)  

 
dual variable update step: 
 
𝑢(t8 = 𝑢( + 𝑦(t8 − 𝛷𝑥(t8                                                                                                                                 (13)                              
 
 
where 𝑢 is the dual variable and the penalty parameter 𝜌 > 0. 
 
3. Results 
 
By using CS scheme, we have reconstructed peppers and Breast Cancer digital pathology image taken from TCGA 
[31] under different sparsifying transforms with MATLAB. As it is stated, Wavelet, Contourlet and Shearlet 
Transforms are used as sparsifying bases and the compression ratio is 8, in other words, 12.5	%	 of the pixels in 
the ground truth is used for reconstruction.  The original and reconstructed images for 512	 × 	512 peppers and 
digital pathology image are given in Figure 2 and Figure 3 respectively.  
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Figure 2. Peppers Image Reconstruction 512	 × 	512. 
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Figure 3. Digital Pathology Image Reconstruction 512	 × 	512. 

 
The quality of the reconstructed images are evaluated using reference based Image Quality Assessment (IQA) 
methods, namely SSIM [20] , HaarPSI [21] and PSNR. SSIM basically compares local patterns of pixel intensities 
that have been normalized for luminance and contrast [20]. On the other hand, HaarPSI makes decomposition with 
Haar wavelet to assess local similarities between two images and the obtained coefficients are utilized to make 
image comparison [21]. The calculated SSIM, HaarPSI and PSNR metrics for the reconstructed images are given 
Table 1. In order to investigate the performance of CS in digital pathology images profoundly, 10 different 
512	 × 	512  images are extracted from different Breast Cancer whole slide images. After the reconstruction 
process, SSIM and HaarPSI metrics are calculated for each image, they are given Figure 4 and Figure 5 
respectively. 
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Table 1. SSIM and HaarPSI metrics for Peppers and Digital Pathology Image. 
 

Transform 
Type Peppers Digital Pathology Image 

 SSIM HaarPSI PSNR SSIM HaarPSI PSNR 

Wavelet 0.659 0.516 70.27 0.551 0.526 70.71 

Contourlet 0.688 0.599 72.47 0.628 0.605 72.63 

Shearlet 0.588 0.503 63.51 0.518 0.527 63.00 

 

 
Figure 4. SSIM metrics for 10 different digital pathology images. 

 
Figure 5. HaarPSI metrics for 10 different digital pathology images. 
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4. Discussion 
 

In this research, compressed sensing with different sparsifying bases is considered specifically for digital 
pathology image. Figure 2 and Figure 3 show that the reconstruction is successful even when a few percent of the 
data (12.5	%	 for this particular case) is used. The quality measures changes for SSIM, HaarPSI and PSNR, 
however, if Table 1 is considered, it is seen that the performance of Contourlet Transform is better than Wavelet 
and Shearlet Transforms in every metrics. This observation aligns with the findings presented in Figure 1, which 
displays the transforms of synthetic image letters O, G, R, and S. These letters, characterized by their smooth 
curves and contours, serve as an effective analogy for the patterns and cellular structures typically observed in 
digital pathology images. In this context, the Contourlet Transform demonstrates a distinct advantage. Not only 
does it yield a sparse representation, but it also more accurately captures the edges, curves, and contours of these 
letters compared to both the Wavelet and Shearlet Transforms. This is clearly illustrated in Figure 1. The 
Contourlet Transform is particularly effective at showing smooth contours and continuous edges in images. It 
smoothly handles different levels of detail, allowing for a clearer and more accurate depiction of complex patterns. 
This feature is especially useful in digital pathology, where images often contain detailed and complicated 
structures.  

During the study, it is observed that the fastest computation of coefficients is for the wavelet case. However, 
Contourlet Transform is faster to compute than Shearlet Transform, even though both transforms are considered 
as multilevel and multi resolution, the filter bank approach in Contourlet Transform is advantageous for the speed 
of computation. Besides, the reconstructions of digital pathology image are satisfactory compared to the 
reconstructions of classical peppers image when SSIM, HaarPSI and PSNR metrics are taken as a reference. While 
Table 1 shows that our reconstructions exhibit high quality based on PSNR values exceeding 40 dB, this metric 
does not accurately reflect the true quality of our images. This discrepancy arises because PSNR is traditionally 
geared towards grayscale images and may not correlate well with human visual perception, particularly in the 
context of color nuances and high dynamic range images. Figures 4 and 5 demonstrate the effectiveness of the 
Contourlet Transform, showcasing its application in 10 varied digital pathology images. In these figures, we have 
primarily focused on the results obtained from SSIM and HaarPSI measurements, which offer a more accurate and 
perceptually relevant assessment of image quality compared to PSNR.  However, Wavelet and Shearlet Transforms 
result in similar quality in reconstruction specifically when the HaarPSI metric is taken into account. Digital 
pathology slide images can be more challenging than classical images, on the other hand, the results show that CS 
is very promising for digital pathology which is a growing medical industry. CS can be advantageous for imaging 
at different wavelengths; therefore, this study can initiate CS based imaging of digital pathology samples beyond 
the visible band. 
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