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Abstract

This is one of a series of papers that aims to give an explicit upper bound on the proportion
of elements of order a product of two primes in finite symmetric groups. This one presents
such a bound for the elements with order twice a prime.
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1. Introduction

The famous Cayley theorem reveals a basic fact that a finite group G of order n is
isomorphic to a subgroup of the finite symmetric group Sn. This means that G can be
given as a group generated by a set M of permutations in Sn, that is, G = ⟨M⟩. To
construct a generating set of G, we need to seek special kinds of elements in Sn, which
are usually sought randomly. Further, to understand the complexity of such searches, we
need estimates for the proportions of various kinds of elements, such as those with order
p or 2p in Sn for a prime p.

The proportion of elements of a given prime order p in the finite symmetric group Sn

has been extensively studied. For example, in [3], Jacabsthal gave recursive formulas and
an asymptotic expansion on this proportion for the first time. Chowla, Herstein and Scott
[1] and Moser and Wyman [4] extended Jacabsthal’s result in 1952 and 1955, respectively.
In 2022, Praeger and Suleiman [7] gave an explicit upper bound on the proportion of
permutations of a given prime order p in Sn. More results can be found in [2, 5, 6].

In fact, a product of disjoint 2-cycles and p-cycles is a permutation of order 2p. But we
note that a permutation of order 2p may be obtained by other cycles, such as 2p-cycles,
a product of disjoint 2p-cycles and p-cycles or 2-cycles, and so on. Naturally, we need to
estimate the proportion of all elements of order 2p. In this paper, we present an upper
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bound for the elements that have order twice a prime in finite symmetric groups. Our
main result is as follows.

Theorem 1.1. Let n be a positive integer and p an odd prime, and write n = a · 2p + k
where 0 ≤ k ≤ 2p − 1 and a ≥ 0. Let ρn(2p) be the proportion of elements of order 2p in
the symmetric group Sn. Then one of the following holds:

(1) n < p + 2, ρn(2p) = 0;
(2) p + 2 ≤ n < 2p − 1, ρn(2p) ≤ 1

2p , with equality if and only if n = p + 2 or p + 3;
(3) 2p ≤ n ≤ 2p + 1, ρn(2p) < 1

p ;
(4) 2p + 2 ≤ n ≤ 3p − 1, ρn(2p) < 3k!+2

4p·k! , where 2 ≤ k ≤ p − 1;
(5) 3p ≤ n ≤ 3p + 1, ρn(2p) < (3p+2)k!+2p

4p2·k! , where p ≤ k ≤ p + 1;
(6) n ≥ 3p + 2, ρn(2p) < (3p+1)k!+2p+2

4p2·k! , where 0 ≤ k ≤ p − 1; or
(7) n ≥ 3p + 2, ρn(2p) < [(3p+1)k!+2p](k−p)!+2k!

4p2·k!(k−p)! , where p ≤ k ≤ 2p − 1.

Remark 1.1. The upper bound in (1) and (2) is sharp, but that in (3) to (7) is not.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Let n be a positive integer, and let [n] =
{1, 2, · · · , n} and Sn be the symmetric group on [n]. First we record a basic fact.

Lemma 2.1. For each positive integer m, there are exactly (m − 1)! pairwise distinct
m-cycles in Sm.

Proof. Each m-cycle in Sm has a unique expression of the form (α1, α2, · · · , αm) where
αi ∈ [m] = {1, 2, · · · , m} for 1 ≤ i ≤ m and αj = 1 for some j ∈ [m]. To count the number
of possibilities for the m-cycles, there are exactly m − 1 choices for α1 ∈ [m]\{1}, and
exactly m − 2 choices for α2 from [m]\{1, α1} when α1 is gven, and so on. This implies
that there are exactly (m − 1)! m-cycles in Sm.

Since a permutation can be written as a product of disjoint cycles, the element g of
order 2p in Sn can be written out explicitly in one of the following forms:

(I) (2) . . . (2)︸ ︷︷ ︸
s1

· (p) . . . (p)︸ ︷︷ ︸
t2

;

(II) (2p) . . . (2p)︸ ︷︷ ︸
s2

;

(III) (2) . . . (2)︸ ︷︷ ︸
s3

· (2p) . . . (2p)︸ ︷︷ ︸
t3

;

(IV) (p) . . . (p)︸ ︷︷ ︸
s4

· (2p) . . . (2p)︸ ︷︷ ︸
t4

; or

(V) (2) . . . (2)︸ ︷︷ ︸
s5

· (p) . . . (p)︸ ︷︷ ︸
t5

· (2p) . . . (2p)︸ ︷︷ ︸
m

,

where si ≥ 1, tj ≥ 1 for 1 ≤ i ≤ 5, 2 ≤ j ≤ 5 and m ≥ 1.
Second, we find an upper bound on the proportion of elements in each form above. Let

Pn(2p) and P∗
n(2p) denote the subset consisting of all elements of order 2p, and the set

of elements with form (*) in Sn, respectively, where * is one of I, II,. . . , V above. The
corresponding proportions are ρn(2p) = |Pn(2p)|

n! and ρ∗
n(2p) = |P∗

n(2p)|
n! , respectively. In

order to prove Theorem 1.1, we need the following recursion for ρ∗
n(2p).
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Proposition 2.1. Let p be an odd prime and n a positive integer. Then the proportion
ρ∗

n(2p) of elements with form (*) as above in Sn satisfies the following relations:

(1) if ∗ = I and n ≥ p + 3, then

nρI
n(2p) = ρI

n−1(2p) + ρn−2(p) + ρI
n−2(2p) + ρn−p(2) + ρI

n−p(2p);

(2) if ∗ = II and n ≥ 2p + 1, then

nρII
n (2p) = ρII

n−1(2p) + ρII
n−2p(2p) + 1

(n − 2p)!
;

(3) if ∗ = III and n ≥ 2p + 3, then

nρIII
n (2p) = ρIII

n−1(2p) + ρII
n−2(2p) + ρIII

n−2(2p) + ρn−2p(2) + ρIII
n−2p(2p);

(4) if ∗ = IV and n ≥ 3p + 1, then

nρIV
n (2p) = ρIV

n−1(2p) + ρII
n−p(2p) + ρIV

n−p(2p) + ρn−2p(p) + ρIV
n−2p(2p);

(5) if ∗ = V and n ≥ 3p + 3, then

nρV
n (2p) = ρV

n−1(2p) + ρIV
n−2(2p) + ρV

n−2(2p) + ρIII
n−p(2p) + ρV

n−p(2p) + ρI
n−2p(2p) + ρV

n−2p(2p).

Proof. (1) We partition PI
n(2p) as 1P

I
n(2p) ∪ 2P

I
n(2p), where 1P

I
n(2p) and 2P

I
n(2p) consist

of all elements g ∈ PI
n(2p) such that 1g = 1 and 1g ̸= 1, respectively. We observe that

1P
I
n(2p) is precisely the set of elements having form (I) in S∆ ∼= Sn−1 where ∆ = [n]\{1},

and hence |1PI
n(2p)| = (n − 1)!ρI

n−1(2p).

It suffices to calculate 2P
I
n(2p). Since 1g ̸= 1, 1 lies in a cycle h of g of length 2 or p for

each such element g.
Case 1: h is a 2-cycle.
The number of such cycles is equal to the number

(n−1
1

)
of subsets ∆′ of 1-element

subsets of ∆\{1}. Then, for each of g ∈ 2P
I
n(2p), g = hg

′ where g
′ ∈ S[n]\{∆′ ,1}

∼= Sn−2.
The number of such elements g

′ is equal to the number |PI
n−2(2p)| = (n − 2)!ρI

n−2(2p) of
elements with the form (I) in Sn−2, together with the number |Pn−2(p)| = (n − 2)!ρn−2(p)
of elements of order p in Sn−2. Thus

|2PI
n(2p)| =

(n−1
1

)
((n − 2)!ρI

n−2(2p) + (n − 2)!ρn−2(p))
= (n − 1)!(ρI

n−2(2p) + ρn−2(p)).

Case 2: h is a p-cycle.
The number of such cycles is equal to the number

(n−1
p−1

)
of subsets ∆′ of (p−1)-element

subsets of ∆\{1}, times the number (p − 1)! of p-cycles in Sn by Lemma 2.1. Then, for
each of g ∈ 2P

I
n(2p), g = hg

′ where g
′ ∈ S[n]\{∆′ ,1}

∼= Sn−p. The number of such elements
g

′ is equal to the number |PI
n−p(2p)| = (n − p)!ρI

n−p(2p) of elements with the form (I)
in Sn−p, together with the number |Pn−p(2)| = (n − p)!ρn−p(2) of elements of order 2 in
Sn−p. Thus

|2PI
n(2p)| =

(n−1
p−1

)
(p − 1)!((n − p)!ρI

n−p(2p) + (n − p)!ρn−p(2))

= (n − 1)!(ρI
n−p(2p) + ρn−p(2)).

It follows that

n!ρI
n(2p) = (n − 1)!ρI

n−1(2p) + (n − 1)!(ρI
n−2(2p) + ρn−2(p) + ρI

n−p(2p) + ρn−p(2))
= (n − 1)!(ρI

n−1(2p) + ρI
n−2(2p) + ρn−2(p) + ρI

n−p(2p) + ρn−p(2))
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and so nρI
n(2p) = ρI

n−1(2p) + ρI
n−2(2p) + ρn−2(p) + ρI

n−p(2p) + ρn−p(2). This completes
the proof of (1).

By the same technique as in (1), we can obtain the conclusions of (2)-(5).

We now use Proposition 2.1 to give an upper bound on ρ∗
n(2p) by induction on n, where

∗ ∈ {I, II, . . . , V }.

Proposition 2.2. Let p be an odd prime and n a positive integer. Then

(1) ρI
n(2p) ≤ 1

2p with equality if and only if n = p + 2 or p + 3;
(2) ρII

n (2p) ≤ 1
2p·k! with equality if and only if 2p ≤ n ≤ 4p−1, where n = a ·2p+k

with a ≥ 0 and 0 ≤ k ≤ 2p − 1;
(3) ρIII

n (2p) ≤ 1
4p with equality if and only if n = 2p + 2 or 2p + 3;

(4) ρIV
n (2p) ≤ 1

2p2·k! with equality if and only if 3p ≤ n < 4p−1, where n = a ·p+k

with a ≥ 0 and 0 ≤ k ≤ p − 1;
(5) ρV

n (2p) ≤ 1
4p2 with equality if and only if n = 3p + 2 or 3p + 3.

Proof. (1) If n < p + 2 then PI
n(2p) is empty and so ρI

n(2p) = 0. If n = p + 2 then
|PI

n(2p)| = n!
2p and so ρI

n(2p) = 1
2p . We now assume that n ≥ p + 3 and assume inductively

that the result holds for all positive integers strictly less than n.
Let n = ap+k where a ≥ 0 and 0 ≤ k ≤ p−1. Then n−2 = a ·p+k−2 if 2 ≤ k ≤ p−1,

and n − 2 = (a − 1) · p + p + k − 2 if k = 0 or 1.
Case 1: a = 1 and 3 ≤ k ≤ p − 1.
If k = 3, then by induction we have ρI

n−1(2p) = 1
2p , ρI

n−2(2p) = 0 and ρI
n−p(2p) = 0, and

we note that ρn−2(p) = 1
p and ρn−p(2) = 1

2 by [7, Theorem 1]. Thus by Proposition 2.1
(1),

ρI
n(2p) = 1

n
(ρI

n−1(2p) + ρI
n−2(2p) + ρn−2(p) + ρI

n−p(2p) + ρn−p(2))

= 1
n

( 1
2p

+ 0 + 1
p

+ 0 + 1
2

) = 1
2p

.

Similarly, if 4 ≤ k ≤ p−1, then by induction we observe that ρI
n−1(2p) ≤ 1

2p , ρI
n−2(2p) ≤

1
2p and ρI

n−p(2p) = 0, and we see that ρn−2(p) ≤ 1
p·(k−2)! and ρn−p(2) ≤ 1

2 by [7, Theorem
1]. So by Proposition 2.1 (1),

ρI
n(2p) ≤ 1

n
( 1
2p

+ 1
2p

+ 1
p · (k − 2)!

+ 0 + 1
2

)

= 1
2p

·
1 + 1 + 2

(k−2)! + p

n

≤ 1
2p

· 1 + 1 + 1 + p

n
<

1
2p

.

Case 2: a ≥ 2 and 0 ≤ k ≤ p − 1.
Subcase 2.1: k = 0.
If a = 2 and p = 3, then by induction we have ρI

n−1(2p) = 1
2p , ρI

n−2(2p) = 0 and
ρI

n−p(2p) = 0, and we note that ρn−2(p) = 1
p and ρn−p(2) = 1

2 by [7, Theorem 1]. Hence
by Proposition 2.1 (1),

ρI
n(2p) = 1

n
( 1
2p

+ 0 + 1
p

+ 0 + 1
2

) = 1
2p

.
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If a = 2 and p ≥ 5, then by induction we observe that ρI
n−1(2p) ≤ 1

2p , ρI
n−2(2p) ≤ 1

2p

and ρI
n−p(2p) = 0, and we see that ρn−2(p) = 1

p·(p−2)! and ρn−p(2) < 1
2 by [7, Theorem 1].

Therefore by Proposition 2.1 (1),

ρI
n(2p) <

1
n

( 1
2p

+ 1
2p

+ 1
p · (p − 2)!

+ 0 + 1
2

)

= 1
2p

·
p + 2 + 2

(p−2)!
n

<
1
2p

.

Similarly, if a ≥ 3, then by induction we have ρI
n−1(2p) ≤ 1

2p , ρI
n−2(2p) ≤ 1

2p and
ρI

n−p(2p) ≤ 1
2p , and we note that ρn−2(p) < 1

p·(p−2)! and ρn−p(2) < 1
2 by [7, Theorem 1].

Thus by Proposition 2.1 (1),

ρI
n(2p) <

1
n

( 1
2p

+ 1
2p

+ 1
p · (p − 2)!

+ 1
2p

+ 1
2

)

= 1
2p

·
p + 3 + 2

(p−2)!
n

<
1
2p

.

Subcase 2.2: k = 1.
If a = 2, then by induction we observe that ρI

n−1(2p) ≤ 1
2p , ρI

n−2(2p) ≤ 1
2p and

ρI
n−p(2p) = 0, and we see that ρn−2(p) = 1

p·(p−1)! and ρn−p(2) < 1
2 by [7, Theorem 1].

Therefore by Proposition 2.1 (1),

ρI
n(2p) <

1
n

( 1
2p

+ 1
2p

+ 1
p · (p − 1)!

+ 0 + 1
2

)

= 1
2p

·
p + 2 + 2

(p−1)!
n

<
1
2p

.

Similarly, if a ≥ 3, then by induction we have ρI
n−1(2p) ≤ 1

2p , ρI
n−2(2p) ≤ 1

2p and
ρI

n−p(2p) ≤ 1
2p , and we note that ρn−2(p) < 1

p·(p−1)! and ρn−p(2) < 1
2 by [7, Theorem 1].

So by Proposition 2.1 (1),

ρI
n(2p) <

1
n

( 1
2p

+ 1
2p

+ 1
p · (p − 1)!

+ 1
2p

+ 1
2

)

= 1
2p

·
p + 3 + 2

(p−1)!
n

<
1
2p

.

Subcase 2.3: k ≥ 2.
In this subcase, we have ρI

n−1(2p) ≤ 1
2p , ρI

n−2(2p) ≤ 1
2p and ρI

n−p(2p) ≤ 1
2p by induc-

tion, and we see that ρn−2(p) < 1
p·(k−2)! and ρn−p(2) < 1

2 by [7, Theorem 1]. Hence by
Proposition 2.1 (1),

ρI
n(2p) <

1
n

( 1
2p

+ 1
2p

+ 1
p · (k − 2)!

+ 1
2p

+ 1
2

)

= 1
2p

·
p + 3 + 2

(k−2)!
n

≤ 1
2p

.

So we have completed the proof of (1) by induction.
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(2) If n < 2p then ρII
n (2p) = 0. If n = 2p then ρII

n (2p) = 1
2p . We now assume that

n ≥ 2p + 1 and assume inductively that the result holds for all positive integers strictly
less than n.

Note that n − 2p = (a − 1) · 2p + k, n − 1 = a · 2p + k − 1 if 1 ≤ k ≤ 2p − 1, and
n − 1 = (a − 1) · 2p + 2p − 1 if k = 0.

Case 1: a = 1.
By induction, we have ρII

n−1(2p) = 1
2p·(k−1)! and ρII

n−2p(2p) = 0. Then by Proposition 2.1
(2),

ρII
n (2p) = 1

n
( 1
2p · (k − 1)!

+ 0 + 1
k!

)

= 2p + k

2p · n · k!
= 1

2p · k!
.

Case 2: a ≥ 2.
If k = 0, then by induction we observe that ρII

n−1(2p) ≤ 1
2p·(2p−1)! and ρII

n−2p(2p) ≤ 1
2p .

So by Proposition 2.1 (2),

ρII
n (2p) ≤ 1

n
( 1
2p · (2p − 1)!

+ 1
2p

+ 1
(n − 2p)!

)

= 1
2np

( 1
(2p − 1)!

+ 1 + 2p

(n − 2p)!
) <

3
2np

<
1
2p

.

Similarly, if k ≥ 1, then by induction we have ρII
n−1(2p) ≤ 1

2p·(k−1)! and ρII
n−2p(2p) ≤ 1

2p·k! .
Thus by Proposition 2.1 (2),

ρII
n (2p) ≤ 1

n
( 1
2p · (k − 1)!

+ 1
2p · k!

+ 1
(n − 2p)!

)

= 1
2np · k!

(k + 1 + 2p · k!
(n − 2p)!

) <
k + 2

2np · k!
<

1
2p · k!

,

and this completes the proof of (2) by induction.
For (3)-(5), the proofs are analogous to the proofs of (1) and (2).

We now use Proposition 2.2 to prove Theorem 1.1.
Proof of Theorem 1.1: Let n be a positive integer and p an odd prime, and write

n = a · 2p + k where 0 ≤ k ≤ 2p − 1 and a ≥ 0.
If n < p + 2, then Pn(2p) is empty, and so ρn(2p) = 0.
If p + 2 ≤ n ≤ 2p − 1, then Pn(2p) = PI

n(2p), and thus ρn(2p) = ρI
n(2p) ≤ 1

2p with
equality if and only if n = p + 2 or p + 3 by Proposition 2.2 (1).

If 2p ≤ n ≤ 2p+1, then Pn(2p) = PI
n(2p)+PII

n (2p), and thus ρn(2p) = ρI
n(2p)+ρII

n (2p) <
1
2p + 1

2p = 1
p by Proposition 2.2 (1) and (2).

If 2p + 2 ≤ n ≤ 3p − 1, then Pn(2p) = PI
n(2p) + PII

n (2p) + PIII
n (2p), and thus ρn(2p) <

1
2p + 1

2p·k! + 1
4p = 3k!+2

4p·k! by Proposition 2.2 (1) to (3), where 2 ≤ k ≤ p − 1.

If 3p ≤ n ≤ 3p + 1, then Pn(2p) = PI
n(2p) + PII

n (2p) + PIII
n (2p) + PIV

n (2p), and thus
ρn(2p) < 1

2p+ 1
2p·k!+

1
4p+ 1

2p2 = (3p+2)k!+2p
4p2·k! by Proposition 2.2 (1) to (4), where p ≤ k ≤ p+1.
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If n ≥ 3p + 2, then Pn(2p) = PI
n(2p) +PII

n (2p) +PIII
n (2p) +PIV

n (2p) +PV
n (2p), and thus

ρn(2p) < 1
2p + 1

2p·k! + 1
4p + 1

2p2·k! + 1
4p2 = (3p+1)k!+2p+2

4p2·k! by Proposition 2.2 (1) to (5), where
0 ≤ k ≤ p − 1.

If n ≥ 3p + 2, then Pn(2p) = PI
n(2p) +PII

n (2p) +PIII
n (2p) +PIV

n (2p) +PV
n (2p), and thus

ρn(2p) < 1
2p + 1

2p·k! + 1
4p + 1

2p2·(k−p)! + 1
4p2 = [(3p+1)k!+2p](k−p)!+2k!

4p2·k!(k−p)! by Proposition 2.2 (1)
to (5), where p ≤ k ≤ 2p − 1.

From the results in Theorem 1.1 on the proportion of elements of order twice a prime
in finite symmetric groups, we can observe an interesting phenomenon: the upper bound
of the proportion is controlled by a function f defined on [2p − 1] = {0, 1, 2, · · · , 2p − 1}.
This motivates the following natural problem:

Problem 1. Find an upper bound on the proportion ρn(pq) of elements of order pq in
Sn, where p and q are distinct odd primes.

We will work on Problem 1 in a later paper in this series papers.
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