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ABSTRACT

In this study, we examined some fixed point theorems in non-full metric spaces. We define the notions of a-lower
semi-continuous , w-a-distance, wy-a— distance, w-a-rational contraction and generalized w-a-rational contraction
mapping. We also give related theorem and example. Then, we prove Banach’s fixed-point theorem thanks to the
concept w-a- distance in metric spaces equipped with an abritrary binary relation. Also, w-a- rational contraction
mapping and generalized w-a-rational contraction mapping are defined and by using these definitions, the theorem
related fixed point is expressed and proved.

Anahtar Kelimeler: Binary Relation, Fixed Point, a-Complete Metric Space, w-Distance.
w-a-Uzakhk Icin Ortak Sabit Nokta Sonuclar

0z

Bu calismada tam metrik olmayan uzaylarda bazi sabit nokta teoremleri incelenmistir. a-alttan yari-surekli, w-a-
uzaklik, wy-a— uzaklik, w-a-rasyonel biiziilme ve genellestirilmis w-a-rasyonel biiziilme doniisimi kavramlari
tanimlanmustir. Tlgili teorem ve drnegi de verilmistir. Daha sonra w-a- uzaklhik kavramini kullanarak keyfi bir ikili

baginti ile verilen metrik uzaylarda Banach sabit nokta teoremi ispatlanmistir. Ayrica w-a- rasyonel blzilme
dontisiimii ve genellestirilmis w-a- rasyonel biiziilme doniisimii tanimlari yapilmig ve bu tanimlar kullanilarak sabit

nokta ile ilgili teorem ifade ve ispat edilmistir.

Anahtar Kelimeler: ikili Bagint1, Sabit Nokta, a-Gegisli Déniisiimii, a-Tam Metrik Uzay, w-Uzaklik.

INTRODUCTION

Kada et al [1] presented the idea of w-distance within a
metric space. Considering (X,d) as a metric space, a
function w: X X X — [0,0) earns the designation of a
w-distance on X when it meets these specified conditions
foreach x,y,z € X,

Wl) w(x,z) < w(x,y) + w(y, 2);

(W2) a function w(x,.):X — [0,0) exhibits lower
semicontinuous;

(w3) for any &> 0, there exists § >0 such that
w(z,x) < dand w(z,y) < 6§ imply d(x,y) < e[1].
Later on, they have achieved significant results using this
definition in fixed point theory. In 2012, Samet et al [2]
defined a-admissible mapping. On the other hand they
have expressed and proved the theorems related to fixed
point in complete metric spaces.

Hussain et al [3] have obtained fixed point results for
rational contraction mapping in a-n-complete metric
space. Kutbi and Sintunavarat [4] defined generalized
w,-multivalued contraction mapping and then they have
proven fixed point theorems using this mapping in « -
complete metric spaces. Many studies have been carried
out on fixed points [5, 6, 7, 8].

Definition 1. Consider (X, d) as a metric space, and let
T:X — CIL(X) represent a multivalued mapping. A
point x € X is termed a fixed point of T if x € Tx, and
the collection of fixed points of T is symbolized as F(T)

[9].

Definition 2. Consider (X, d) as a metric space, and let
T:X = CL(X) represents a multivalued mapping. T is
termed a contraction if there exists a constant A € (0,1)
such that, for every x and y in X, H(Tx,Ty) < Ad(x,y)

[9].

Definition 3. Suppose (X, d) represents a metric space,
and a: X XX = [0,00) is a specified mapping. The
multivalued mapping T: X - CI(X) is termed a w,-
contraction if there exists a w,-distance w:X X X —
[0,00) on X and avalue A € (0,1). This condition ensures
that for any x,y € X and u € Tx, there exists v € Ty
such that
atu,V)w(,v) < w(x,y) [4].

Definition 4. In the context of (X, d) being a metric space
and a:X xX —[0,00) a specified mapping, the
multivalued mapping T: X — CL(X) is referred to as a
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generalized w,-contraction if there exists a w,-distance
won X and avalue A € (0,1). This condition ensures that
for any x,y € X and u € Tx, there exists v € Ty such
that

a(u,V)o(u,v) < imax{w(x,y), o(x,Tx), w(y, Ty),

Sl Ty) + oy, TX)] [4]
MAIN RESULTS

Definition 5. Let (X,d) be a metric space and
a:X XX - [0,0). A function f: X - RU {—o0, 0} is
said to be a-lower semi-continuous at point x if for all
sequence (x,) which converges to x€X and
a(xy, xp41) = 1 forall n € N, we have

lim inf fCe,) 2 £

Definition 6. Let (X,d) be a metric space and
a:X XX - [0,0). A function w:X XX — [0,0) is
said to be a w-a-distance on X if

() wlx,z) <w(xy) +wlyz)foranyx,y,z € X,

(if) Forany x € X, w(x,.): X = [0, o) is a-lower semi-
continuous,

(iii) For any &> 0, there exists § >0 such that
w(z,x)<dand w(z,y) < §implyd(x,y) < .

Definition 7. Let (X,d) be a metric space. The w-a-
distance w: X X X — [0,) on X is said to be a wy-a—
distance if w(x,x) = 0 forall x € X.

Example 8. Let X =[0,00). Define T:X - X and
a: X x X - [0,0) by

1
a(x,y) = {1’ Xy € [0’5)
0, otherwise,

3 1
=, xE[O,—)
2 2
4 1
Tx =< -, X ==
5 2
1
X, x>-=

Clearly, T is neither a- continuous nor lower semi-
continuous. However, it is a-lower semi-continuous.
In fact, let (x,,) be a sequence that not fixed convergent

at pointx = % If x, —>§ ,then Tx,, = zforall n € N. If

1t .
Xp =3 ,thenTx, = x,, foralln € Nand so lim Tx, =

n—-oo
%. Therefore, itis not lim inf Tx, = T%. Hence, T is not
n—-oo
lower semi-continuous at point x = % Now, let (x,) be a
sequence not fixed such that a(x,,x,,;) =1 and
convergent at point x = % Then Tx,, = z where (x,) €

[0%) However, T is not a-continuous at point % due to
T

Xp = % * T% = % Also, T is a-lower semi-continuous
at point x = : Thus, 3 = lim inf Tx, = Ti=1%
2 2 n—-oo 2 5

Lemma 9. Consider (X,d) as a metric space, where

a:X XX - [0,0) and w:X XX — [0,00) are w-a-

distances on X. Suppose (x,) and (y,,) are sequences in

X such that a(xp,x,p1) =1 and (W, Yne) =1,
respectively, with x,y,z € X. Let (u,) and (v,) be
sequences of positive real numbers approaching 0. Under
these conditions, the following statements hold true:

(i) If w(xpy) < u, and w(x,, z) < v, for all n € N,
then y = z. Moreover, if w(x,y) =0 and w(x,z) =0,
theny = z.

(i) If w(xp, y) < u, and w(xy,, z) < v, foralln € N,
then y,, — z.

(i) If w(xy, xp) < u, for all n,m € N such that m >
n, then (x,) be a Cauchy sequence such that
a(xy, Xpeq) = 1in X.

(iv) If w(x,,y) < u, for all n €N, then (x,) be a
Cauchy sequence such that a(x,,, x,+1) = 1in X.

Definition 10. Let (X,d) be a metric space and
a:XxX —-[0,0) and T:X — CI(X) be given two
mappings. T is said to be generalized multivalued w-a-
rational contraction mapping if there exist 2 € (0,1) and
awy-a-distance w: X X X — [0, o) on X such that for all
x,y € Xand u € Tx there isa v € Ty with
a(u, v)w(u,v)
w(x,Tx) w(y,Ty)
< Amax {w(x, ), 14+ 0wk, Tx)' 1+ w(y,Ty)’

1
S 06 Ty) + 0, Tl

Definition 11. Let (X, d) be a metric space, w: X X X —
[0, o0) be a wy-a-distance on X and T: X — CL(X). Let
w(x, Tx) oy, Ty)
14+ w(xTx)' 1+ w(y,Ty)
w(x,Ty) + w(y, Tx)}

M(x,y) = max {w (x,y),

2
Then T is said to be a multivalued w-a-rational
contraction mapping if
alx,y) 21= w(Tx,Ty) < AM(x,y) forall x,y € X
where 1 € (0,1).

Theorem 12. Let (X,d) be a metric space and
a:X x X — [0,00) be afunction. LetT: X - CL(X) bea
generalized multivalued w-a-rational contraction
mapping. Suppose that the following statements are
indeed accurate:

(i) There exists Y < X with T(X) < Ysuch that (Y, d) is
a-complete;

(ii) T is a a-admissible mapping;

(iii) There exists x, € X and x; € Tx, such that
a(xy,x) = 1;

(iv) Either T is a- continuous or

(iv") (x,,) sequence such that a(x,, x,4+,) = 1 and x,, -
x € X for all n € N has a (x,, ) subsequence such that
a(xn,,x) = 1forall k € Nu{0};

Then F(T) # @.

Proof. There exist x, € X and x; € Tx, such that
a(xg,x,) = 1 from (ii). Since T is a generalized w-a-



rational contraction mapping, we obtain x, € Tx; such
that
a(xy, xz)w(xg, x2) <
 (x0,TXo) w(xq,Txq)
1+w(xg,Txg) 1+w(xq,Tx1)’
1
3 [0, Txr) + (e, Txo)]} (2.2)
Since T is a a-admissible mapping and x; € Tx, such
that a(xg, x;) = 1, we have
a(xg,x;) = 1.
Then by (2.1) and (2.2) we get
w(xq,%2) < alxy, X3)w(xy,x3) <
 (x0,TXo) w(xq,Txq)
1+w(xg,Txg) " 1+w(x1,Tx;)’
1
2[00, Txr) + (e, Txo)].
Again, since T is a generalized w-a-rational contraction,
there exists x5 € Tx, such that
a(xz, x3)w(xz,x3) <
w(xy,Tx1) w(x2,Tx3)
1+w(xq,Tx1)’ 1+w(xy,Txy)’
1
oG o) +ote T)l) @3
Since a(x;,x,) = 1 and T be a a- admissible mapping,
we have

Amax {w (x0,x1),

2.2)

Amax {w (x0,x1),

Amax {a) (x1,x3),

a(xy,x3) = 1.
Then we get
w(xz,x3) < a(xy, x3)w(xz, X3)
w(xy,Tx1) w(x2,Tx3)
1+w(xq,Tx1)’ 1+w(xy,Txy)’
i [w(xy, Txp) + w(xy, Tx1)]}
by (2.3) and (2.4). Continuing this process, we get x,, €
Txn—11
a(xp, Xp41) 2 1

(2.4)

< Amax {a) (x4, x2),

(2.5)
and
@(xp, Xpg1) <

w(xn,Txn)
Amax {w(xn_l, Xn), v

w(xn—1,TXn-1)
140 (Xn-1,Txn-1) " 1+ (xn,Txn)

1

0G0, T2) + @, Ty}
for all n € N. Now, we obtain
(‘)(xnr xn+1) <

Amax {a) (Xp—1,Xn),

W(xn-1,TXn—1) w(xn,Txn)
1+w(xp_1,Txp—1) " 1+w(xy,Txy)’

1
5 001 Tx) + 0, T

W (Xn—1,%n) w(XnXn+1)
1+w(xp-1.%7) " 1+ (XnXn41)’

S l0Gn 1, %n 1) + @0, X))
1
< Amaz {(n-1,%0), 0 Con, X, 5 [0 G, Xs)]

1
< Amax {w (xn—l: xn)r w(xn: xn+1)r 2 [w (xn—l: xn) +

= Amax {w(xn—lr xn)r

@ Cn, Xns1)1}.

=< Amax{w(xn—l'xn)'w(xn' xn+1)} (26)
for all n € N. In that case we get

@ (X, Xpi1) < Amax{w (xp_1, %), @ (X, Xpy1)} If
max{w (xg_1, %), © (X, Xk 41)} = @ (g, Xpe 1) for

some k € N, then w(xy, xx41) =0 and so we have
w(xr_1, %) = 0. We get

(-1, Xp11) < 0(Xp—1, X)) + W (X, Xp41) = 0

from the property of w-a-distance.

Since w(xg_q,xx) = 0 and w(xy_q, Xk4+1) = 0, then we
get x, = xj41 USing Lemma 9. This is x;, € Tx;, and so
it means that x, is a fixed point of T. Now, let's consider
the assumption that
max{w(xX,—1, Xn), 0 (Xp, Xp41)} = @ (Xp_1, %)
for all n € N. We get
c‘)(xwxn+1) < Aw(xn—lﬂxn)
for all n € N from (2.6). By induction, we have
(X Xn41) < Aw (X1, Xn)

< Azw(xn—Z'xn—l)

2.7)

< Aw(xy, %)
foralln € N.
Let m > n for all n,m € N. Then we have
c‘)(xru xm) < w(xn' xn+1) + (U(xn+1' xn+2) + o
+ w (-1, Xm)
< Mw(xg, x1) + " 1w(xg, %) + -+
A w(xg, 1)
An
< Ea)(xo,xl).

Since 0 < 1 < 1, then we get %w(xo,xl) —»0asn -

co. It is found that (x,) is a Cauchy sequence inY
satisfying a(x,, x,4+1) = 1 from Lemma 9 We know that
a(xy, Xpeq) = 1 foralln € N from (2.5). Since (Y, d) is
a-complete, then we obtain x,, —» z as n — oo for some
z € Y. We now show that z is a fixed point of T. First,
we consider that T is a-continuous. Then we obtain

d(z,Tz) = lim d(x,41,T2) = lim d(Tx,, Tz)
n—oo n—-oo
=d(Tz,Tz) =0
Here, z is a fixed point of T.

Now, let's consider the existence of (iv'). So there exist a
subsequence (x,, ) of (x,) such that a(x,,,z) = 1 for
all k € N U {0}. In this case, we write

w(xnk+1lz) S ]ll—r)?o infw(xnk+1: xnk+m) S

L AT

lim inf ——w(xg,x;) =0 (2.8)
k—oo 1-1
using w-a-distance lower semi-continuous from

n
inequality w(x,, X)) < ;f—_aw(xo'xl)' Also, since T be
generalized w-a-rational contraction mapping and
a(xnk,z) > 1, we have

w(xnkH,Tz) = a)(Txnk, Tz)
w(xnk,xnk+1) w(z,Tz)
14 w(x, Xp41) 1+ 0(2,T2)’

< Amax {w (xnk, z),

1
21000, 72) + (2 50

< Amax{w (xnk, Z), w (xnk, xnk+1), w(z,Tz),

1
21000, 72) + 0z 5]



< lmax{w(xnk, Z), w(xnk, xnk+1), w(z, xnk+1) +

w(xnk+1, Tz)} < w(xnk+1, Tz)}.
Ny

1-1
Nk
1-2
Ifw(xnkH,Tz) > 0, then
a)(xnkH, Tz) < lw(xnkﬂ, TZ)
which is a contradiction. Hence, we have

w(xnk+1, TZ) =0. (2.9)
If (2.8) and (2.9) are combined, then we obtain z = Tz
from Lemma 9.

< lmax{lim inf W (%, x1), lim infA™w (xg, x1),
k—oo k—o

lim inf

k—oo

w(xg, %) + a)(xnk+1, Tz)}

Teorem 13. In a metric space (X,d), considering the
mapping a:X XX - [0,00) and T:X - Cl(X) as a
multi-valued ~ w-a-rational  contraction  mapping,
assuming the validity of the following statements:

()Y € X with T(X) < Y such that (Y, d) is a-complete;
(ii) T is a a-admissible mapping;
(iii) There exists x, € X
that a(xy, x,) = 1;

(iv) Either T is a- continuous or
(iv") (x,,) sequence such that a(x,, x,+,) = 1 and x,, -
x € X for all n € N has a (x,, ) subsequence such that
a((xn,,x) = 1forall k € Nu{0};

Then F(T) # @.

Proof. The proof shares resemblance with the one in
Theorem 12.

and x; € Tx, such

Result 14. Suppose (X,d) represents a metric space
equipped with w-R-distance, and R is any arbitrary
binary relation on X. If T:X — CI(X) fulfills these
conditions, then it implies F(T) is non-empty.
(i) There exists Y € X with T(X) € Y, such that (Y, d) is
R-complete;
(i) X(T,R) # @ and R is T-closed,;
(iii) Either T is R-continuous
or
(iii") (x,,) such that (x,,, x,,+1) € R and x,, » x € X for
all n € N has a subsequence (x,, ) such that (x,,,x) €
R forall k € N U {0}.
(iv) There exists a 1 € [0,1) for all x,y € X such that
x,y € R, then w(Tx,Ty) < AM(x,y).
There exists

w(x, Tx) w(y,Ty)
M(x,y) = max {w(x, ), 1+ wxTx)' 1+ w(y,Ty)’

w(x,Ty) + w(y, Tx)}

2
Proof. Let
_(1 (x,y) €R
aley) = {O, otherwise .

If there exists x, € X and x; € Tx, such that a(xg, x;) =
1, then since X(T,R) # @, there exists a point x, €
X (T, R) such that (x4, Tx,) € R. Since (xy,x,) € R and
R is T-closed, there exists a x, € Tx; such that (x;,x,) €
R. a(xy,x,) = 1 due to the definition of a.

10

Continuing this process, we get a(x,, x,+1) = 1 such
that x,, = Tx,,_,. That is, T is a a-admissible. Since the
definition of a and (Y, d) is R-complete, then (Y, d) is
a-complete. (iii) and (iii") conditions requires (iv) and
(iv") hypotheses of Theorem 12. Now let a(x,y) = 1.
Then (x,y) € R. Because of the hypothesis (iv) there
exists a A € [0,1) such that

w(Tx,Ty) < IM(x,y).

Therefore, since it is provide all conditions of Theorem
12, then T has a fixed point. Also, w-R-distance requires
w-a-distance.

Result 15. Suppose (X, d) represents a metric space,
a:X x X - [0,00) isamapping,and T: X - CI(X) isa
multi-valued w-a -rational contraction mapping, given
that the following conditions are satisfied:
(i) T is a a-contraction mapping;

(i) There exist x, € X and x; € Tx,
a(xy,x) = 1;

(iii) Either T is a-continuous or (x,,) sequence such that
a(xp, Xpp1) =1 ve x, >x€X for all n€N has a
(%, ) subsequence such that a(x,,,x) = 1 for all k €
N u {0};

Then F(T) + 0.

Proof. As (X, d) constitutes a complete metric space,
ensuring a-complete, the intended outcome is achieved
by employing the proof outlined in Theorem 12.

such that

Example 16. Let X = (—1,00) and d: X x X — [0, o)
with the metric d(x,y) = |x — y| forall x,y € X. Define
a:X x X — [0,00) by
_(x2+y?%  x,y€[01]
aly) = {0, otherwise.
T:X — CL(X) multivalued mapping define by

Ly 0,1
Tx = {Zx }’ x € [ ’ ]
{lx],|x + 2|}, otherwise.

Now, we show that this is T a multivalued w-a-rational
. . - 1 .

contraction mapping with 4 = 5 and w-a-distance

w: X X X - [0,00), defined as w(x,y) = max{|x|, |y|}

for all x,y € X. Let u € Tx = {%xz} for x,y € [0,1].

That is, we can found inav = iyz € Ty such that

B x2 y? x2 y?

ot = o (52) 0 (2.2)

(X LX) (L 2 4,2

- (16 + 16) (4 max{x®,y })

<1+ 1)%max{x2,y2}

1
u=-=>-x?and
4

< ~max{lx|, Iyl}

=w(x,y)

< AM(x,y).

That is, a(u,v)w(u,v) < AM(x,y). Therefore T
multivalued w-a-rational contraction mapping.

While (Y, d) may not qualify as a complete metric space,
it does fulfill the criteria for being an a-complete metric
space. Consider (x,) as a Cauchy sequence within Y,
with a(x,, x,41) = 1 for all n in the natural numbers.



Consequently, x, € [0,1] for all n € N. Given that
([0,1], d) stands as a complete metric space, there exists
z € [0,1] such that x,, » z as n — oo. Therefore, (Y, d)
qualifies as an a-complete metric space.

If a(x,y) = 1,itimpliesthat x,y € [0,1]. Concurrently,
Tc € [0,1] for all ¢ € [0,1]. Consequently, a(Tx,Ty) =
1, signifying that T qualifies as an a-admissible
mapping. There exists x, = 1 such that x; = % € T1and

alxg,x) = a(l,%) > 1.

x, >x as n—-o and (x,) sequence provide
a(xy, xp41) = 1 inequality for all n € N. Hence,
(x,) € 10,1] foralln € N and so (Tx,) < [0,1]. Since
T is continuous on [0,1], then Tx,, » Tx asn — co.
This implies that T is a mapping that maintains a-
continuity.

Alternatively, let a(x,, x,.1) =1 and x, >z € X. In
this case, there exists a subset (x,,, ) such that x,, € [0,1]

and Xy, = Z- Thus, a(xnk,z) > 1.
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