Common Fixed Point Results for w- α -Distance

Gülcan ATICI TURAN¹ A, Fatma POLAT²

¹ Munzur University, Vocational School of Tunceli, Turkey

² Dicle University, Diyarbakır, Turkey

Received (Geliş): 28.09.2023 Revision (Düzeltme): 09.12.2023 Accepted (Kabul): 30.01.2024

ABSTRACT

In this study, we examined some fixed point theorems in non-full metric spaces. We define the notions of α -lower semi-continuous, $w-\alpha$ -distance, $w_0-\alpha$ - distance, $w-\alpha$ -rational contraction and generalized $w-\alpha$ -rational contraction mapping. We also give related theorem and example. Then, we prove Banach's fixed-point theorem thanks to the concept $w-\alpha$ - distance in metric spaces equipped with an abritrary binary relation. Also, $w-\alpha$ - rational contraction mapping and generalized $w-\alpha$ -rational contraction mapping are defined and by using these definitions, the theorem related fixed point is expressed and proved.

Anahtar Kelimeler: Binary Relation, Fixed Point, α -Complete Metric Space, w-Distance.

w-α-Uzaklık İçin Ortak Sabit Nokta Sonuçları

ÖZ

Bu çalışmada tam metrik olmayan uzaylarda bazı sabit nokta teoremleri incelenmiştir. α -alttan yarı-sürekli, w- α -uzaklık, w- α - uzaklık, w- α - uzaklık, w- α -rasyonel büzülme ve genelleştirilmiş w- α -rasyonel büzülme dönüşümü kavramları tanımlanmıştır. İlgili teorem ve örneği de verilmiştir. Daha sonra w- α - uzaklık kavramını kullanarak keyfi bir ikili bağıntı ile verilen metrik uzaylarda Banach sabit nokta teoremi ispatlanmıştır. Ayrıca w- α - rasyonel büzülme dönüşümü ve genelleştirilmiş w- α - rasyonel büzülme dönüşümü tanımları yapılmış ve bu tanımlar kullanılarak sabit nokta ile ilgili teorem ifade ve ispat edilmiştir.

Anahtar Kelimeler: İkili Bağıntı, Sabit Nokta, α-Geçişli Dönüşümü, α-Tam Metrik Uzay, w-Uzaklık.

INTRODUCTION

Kada et al [1] presented the idea of w-distance within a metric space. Considering (X,d) as a metric space, a function $\omega: X \times X \to [0,\infty)$ earns the designation of a w-distance on X when it meets these specified conditions for each $x,y,z \in X$,

(w1) $\omega(x,z) \le \omega(x,y) + \omega(y,z)$;

(w2) a function $\omega(x,.): X \to [0,\infty)$ exhibits lower semicontinuous;

(w3) for any $\varepsilon > 0$, there exists $\delta > 0$ such that $\omega(z,x) \le \delta$ and $\omega(z,y) \le \delta$ imply $d(x,y) \le \varepsilon$ [1]. Later on, they have achieved significant results using this definition in fixed point theory. In 2012, Samet et al [2] defined α -admissible mapping. On the other hand they have expressed and proved the theorems related to fixed point in complete metric spaces.

Hussain et al [3] have obtained fixed point results for rational contraction mapping in α - η -complete metric space. Kutbi and Sintunavarat [4] defined generalized w_{α} -multivalued contraction mapping and then they have proven fixed point theorems using this mapping in α -complete metric spaces. Many studies have been carried out on fixed points [5, 6, 7, 8].

Definition 1. Consider (X, d) as a metric space, and let $T: X \to Cl(X)$ represent a multivalued mapping. A point $x \in X$ is termed a fixed point of T if $x \in Tx$, and the collection of fixed points of T is symbolized as F(T) [9].

Definition 2. Consider (X, d) as a metric space, and let $T: X \to Cl(X)$ represents a multivalued mapping. T is termed a contraction if there exists a constant $\lambda \in (0,1)$ such that, for every x and y in X, $H(Tx,Ty) \le \lambda d(x,y)$ [9].

Definition 3. Suppose (X,d) represents a metric space, and $\alpha: X \times X \to [0,\infty)$ is a specified mapping. The multivalued mapping $T: X \to Cl(X)$ is termed a w_{α} -contraction if there exists a w_{α} -distance $\omega: X \times X \to [0,\infty)$ on X and a value $\lambda \in (0,1)$. This condition ensures that for any $x,y \in X$ and $u \in Tx$, there exists $v \in Ty$ such that

 $\alpha(u, v)\omega(u, v) \le \lambda\omega(x, y)$ [4].

Definition 4. In the context of (X, d) being a metric space and $\alpha: X \times X \to [0, \infty)$ a specified mapping, the multivalued mapping $T: X \to Cl(X)$ is referred to as a

generalized w_{α} -contraction if there exists a w_0 -distance ω on X and a value $\lambda \in (0,1)$. This condition ensures that for any $x,y \in X$ and $u \in Tx$, there exists $v \in Ty$ such that

$$\alpha(u,v)\omega(u,v) \le \lambda \max\{\omega(x,y),\omega(x,Tx),\omega(y,Ty), \frac{1}{2}[\omega(x,Ty)+\omega(y,Tx)] [4].$$

MAIN RESULTS

Definition 5. Let (X,d) be a metric space and $\alpha: X \times X \to [0,\infty)$. A function $f: X \to \mathbb{R} \cup \{-\infty,\infty\}$ is said to be α -lower semi-continuous at point x if for all sequence (x_n) which converges to $x \in X$ and $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$, we have

$$\lim_{n\to\infty}\inf f(x_n)\geq f(x).$$

Definition 6. Let (X,d) be a metric space and $\alpha: X \times X \to [0,\infty)$. A function $\omega: X \times X \to [0,\infty)$ is said to be a $w-\alpha$ -distance on X if

- (i) $\omega(x,z) \le \omega(x,y) + \omega(y,z)$ for any $x,y,z \in X$,
- (ii) For any $x \in X$, $\omega(x,.)$: $X \to [0,\infty)$ is α -lower semi-continuous,
- (iii) For any $\varepsilon > 0$, there exists $\delta > 0$ such that $\omega(z,x) \le \delta$ and $\omega(z,y) \le \delta$ imply $d(x,y) \le \varepsilon$.

Definition 7. Let (X, d) be a metric space. The w- α -distance $\omega: X \times X \to [0, \infty)$ on X is said to be a w_0 - α -distance if $\omega(x, x) = 0$ for all $x \in X$.

Example 8. Let $X = [0, \infty)$. Define $T: X \to X$ and $\alpha: X \times X \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & x,y \in \left[0,\frac{1}{2}\right) \\ 0, & otherwise, \end{cases}$$

$$Tx = \begin{cases} \frac{3}{2}, & x \in \left[0,\frac{1}{2}\right) \\ \frac{4}{5}, & x = \frac{1}{2} \\ x, & x > \frac{1}{2}. \end{cases}$$

Clearly, T is neither α - continuous nor lower semi-continuous. However, it is α -lower semi-continuous. In fact, let (x_n) be a sequence that not fixed convergent at point $x=\frac{1}{2}$. If $x_n\to \frac{1}{2}^-$, then $Tx_n=\frac{3}{2}$ for all $n\in\mathbb{N}$. If $x_n\to \frac{1}{2}^+$, then $Tx_n=x_n$ for all $n\in\mathbb{N}$ and so $\lim_{n\to\infty}Tx_n=\frac{1}{2}$. Therefore, it is not $\lim_{n\to\infty}\inf Tx_n\geq T\frac{1}{2}$. Hence, T is not lower semi-continuous at point $x=\frac{1}{2}$. Now, let (x_n) be a sequence not fixed such that $\alpha(x_n,x_{n+1})\geq 1$ and convergent at point $x=\frac{1}{2}$. Then $Tx_n=\frac{3}{2}$ where $(x_n)\subseteq [0,\frac{1}{2})$. However, T is not α -continuous at point $\frac{1}{2}$ due to $Tx_n\to \frac{3}{2}\neq T\frac{1}{2}=\frac{4}{5}$. Also, T is α -lower semi-continuous at point $x=\frac{1}{2}$. Thus, $\frac{3}{2}=\lim_{n\to\infty}\inf Tx_n\geq T\frac{1}{2}=\frac{4}{5}$.

Lemma 9. Consider (X, d) as a metric space, where $\alpha: X \times X \to [0, \infty)$ and $\omega: X \times X \to [0, \infty)$ are $w-\alpha$ -distances on X. Suppose (x_n) and (y_n) are sequences in

X such that $\alpha(x_n, x_{n+1}) \ge 1$ and $(y_n, y_{n+1}) \ge 1$, respectively, with $x, y, z \in X$. Let (u_n) and (v_n) be sequences of positive real numbers approaching 0. Under these conditions, the following statements hold true:

- (i) If $\omega(x_n, y) \le u_n$ and $\omega(x_n, z) \le v_n$ for all $n \in \mathbb{N}$, then y = z. Moreover, if $\omega(x, y) = 0$ and $\omega(x, z) = 0$, then y = z.
- (ii) If $\omega(x_n, y_n) \le u_n$ and $\omega(x_n, z) \le v_n$ for all $n \in \mathbb{N}$, then $y_n \to z$.
- (iii) If $\omega(x_n, x_m) \le u_n$ for all $n, m \in \mathbb{N}$ such that m > n, then (x_n) be a Cauchy sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ in X.
- (iv) If $\omega(x_n, y) \le u_n$ for all $n \in \mathbb{N}$, then (x_n) be a Cauchy sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ in X.

Definition 10. Let (X,d) be a metric space and $\alpha: X \times X \to [0,\infty)$ and $T: X \to Cl(X)$ be given two mappings. T is said to be generalized multivalued w- α -rational contraction mapping if there exist $\lambda \in (0,1)$ and a w_0 - α -distance $\omega: X \times X \to [0,\infty)$ on X such that for all $x,y \in X$ and $u \in Tx$ there is a $v \in Ty$ with

$$\begin{aligned} \alpha(u,v)\omega(u,v) &\leq \lambda max \left\{ \omega(x,y), \frac{\omega(x,Tx)}{1+\omega(x,Tx)}, \frac{\omega(y,Ty)}{1+\omega(y,Ty)}, \frac{1}{2} \left[\omega(x,Ty) + \omega(y,Tx) \right] \right\}. \end{aligned}$$

Definition 11. Let (X, d) be a metric space, $\omega: X \times X \to [0, \infty)$ be a w_0 - α -distance on X and $T: X \to Cl(X)$. Let

$$M(x,y) = \max \left\{ \omega(x,y), \frac{\omega(x,Tx)}{1 + \omega(x,Tx)}, \frac{\omega(y,Ty)}{1 + \omega(y,Ty)}, \frac{\omega(x,Ty) + \omega(y,Ty)}{2} \right\}$$

Then T is said to be a multivalued w- α -rational contraction mapping if

 $\alpha(x,y) \ge 1 \Rightarrow \omega(Tx,Ty) \le \lambda M(x,y)$ for all $x,y \in X$ where $\lambda \in (0,1)$.

Theorem 12. Let (X,d) be a metric space and $\alpha: X \times X \to [0,\infty)$ be a function. Let $T: X \to Cl(X)$ be a generalized multivalued w- α -rational contraction mapping. Suppose that the following statements are indeed accurate:

- (i) There exists $Y \subseteq X$ with $T(X) \subseteq Y$ such that (Y, d) is α -complete;
- (ii) T is a α -admissible mapping;
- (iii) There exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;
- (iv) Either T is α continuous or
- (iv') (x_n) sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ and $x_n \to x \in X$ for all $n \in \mathbb{N}$ has a (x_{n_k}) subsequence such that $\alpha(x_{n_k}, x) \ge 1$ for all $k \in \mathbb{N} \cup \{0\}$; Then $F(T) \ne \emptyset$.

Proof. There exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$ from (ii). Since T is a generalized w- α -

rational contraction mapping, we obtain $x_2 \in Tx_1$ such

$$\alpha(x_{1}, x_{2})\omega(x_{1}, x_{2}) \leq \lambda \max \left\{ \omega(x_{0}, x_{1}), \frac{\omega(x_{0}, Tx_{0})}{1 + \omega(x_{0}, Tx_{0})}, \frac{\omega(x_{1}, Tx_{1})}{1 + \omega(x_{1}, Tx_{1})}, \frac{1}{2} [\omega(x_{0}, Tx_{1}) + \omega(x_{1}, Tx_{0})] \right\}$$
(2.1)

Since T is a α -admissible mapping and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$, we have

$$\alpha(x_1, x_2) \ge 1. \tag{2.2}$$

Then by (2.1) and (2.2) we get

$$\begin{split} \omega(x_1, x_2) &\leq \alpha(x_1, x_2) \omega(x_1, x_2) \leq \\ \lambda max & \Big\{ \omega(x_0, x_1), \frac{\omega(x_0, Tx_0)}{1 + \omega(x_0, Tx_0)}, \frac{\omega(x_1, Tx_1)}{1 + \omega(x_1, Tx_1)}, \\ & \qquad \qquad \frac{1}{2} \big[\omega(x_0, Tx_1) + \omega(x_1, Tx_0) \big] \Big\}. \end{split}$$

Again, since T is a generalized w- α -rational contraction, there exists $x_3 \in Tx_2$ such that

$$\alpha(x_2, x_3)\omega(x_2, x_3) \le$$

$$\lambda \max \left\{ \omega(x_1, x_2), \frac{\omega(x_1, Tx_1)}{1 + \omega(x_1, Tx_1)}, \frac{\omega(x_2, Tx_2)}{1 + \omega(x_2, Tx_2)}, \frac{1}{2} [\omega(x_1, Tx_2) + \omega(x_2, Tx_1)] \right\}$$
(2.3)

Since $\alpha(x_1, x_2) \ge 1$ and T be a α - admissible mapping, we have

$$\alpha(x_2, x_3) \ge 1. \tag{2.4}$$

Then we get

Then we get
$$\omega(x_2, x_3) \leq \alpha(x_2, x_3)\omega(x_2, x_3) \leq \lambda \max \left\{ \omega(x_1, x_2), \frac{\omega(x_1, Tx_1)}{1 + \omega(x_1, Tx_1)}, \frac{\omega(x_2, Tx_2)}{1 + \omega(x_2, Tx_2)}, \frac{1}{2} \left[\omega(x_1, Tx_2) + \omega(x_2, Tx_1) \right] \right\}$$

by (2.3) and (2.4). Continuing this process, we get $x_n \in$

$$\alpha(x_n, x_{n+1}) \ge 1 \tag{2.5}$$

and

$$\begin{split} \omega(x_n, x_{n+1}) &\leq \\ \lambda max \left\{ \omega(x_{n-1}, x_n), \frac{\omega(x_{n-1}, Tx_{n-1})}{1 + \omega(x_{n-1}, Tx_{n-1})}, \frac{\omega(x_n, Tx_n)}{1 + \omega(x_n, Tx_n)}, \frac{1}{2} \left[\omega(x_{n-1}, Tx_n) + \omega(x_n, Tx_{n-1}) \right] \right\} \end{split}$$

for all $n \in \mathbb{N}$. Now, we obtain

$$\omega(x_n, x_{n+1}) \le$$

$$\omega(x_{n}, x_{n+1}) \leq \lambda \max \left\{ \omega(x_{n-1}, x_{n}), \frac{\omega(x_{n-1}, Tx_{n-1})}{1 + \omega(x_{n-1}, Tx_{n-1})}, \frac{\omega(x_{n}, Tx_{n})}{1 + \omega(x_{n}, Tx_{n})}, \frac{1}{2} [\omega(x_{n-1}, Tx_{n}) + \omega(x_{n}, Tx_{n-1})] \right\}$$

$$= \lambda \max \left\{ \omega(x_{n-1}, x_{n}), \frac{\omega(x_{n-1}, x_{n})}{1 + \omega(x_{n-1}, x_{n})}, \frac{\omega(x_{n}, x_{n+1})}{1 + \omega(x_{n}, x_{n+1})}, \frac{1}{2} [\omega(x_{n-1}, x_{n+1}) + \omega(x_{n}, x_{n})] \right\}$$

$$= \lambda \max \left\{ \omega(x_{n-1}, x_n), \frac{\omega(x_{n-1}, x_n)}{1 + \omega(x_{n-1}, x_n)}, \frac{\omega(x_n, x_{n+1})}{1 + \omega(x_n, x_{n+1})}, \frac{\frac{1}{2} \left[\omega(x_{n-1}, x_{n+1}) + \omega(x_n, x_n)\right]}{\frac{1}{2} \left[\omega(x_{n-1}, x_{n+1}) + \omega(x_n, x_n)\right]} \right\}$$

$$\leq \lambda \max \left\{ \omega(x_{n-1}, x_n), \omega(x_n, x_{n+1}), \frac{1}{2} \left[\omega(x_{n-1}, x_{n+1}) \right] \right\}$$

$$\leq \lambda \max \left\{ \omega(x_{n-1}, x_n), \omega(x_n, x_{n+1}), \frac{1}{2} \left[\omega(x_{n-1}, x_n) + \frac{1}{$$

$$\omega(x_n, x_{n+1})$$
]

$$\leq \lambda \max\{\omega(x_{n-1}, x_n), \omega(x_n, x_{n+1})\}$$
 (2.6)

for all $n \in \mathbb{N}$. In that case we get $\omega(x_n, x_{n+1}) \le \lambda \max\{\omega(x_{n-1}, x_n), \omega(x_n, x_{n+1})\}.$

If $max\{\omega(x_{k-1}, x_k), \omega(x_k, x_{k+1})\} = \omega(x_k, x_{k+1})$ some $k \in \mathbb{N}$, then $\omega(x_k, x_{k+1}) = 0$ and so we have $\omega(x_{k-1}, x_k) = 0$. We get

 $\omega(x_{k-1}, x_{k+1}) \le \omega(x_{k-1}, x_k) + \omega(x_k, x_{k+1}) = 0$

from the property of w- α -distance.

Since $\omega(x_{k-1}, x_k) = 0$ and $\omega(x_{k-1}, x_{k+1}) = 0$, then we get $x_k = x_{k+1}$ using Lemma 9. This is $x_k \in Tx_k$ and so it means that x_k is a fixed point of T. Now, let's consider the assumption that

$$\begin{split} \max\{\omega(x_{n-1},x_n),\omega(x_n,x_{n+1})\} &= \omega(x_{n-1},x_n)\\ \text{for all } n \in \mathbb{N}. \text{ We get}\\ \omega(x_n,x_{n+1}) &\leq \lambda\omega(x_{n-1},x_n) \end{split} \tag{2.7}$$

for all $n \in \mathbb{N}$ from (2.6). By induction, we have

$$\omega(x_n, x_{n+1}) \le \lambda \omega(x_{n-1}, x_n)$$

$$\le \lambda^2 \omega(x_{n-2}, x_{n-1})$$

$$\vdots$$

$$\le \lambda^n \omega(x_0, x_1)$$

for all $n \in \mathbb{N}$.

Let m > n for all $n, m \in \mathbb{N}$. Then we have

$$\begin{split} \omega(x_n, x_m) & \leq \omega(x_n, x_{n+1}) + \omega(x_{n+1}, x_{n+2}) + \cdots \\ & + \omega(x_{m-1}, x_m) \\ & \leq \lambda^n \omega(x_0, x_1) + \lambda^{n+1} \omega(x_0, x_1) + \cdots + \\ & \lambda^{m-1} \omega(x_0, x_1) \\ & \leq \frac{\lambda^n}{1-\lambda} \omega(x_0, x_1). \end{split}$$

Since $0 < \lambda < 1$, then we get $\frac{\lambda^n}{1-\lambda}\omega(x_0, x_1) \to 0$ as $n \to \infty$ ∞ . It is found that (x_n) is a Cauchy sequence in Y satisfying $\alpha(x_n, x_{n+1}) \ge 1$ from Lemma 9 We know that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ from (2.5). Since (Y, d) is α -complete, then we obtain $x_n \to z$ as $n \to \infty$ for some $z \in Y$. We now show that z is a fixed point of T. First, we consider that T is α -continuous. Then we obtain

$$d(z,Tz) = \lim_{n \to \infty} d(x_{n+1},Tz) = \lim_{n \to \infty} d(Tx_n,Tz)$$
$$= d(Tz,Tz) = 0$$

Here, z is a fixed point of T.

Now, let's consider the existence of (iv'). So there exist a subsequence (x_{n_k}) of (x_n) such that $\alpha(x_{n_k}, z) \ge 1$ for all $k \in \mathbb{N} \cup \{0\}$. In this case, we write

$$\omega(x_{n_k+1}, z) \le \lim_{k \to \infty} \inf \omega(x_{n_k+1}, x_{n_k+m}) \le \lim_{k \to \infty} \inf \frac{\lambda^{n_k-1}}{1-\lambda} \omega(x_0, x_1) = 0$$
 (2.8)

using w- α -distance lower semi-continuous from inequality $\omega(x_n, x_m) \le \frac{\lambda^n}{1-\lambda} \omega(x_0, x_1)$. Also, since T be generalized w- α -rational contraction mapping and $\alpha(x_{n_k}, z) \ge 1$, we have

$$\begin{split} &\omega\big(x_{n_k+1},Tz\big) = \omega\big(Tx_{n_k},Tz\big)\\ &\leq \lambda max\left\{\omega\big(x_{n_k},z\big),\frac{\omega\big(x_{n_k},x_{n_k+1}\big)}{1+\omega\big(x_{n_k},x_{n_k+1}\big)},\frac{\omega(z,Tz)}{1+\omega(z,Tz)},\right\} \end{split}$$

$$\frac{1}{2} \left[\omega(x_{n_k}, Tz) + \omega(z, x_{n_k+1}) \right]$$

$$\leq \lambda max\{\omega(x_{n_k},z),\omega(x_{n_k},x_{n_k+1}),\omega(z,Tz),$$

$$\frac{1}{2} \left[\omega (x_{n_k}, Tz) + \omega (z, x_{n_k+1}) \right]$$

$$\leq \lambda \max \left\{ \omega(x_{n_k}, z), \omega(x_{n_k}, x_{n_k+1}), \omega(z, x_{n_k+1}) + \\ \omega(x_{n_k+1}, Tz) \right\} \leq \omega(x_{n_k+1}, Tz) \right\}.$$

$$\leq \lambda \max \left\{ \lim_{k \to \infty} \inf \frac{\lambda^{n_k}}{1 - \lambda} \omega(x_0, x_1), \lim_{k \to \infty} \inf \lambda^{n_k} \omega(x_0, x_1), \\ \lim_{k \to \infty} \inf \frac{\lambda^{n_k}}{1 - \lambda} \omega(x_0, x_1) + \omega(x_{n_k+1}, Tz) \right\}$$

If $\omega(x_{n_k+1}, Tz) > 0$, then $\omega\big(x_{n_k+1},Tz\big) \leq \lambda\omega\big(x_{n_k+1},Tz\big)$

which is a contradiction. Hence, we have

$$\omega(x_{n_k+1}, T_Z) = 0. (2.9)$$

If (2.8) and (2.9) are combined, then we obtain z = Tzfrom Lemma 9.

Teorem 13. In a metric space (X, d), considering the mapping $\alpha: X \times X \to [0, \infty)$ and $T: X \to Cl(X)$ as a multi-valued w- α -rational contraction mapping, assuming the validity of the following statements:

(i) $Y \subseteq X$ with $T(X) \subseteq Y$ such that (Y, d) is α -complete; (ii) T is a α -admissible mapping;

(iii) There exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$;

(iv) Either T is α - continuous or

(iv') (x_n) sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ and $x_n \to \infty$ $x \in X$ for all $n \in \mathbb{N}$ has a (x_{n_k}) subsequence such that $\alpha(x_{n_k}, x) \ge 1 \text{ for all } k \in \mathbb{N} \cup \{0\};$

Then $F(T) \neq \emptyset$.

Proof. The proof shares resemblance with the one in Theorem 12.

Result 14. Suppose (X, d) represents a metric space equipped with w- \mathcal{R} -distance, and \mathcal{R} is any arbitrary binary relation on X. If $T: X \to Cl(X)$ fulfills these conditions, then it implies F(T) is non-empty.

(i) There exists $Y \subseteq X$ with $T(X) \subseteq Y$, such that (Y, d) is \mathcal{R} -complete;

(ii) $X(T, \mathcal{R}) \neq \emptyset$ and \mathcal{R} is T-closed;

(iii) Either T is \mathcal{R} -continuous

(iii') (x_n) such that $(x_n, x_{n+1}) \in \mathcal{R}$ and $x_n \to x \in X$ for all $n \in \mathbb{N}$ has a subsequence (x_{n_k}) such that $(x_{n_k}, x) \in$ \mathcal{R} for all $k \in \mathbb{N} \cup \{0\}$.

(iv) There exists a $\lambda \in [0,1)$ for all $x, y \in X$ such that $x, y \in \mathcal{R}$, then $\omega(Tx, Ty) \leq \lambda M(x, y)$.

There exists
$$M(x,y) = \max \left\{ \omega(x,y), \frac{\omega(x,Tx)}{1 + \omega(x,Tx)}, \frac{\omega(y,Ty)}{1 + \omega(y,Ty)}, \frac{\omega(x,Ty) + \omega(y,Ty)}{2} \right\}.$$

Proof. Let
$$\alpha(x,y) = \begin{cases} 1, & (x,y) \in \mathcal{R} \\ 0, & otherwise \end{cases}$$

If there exists $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge$ 1, then since $X(T, \mathcal{R}) \neq \emptyset$, there exists a point $x_0 \in$ $X(T, \mathcal{R})$ such that $(x_0, Tx_0) \in \mathcal{R}$. Since $(x_0, x_1) \in \mathcal{R}$ and \mathcal{R} is T-closed, there exists a $x_2 \in Tx_1$ such that $(x_1, x_2) \in$ \mathcal{R} . $\alpha(x_1, x_2) \ge 1$ due to the definition of α .

Continuing this process, we get $\alpha(x_n, x_{n+1}) \ge 1$ such that $x_n = Tx_{n-1}$. That is, T is a α -admissible. Since the definition of α and (Y, d) is \mathcal{R} -complete, then (Y, d) is α -complete. (iii) and (iii') conditions requires (iv) and (iv') hypotheses of Theorem 12. Now let $\alpha(x, y) \ge 1$. Then $(x, y) \in \mathcal{R}$. Because of the hypothesis (iv) there exists a $\lambda \in [0,1)$ such that $\omega(Tx, Ty) \leq \lambda M(x, y).$

Therefore, since it is provide all conditions of Theorem 12, then T has a fixed point. Also, w- \mathcal{R} -distance requires w- α -distance.

Result 15. Suppose (X, d) represents a metric space, $\alpha: X \times X \to [0, \infty)$ is a mapping, and $T: X \to Cl(X)$ is a multi-valued $w-\alpha$ -rational contraction mapping, given that the following conditions are satisfied:

(i) T is a α -contraction mapping;

(ii) There exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1;$

(iii) Either T is α -continuous or (x_n) sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ ve $x_n \to x \in X$ for all $n \in \mathbb{N}$ has a (x_{n_k}) subsequence such that $\alpha(x_{n_k}, x) \ge 1$ for all $k \in$ $\mathbb{N} \cup \{0\}$:

Then $F(T) \neq \emptyset$.

Proof. As (X, d) constitutes a complete metric space, ensuring α -complete, the intended outcome is achieved by employing the proof outlined in Theorem 12.

Example 16. Let $X = (-1, \infty)$ and $d: X \times X \to [0, \infty)$ with the metric d(x, y) = |x - y| for all $x, y \in X$. Define

$$\alpha: X \times X \to [0, \infty) \text{ by}$$

$$\alpha(x, y) = \begin{cases} x^2 + y^2, & x, y \in [0, 1] \\ 0, & otherwise. \end{cases}$$

 $T: X \to Cl(X)$ multivalued mapping define by

$$Tx = \begin{cases} \left\{ \frac{1}{4}x^2 \right\}, & x \in [0,1] \\ \{|x|, |x+2|\}, & otherwise. \end{cases}$$

Now, we show that this is T a multivalued w- α -rational contraction mapping with $\lambda = \frac{1}{2}$ and $w-\alpha$ -distance $\omega: X \times X \to [0, \infty)$, defined as $\omega(x, y) = \max\{|x|, |y|\}$ for all $x, y \in X$. Let $u \in Tx = \left\{\frac{1}{4}x^2\right\}$ for $x, y \in [0,1]$.

That is, we can found in a $v = \frac{1}{4}y^2 \in Ty$ such that

$$u = \frac{1}{4}x^2$$
 and

$$\alpha(u, v)\omega(u, v) = \alpha\left(\frac{x^{2}}{4}, \frac{y^{2}}{4}\right)\omega\left(\frac{x^{2}}{4}, \frac{y^{2}}{4}\right)$$

$$= \left(\frac{x^{4}}{16} + \frac{y^{4}}{16}\right)\left(\frac{1}{4}\max\{x^{2}, y^{2}\}\right)$$

$$\leq (1 + 1)\frac{1}{4}\max\{x^{2}, y^{2}\}$$

$$\leq \frac{1}{2}\max\{|x|, |y|\}$$

$$= \lambda\omega(x, y)$$

$$\leq \lambda M(x, y).$$

That is, $\alpha(u, v)\omega(u, v) \leq \lambda M(x, y)$. Therefore T multivalued w- α -rational contraction mapping.

While (Y, d) may not qualify as a complete metric space, it does fulfill the criteria for being an α -complete metric space. Consider (x_n) as a Cauchy sequence within Y, with $\alpha(x_n, x_{n+1}) \ge 1$ for all n in the natural numbers.

Consequently, $x_n \in [0,1]$ for all $n \in \mathbb{N}$. Given that ([0,1],d) stands as a complete metric space, there exists $z \in [0,1]$ such that $x_n \to z$ as $n \to \infty$. Therefore, (Y, d)qualifies as an α -complete metric space.

If $\alpha(x, y) \ge 1$, it implies that $x, y \in [0,1]$. Concurrently, $Tc \in [0,1]$ for all $c \in [0,1]$. Consequently, $\alpha(Tx,Ty) \ge$ 1, signifying that T qualifies as an α -admissible mapping. There exists $x_0 = 1$ such that $x_1 = \frac{1}{4} \in T1$ and $\alpha(x_0, x_1) = \alpha\left(1, \frac{1}{4}\right) \ge 1.$

 $x_n \to x$ as $n \to \infty$ and (x_n) sequence provide $n \in \mathbb{N}$. Hence, $\alpha(x_n, x_{n+1}) \ge 1$ inequality for all

 $(x_n) \subseteq [0,1]$ for all $n \in \mathbb{N}$ and so $(Tx_n) \subseteq [0,1]$. Since T is continuous on [0,1], then $Tx_n \to Tx$ as $n \to \infty$. This implies that T is a mapping that maintains α -

Alternatively, let $\alpha(x_n, x_{n+1}) \ge 1$ and $x_n \to z \in X$. In

this case, there exists a subset (x_{n_k}) such that $x_n \in [0,1]$ and $x_{n_k} \to z$. Thus, $\alpha(x_{n_k}, z) \ge 1$.

REFERENCES

- Kada, O., Suzuki, T., Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metriz spaces, Mathematica Japonica. 44:2 381-391, 1996.
- [2] Samet, B., Vetro, C., Vetro, P. Fixed point theorems **a**--conractive type mappings, Nonlinear Analysis: Theory, Methods and Applications. 75:4 2154- 2165, 2012.
- Hussain, N., Kutbi, M. A., Salimi, P. Fixed point theory in a-complete metric spaces with applications, Abstract and Applied Analysis. 1:2 1-11, 2014.
- Kutbi, M. A., Sintunavarat, W. The existence of fixed point theorems via -distance and a-admissible mappings and applications, Abstract and Applied Analysis. 141 1-8, 2013.
- Vetro, C. A Fixed-Point Problem with Mixed-Type Contractive Condition, Constructive Mathematical Analysis. 3:1, 45-52, 2020.
- Karapinar, E. A Short Survey on the Recent Fixed Point Results on b-Metric Spaces, Constructive Mathematical Analysis. 1:1 15-44, 2018.
- Nazam, M., Acar, Ö. Fixed points of (α, ψ) -contractions in Hausdorff partial metric spaces, Mathematical Methods in the Applied Sciences. 42:16 5159-5173,
- Mınak, G., Acar, Ö., Altun, İ.. Multivalued Pseudo-Picard Operators and Fixed Point Results, Journal of Function spaces and applications. 2013, 2013.
- Kutbi, M. A., Sintunavarat, W. Fixed point theorems for generalized W contraction multivalued mappings in acomplete metric spaces, Fixed Point Theory and Applications. 139 1-9, 2014.