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ABSTRACT—The formation of a realistic representation constitutes the main theme of the surface modeling 

by the transfer of a real object to digital media. This transfer process is performed by first scanning the 

objects and then obtaining curve and surface models by fitting the data representing the object from the data 

points obtained later. The data fitting for curve problem has an important area in research topics in geometric 

modeling, computer-aided design (CAD), computer-aided manufacturing (CAM), and computerized 

production. Reverse engineering is used to obtain curve and surface models from data points. B-Spline curves 

are very flexible curves, especially for surface modeling.  Several optimization algorithms have been used in 

the literature for B-Spline curve fitting. In this study, B-Spline curve fitting is carried out by Gray Wolf 

Optimizer (GWO). The estimation of the knot locations and the number of knots are randomly selected in the 

curve estimation by the GWO method and the curve estimation with the smallest error is aimed. For the curve 

fitting, six different functions are used which are frequently used in the literature.  The experimental studies 

show that the proposed algorithm obtains the results with low error rates for more than one functions. 

Keywords — B-Spline Curve Fitting; Gray Wolf Optimizer (GWO); Knot placement; Optimization; Reverse 

Engineering 

 

B-Spline Eğri Tahmininde Düğüm Yerleşimi İçin Gri Kurt Optimizasyon 

Algoritması 

 
ÖZET— Gerçek bir nesnenin dijital ortama aktarılmasıyla gerçekçi bir temsilinin oluşturulması yüzey 

modellemenin ana temasıdır. Bu aktarım işlemi öncelikle bu nesnelerin taranması daha sonra elde edilen veri 

noktalarından nesneyi temsil edecek verileri uydurarak eğri ve yüzey modelleri elde edilmesidir. Veri 

uydurma problemi geometrik modelleme, bilgisayarlı tasarım(CAD), bilgisayarlı modelleme(CAM) ve 

bilgisayarlı üretim alanlarındaki araştırma konuları içerisinde önemli bir yer tutmaktadır. Veri noktalarından 

eğri ve yüzey modellerinin elde etmek için tersine mühendislik kullanılmaktadır. B-Spline eğrileri özellikle 

yüzey modelleme ve eğri oluşturma için kullanımı çok esnek eğrilerdir. B-Spline eğri tahmini için literatürde 

birden fazla optimizasyon algoritmaları kullanmıştır.  Bu çalışmada, Gri Kurt Optimizasyon(GWO) 

Algoritması ile B-Spline eğri tahmini yapılmıştır.  GWO yöntemi ile yapılan eğri tahmininde düğüm 

yerlerinin tespiti ve düğüm sayısı gelişigüzel seçilerek en küçük hata ile eğri tahmini hedeflenmiştir. Eğri 

tahmini için literatürde sıklıkla kullanılan 6 farklı fonksiyonu kullanılmıştır. GWO ile birden fazla fonksiyon 

düşük hata oranı ile başarılı bir şekilde elde edilmiştir.   

Anahtar Kelimeler — B-Spline Eğri Uydurma, Gri Kurt Optimizasyon(GWO), Düğüm Yerleştirme, 

Optimizasyon, Ters Mühendislik 
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1. Introduction 

In order to be able to represent objects in the real world in a digital media, these objects 

must first be scanned. Then, with the help of the data points obtained, curve and surface 

models to represent the object need to be obtained. Reverse engineering  (Varady and 

RR.Martin 2002) is used to obtain curve and surface models from data points. In addition 

to improvements in computerized design, modeling (Pottmann, Leopoldseder et al. 2005), 

it can be said that the method of curve fitting to data points is basis of many innovations in 

industrial breakout designs, ship hull designs and in the medical sector. Similarly, data 

fitting has an important place in research topics in geometric modeling(Hoschek, Lasser et 

al. 1993), computer-aided design (CAD), computer modeling (CAM) (Barnhill 1992, 

Patrikalakis 2002), and computerized production. Mathematical functions need to be used 

in order to obtain the object again from the data points obtained from real objects. Different 

functions can be used for this operation. Different mathematical functions need to be used, 

especially as the complexity of the shape increases. For complex shapes, free-form 

polynomial functions such as Bezier, B-Spline, NURBS (Ma and Kruth 1995, Piegl 1997, 

Varady, Martin et al. 1997, Ma and Kruth 1998, De Boor 2001, Echevarria, Iglesias et al. 

2002, Galvez and Iglesias 2012, Galvez, Iglesias et al. 2012) are used. The most commonly 

used ones among these functions are B-Splines because B-Splines have more mathematical 

superiority and geometric flexibility. A change in the local points in the B-splines does not 

affect other points. The most important point in B-splines is the knot vector. In particular, 

knot selection significantly affects the shape of the curve (Farin 2002., Goldenthal and 

Bercovier 2004). An appropriate detection of the B-Spline parameters is necessary to 

obtain a good curve estimation (Piegl 1997). It is seen that the ideal solution of B-spline 

knot vector is realized by many artificial intelligence techniques (Ulker and Arslan 2009, 

Ulker 2013). Different artificial intelligence techniques have been used in the literature for 

the B-Spline curve fitting problem. Yoshimoto et al. used genetic algorithm in automatic 

node placement in data fitting problem (Yoshimoto, Moriyama et al. 1999). Kumar et al. 

proposed an approach based on Genetic Algorithm (GA) for parameter optimization in  

Non Uniform B-spline (NURBS) curve fitting (Kumar, Kalra et al. 2003). In another study, 

using the artificial immune system, B-spline knot placement was performed(Ulker and 

Arslan 2009). Elitist Clonal Selection algorithm was used for B-spline automatic knot 

placement (Galvez, Iglesias et al. 2015). Finally, (inik 2016) proposed the Gravitational 

Search Algorithm (GSA) for B-spline curve estimation.  However, for the first time, the 

GWO is handled for B-spline curve fitting in this paper. 

 
The remainder of this paper is organized as follows. General information on B-Spline curves 
is given in Chapter 2. In Chapter 3, the GWO algorithm is described. How to estimate a B-
Spline curve is described step by step in Chapter 4. Chapter 5 gives the experimental results 
obtained by the GWO method in estimating the B-Spline curve. Finally, Section 6 describes 
the conclusion. 

 

2. B-Spline Curves 

 
When the B-Splines were first proposed by De Boor (De Boor 1978), they gained 

popularity, especially on the industrial areas (Ulker and Arslan 2009). B-spline curves have 

generally been developed by the development of Bezier curves. A B-spline curve consists 

of a combination of at least one or more polynomial segments. If the B-spline curve 

consists of a single segment, this curve is also the Bézier curve. The most important feature 
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of B-spline curves is that if any one point of the data points moves, only the relevant part of 

the curve changes. However, in Bézier curves even if only any one of the points in the data 

set moves, the whole curve from the first point to the last point are affected by this 

situation.  

 

B-Spline curves and surfaces are defined by corner points called control points. Although 

the curves and surfaces obtained using these points do not pass through the control points, 

the form of the curve or surface is completely shaped according to the positions of these 

points. The polygon generated by these control points is named as control polygon. These 

points behave like a magnet, allowing the curve to follow the shape of the control polygon. 

As a result, a characteristic and smooth curve is obtained within the borders of the control 

polygon (Sarıöz 2005).  

 

Figure 1. B-Spline curve and control polygon 

 

The definition of the B-spline curves is as in (1).  

𝑃(t) = ∑ PiNi,k(t)

n

i=0

 

 

Pi   is one of n+1 polygon edges. The expression of B-spline basis function defined for each 
control point is given as in (2) and (3). 

 

𝑁𝑖,1(𝑡) = {
1   𝑥𝑖 ≤ 𝑡 < 𝑥𝑖+1

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



 

𝑁𝑖,𝑘(𝑡) =
(𝑡−𝑥𝑖)

𝑥𝑖+𝑘−1−𝑥𝑖
𝑁𝑖,𝑘−1(𝑡) +

(𝑥𝑖+𝑘−𝑡)

𝑥𝑖+𝑘−𝑥𝑖+1
𝑁𝑖+1,𝑘−1(𝑡)              



 

3. Grey Wolf Optimizer (GWO) 

 

The GWO algorithm is proposed by mimicking hunting behavior and social behavior of 
gray wolves. Regarding social hierarchy, gray wolves are classified as alpha, beta, delta and 
omega. The alpha group is a dominant type within the whole wolf population because the 
other wolf groups obey its rules. The beta class refers to secondary wolves that help alpha in 
their decisions. Omega represents the lowest gray wolfs. If a wolf does not belong to any of 
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the species mentioned above, it is called a delta. Group hunting is an interesting social 
behavior of gray wolves, as well as social interactions of wolves. The main parts of the 
GWO are the stages of encircling prey, hunting, attacking prey and searching for prey 
(Mirjalili, Mirjalili et al. 2014). 

a. Social Hierarchy  

Candidate solutions are structured taking into account the social hierarchy of the wolves. 
The solutions with the best fitness value are regarded as worms named alpha, beta, delta 
and omega respectively. 

b. Encircling prey 

The gray wolf may randomly update its position around the prey using (4) and (5). The 
encircling behavior of gray wolves can be presented as follows: 

 

𝑧 = |𝑦. 𝑊𝑝(𝑡) − 𝑊(𝑡)| 

𝑊(𝑡 + 1) = |𝑊𝑝(𝑡) − 𝑥. 𝑧| 

 

Here, Wp is the position vector of the prey, and W expresses the location vector of a grey 
wolf. x and y values are coefficient vectors and they are calculated as in (6) and (7) 
respectively:  

 

𝑥 = |2𝑎. 𝑟1 − 𝑎| 

𝑦 = |2𝑎. 𝑟2| 

 

The components of a are reduced linearly from 2 to 0 during the iterations. 𝑟1 and 𝑟2 are 

random variables which take values in the range [0, 1]. 

c. Hunting 

Alpha, beta and delta species have remarkable about the current position of the hunt. 
Therefore, the best first three solutions obtained are saved and the other wolves are allowed 
to update their positions according to their position of the best search agents. Equations (8)-

(14) can be used in this context (Jayakumar, Subramanian et al. 2016). 

 

𝑧∝ = |𝑦1. 𝑊∝ − 𝑊| 

𝑧𝛽 = |𝑦2. 𝑊𝛽 − 𝑊| 

𝑧𝛿 = |𝑦3. 𝑊𝛿 − 𝑊| 

𝑊1 = |𝑊∝ − 𝑥1. 𝑧∝| 

𝑊2 = |𝑊𝛽 − 𝑥2. 𝑧𝛽| 

𝑊3 = |𝑊𝛿 − 𝑥3. 𝑧𝛿| 

𝑊(𝑡 + 1) =
(𝑊1 + 𝑊2 + 𝑊3)

3
 


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d. Attacking prey 

At this stage, a value is reduced and therefore the range of change of x is reduced. When x 
has random values in the range [-1, 1], the next location of the search agent will be 
anywhere between the current location and the location of the prey. 

e. Search for prey 

Gray wolfs usually search by alpha, beta, and delta locations. They leave each other to 
search for their prey and come together at the moment of attacking their prey. To model the 
distribution mathematically, a parameter x with random values greater than 1 or less than -1 
is used. This process makes exploration important and supports the global search of the 
GWO algorithm. In addition, the flow chart of GWO algorithm is given in Fig. 2. 

 

Figure 2. Flow chart of GWO algorithm (Guha, Roy et al. 2016) 
 

4. Obtaining B-Spline Curves by GWO 

 

In Section II, the required parameters to obtain a B-spline curve was stated to be the control 
points, the node vector and the spline grade, respectively. If there is only a structure 
consisting of points, the control points and knot points can be obtained again from this point 
set. Firstly, the knot vector must be found from this point cloud. In this study, the knot 
vector is obtained by Centripetal (Lee 1989) method. The steps of the method are as follows. 

1. The points to be fitted to the curve are taken as an F variable. 

2. The original data sequence F is preserved, the F sequence is transferred to another Q 
sequence, and the point operations are performed via this Q sequence. 

3. The initial step of the GWO method is applied to generate the initial population by 
generating random numbers between 0 and 1 as much as the Q array size at the beginning. 

4. Which points will be knot points within the whole points are randomly selected. 

5. After finding the centripetal nodes, the knots of the estimated B-spline are calculated 
with the help of (15) and (16).  
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U = {0,0, … 0, up_esas+1, . . . , um, 1,1, … . ,1} (15) 

Uj+p𝑒𝑠𝑎𝑠
=

1

pesas
∑ ui ,

j+pesas−1

i=j

j = 1, … m − p_esas (16) 

 

6. According to the formula of B-spline curve, 𝑄 = 𝑃 ∗ 𝑅 matrix representation 

receivable. Where R matrix is produced by B-spline blending functions with N values. 

Here the P control points are calculated as P = QxR
-1

. 

7. After calculating the control points and the node vector, the curve is estimated. 

 

The total error is calculated by summing the error amounts between the actual curve and 

the estimated (calculated) curve. The model with the least amount of errors is the ideal 

model. Different error calculation methods are available in the literature. In this article, the 

ideal solutions are tried to be found by means of MSE (Mean Squared Error) error 

calculation method as in (17). 

 

𝑀𝑆𝐸 =
1

𝑛
∑ √(𝑋1𝑖 − 𝑋2𝑖)2 − (𝑌1𝑖 − 𝑌2𝑖)2

𝑛

𝑖=1

 (17) 

 
Here, n is the number of points of the curve to be plotted, X1i and X2i are respectively X 
coordinate values of i

th
  point of actual and estimated curve and Y1i and Y2i are respectively 

Y coordinate values of i
th

  point of actual and estimated curve. The Akaike Information 
Criterion (AIC) (Akaike 1973, Akaike 1974) and the Bayesian Information Criterion (BIC) 
(Schwarz 1978) are calculated alongside MSE and RMSE. The calculation of these models 
is carried out according to (18) and (19). 

𝐴𝐼𝐶 = 𝑛 ∗ 𝐿𝑛(𝑀𝑆𝐸) + 2(2 ∗ 𝑁𝑜𝑑 + 𝑝) 

𝐵𝐼𝐶 = 𝑛 ∗ 𝐿𝑛(𝑀𝑆𝐸) + 𝐿𝑛(𝑛) ∗ 2 ∗ (2 ∗ 𝑁𝑜𝑑 + 𝑝) 
 

where n is the number of points, Nod is the number of knots, and p is degree of B-spline. 

 

5. Experimental Results 

 

Six different functions are used in this study. These functions are chosen because they are 
frequently used in the literature in the problem of knot placement and curve fitting. The 
definition of the functions and the variable ranges are given in Table 1. In order to obtain 
points by means of the functions, a special software has been developed, which are shown 
its interface in Figure 3. Only the points of function 1 (Titanium Heat Data) are obtained 
from MATLAB R2014a (8.3.0.532) software. The constant variables for curve estimation 
are as in Table 1, and the curve grade is set to 3 (cubic), the number of population is 50, the 
number of iteration is 100, and each experimental study is run independently 5 times. The 
B-Spline curve estimation for 6 functions is obtained by running on a computer with the 
Intel Core i5 4690k CPU @ 3.50Ghz 16Gb Ram. 
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Figure 3. Interface of software developed to obtain function points 

 

Table 1. Benchmark functions 

Function Index Description Variable Range 

2 𝐹(𝑥) =
10x

(1 + 100x2)
 x ∈ [−2, +2] 

3 𝐹(𝑥) = 0.2𝑒−0.5xsin5x + 4 x ∈ [0,4π] 

4 𝐹(𝑥) =
100

𝑒|10x−5|+
(10𝑥−5)5

500
 x ∈ [0,1] 

5 𝐹(𝑥) = 𝑠𝑖𝑛(𝑥) + 2𝑒−30𝑥2
 x ∈ [−2,2] 

6 𝐹(𝑥) = sin(2x) + 2e−16x2
+ 2 x ∈ [−2,2] 

 

The experimental results for all functions are given in Table 2. From Table 2, it can be seen 
that the number of point for function 1 is 49. Number of knot is 16, Min MSE is found as 
0.02496, Max MSE is 0.03339 and Mean MSE is found as 0.02528. Also, Bayesian 
Information Criterion (BIC) is 143.814, Akaike Information Criterion (AIC) is 73.814, and 
Computation time (s) is 0.26563 in seconds for iteration. Graphics of actual and estimated 
curves by GWO are given in Figure 4-9. Looking at the figures, almost all of the curves are 
precisely estimated visually.  

 

When looking at the results of Function 1 in Table 3, the proposed algorithm achieves a 

higher error value than the results obtained by other researchers. The range of values used 

to obtain Function 1 is in the range of 595-1075 while the other researchers are 0-1. The 

higher error may be due to the difference in this value range. 
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Table 2. The experimental results for all functions 

 Func. 1 Func. 2 Func .3 Func. 4 Func. 5 Func. 6 

Curve Grade(P) 3 3 3 3 3 3 

Population Size 50 50 50 50 50 50 

Number of 

Iteration 
100 100 100 100 100 100 

Run 5 5 5 5 5 5 

Number of 

Point 
49 90 200 201 201 201 

Number of 

Knot 
16 53 77 40 46 37 

Min MSE 0.02496 0.01067 0.00868 1.3957 0.03255 0.02640 

Max MSE 0.03339 0.01835 0.01236 1.77553 0.05269 0.03544 

Mean MSE 0.02528 0.01131 0.00930 1.41977 0.03476 0.02693 

BIC 143 610 995 704 603 477 

AIC 73 204 325 429 268 230 

Computation 

time(s) 
0.26563 0.4375 2.0313 4.0469 3.9531 4.125 

 

Table 3. Comparison of the results obtained by the proposed algorithm for Function 1 with 

other studies 

 (De Boor 1968) (Jupp 1978) (Yuan, Chen et al. 

2013). 
Proposed 

Algorithm 

Knot Value 5 5 6 16 

Error 0.01305 0.01227 0.01174 0,02496 

 

 

 
Figure 4. Actual and estimated curves for Function 1 
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In Table 4, In previous studies Schwetlick and Schutze(Schwetlick and Schutze 1995) 

obtained function 2 with error 0.0739568 and Yuan Yuan et al(Yuan, Chen et al. 2013) 

0.067471. In the study performed, function 2 was obtained with an error of 0.01067. The 

proposed algorithm for Function 2 yields a better result than the other algorithms with 

lower error.  

 

Table 4. Comparison of the results obtained by the proposed algorithm for Function 2 with 

other studies 

 (Schwetlick and Schutze 

1995) 

(Yuan, Chen et al. 

2013). 
Proposed 

Algorithm 

MSE 0.0739568 0.067471 0,01067 

 

 
Figure 5. Actual and estimated curves for Function 2 

 

The proposed algorithm for Function 3 in Table 5 shows that Min MSE is 0.00868, Max 

MSE is 0.01236 and Mean MSE is 0.00930 were obtained. when compared to the previous 

study, although the Min MSE error value is high, the mean and Max MSE values are lower. 

The result is that the proposed algorithm works more stable.  

 

Table 5. Comparison of the results obtained by the proposed algorithm for Function 3 with 

other studies 

 (Valenzuela, Pasadas et al. 2013). 

Knot Min MSE Max MSE Mean MSE 

10 0.00241 0.0915 0.0208 

Proposed Algorithm 

Knot Min MSE Max MSE Mean MSE 

77 0,00868 0,01236 0,00930 
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Figure 6. Actual and estimated curves for Function 3 

 

As shown in Table 6 the number of iterations is 100, the BIC value is 704, and the 

calculation time is 4.0469 seconds obtained by Function 4. It is seen that the proposed 

algorithm for Function 4 is lower than the other BIC values. 

 

Table 6. Comparison of the results obtained by the proposed algorithm for Function 4 with 

other studies 

 (Yoshimoto, Harada 

et al. 2003). 

(Galvez and 

Iglesias 2011). 
Proposed 

Algorithm 

Number of iterations 200-300 10 100 

Error(BIC) 1150-1170 1012 704 

Computation time Tens of seconds 0.1 –1 s 4.0469 s 

 

 
Figure 7. Actual and estimated curves for Function 4 

 



INIK and KOÇ /GBAD, 2017, 6(2), 97-109                                                                                                    107 
 

 

Looking at Table 7 and 8 respectively for Function 5 and 6, it can be said that the 

performance of the GWO algorithm is slightly low than those of the other algorithms. 

 

Table 7. Comparison of the results obtained by the proposed algorithm for Function 5 with 

other studies 

 (Yoshimoto, 

Moriyama et al. 

1999) 

(Yoshimoto, 

Harada et al. 

2003). 

(Galvez and 

Iglesias 2011). 
Proposed 

Algorithm 

Iteration 200 200-300 10 100 

BIC -46 -193 -279 603 

Computation 

time 
5-15s 

Tens of 

seconds 
0.1-1s 

 

3.9531s 

 

 
Figure 8. Actual and estimated curves for Function 5 

 

Table 8. Comparison of the results obtained by the proposed algorithm for Function 6 with 

other studies 

 (Yoshimoto, 

Moriyama 

et al. 1999). 

(Yoshimoto, 

Harada et al. 

2003). 

(Ulker and 

Arslan 2009) 

(Galvez and 

Iglesias 

2011). 

Proposed 

Algorithm 

Iteration 200 200-300 500 10 100 

BIC 134 49 362 -63 477 

Computati

on time 
5-15s 

Tens of 

seconds 

Tens of 

seconds–

minutes 

0.1-1s 4.125s 
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Figure 9. Actual and estimated curves for Function 6 

 

 

6. Conclusion 

In this study, the GWO algorithm for knot estimation in the problem of B-Spline curve 

fitting are tested on 6 different functions and the proposed method is seen to be successful 

in general. Seven different values are obtained in order to make more flexible comparison 

with the other studies in the literature. Reverse engineering is used to estimate the curve 

and Centripetal method is used for knot estimation. The GWO algorithm dynamically 

acquires location and number of knots. When the experimental studies are examined, it can 

be stated that the GWO algorithm is an alternative technique for curve fitting problem. For 

further studies, GWO can be used for solving other binary problems as well as curve fitting 

problem. 
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