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Parkinson's disease (PD) is a serious neurological disease that is threatening 
the whole world population. The devolution of the neurons located in the 
substanstia nigra of the brain causes, bradykinesia, rigidity and resting tremor, 
which are characteristic motor symptoms, occuring in advanced stages.  
Currently, there is not an effective treatment for PD, it is just controlled by some 
prescribtions. Early detection of this disease affects the choice of treatment.  
Recent studies on early diagnosis by analyzing electroencephalography (EEG) 
recordings have provided a glimmer of hope. Therefore, in this study, an 
efficient PD detection method from EEG data by using a new set of features is 
searched. An opensource resting state data of 28 subjects divided as Parkinson 
and control gorups were anlyzed. PSDs of the EEG frequency bands that are 
delta, theta, alpha, beta and gamma and Median Spectral Frequency (MSF), 
Spectral Entropy (SE), Kolmogorov Algorithmic Complexity (KAC) and 
Weighted Symbolic Mutual Information (wSMI) were extracted as features. The 
performance of the PD and control group was evaluated with Gradient Boosting 
(GB), Gaussian Naive Bayes (GNB), and K-nearest Neighbor (KNN), Support 
Vector Machines (SVM), Logistic Regression (LR), Categorical Boosting 
(CatBoost) and Extreme Gradient Boosting (XGBoost) Algorithms. A 85% 
accuracy was achieved with the XGBoost algorithm, using 31 channels and 13 
features which outperforms the results of previous studies using this dataset in 
the literature. 
 

1. Introduction 

 

Parkinson's disease (PD) is a progressive, 

neuronal degeneration disorder that is caused by 

genetic and environmental factors and affects 

considerable amount of people all around the 

world [1]. Many research were done on the 

symptoms, causes, and the treatments of PD till 

now [2]. Various motor and non-motor 

symptoms due to damage of nigrostriatal 

dopaminergic nerve cells and other nerve cells 

are observed. Basic motor symptoms include 

bradykinesia, rigidity, postural instability, tremor 

and non-motor symptoms include cognitive, 

behavioral, sleep, and autonomic disorders [3-6].  

 

It is often difficult to diagnose PD in its primer 

stage. A neurologist generally makes the 

diagnosis based on a clinical examination of the 

patient and an assessment of the patient's medical 

history. Since the symptoms are not specific to 

the disease, there may be misdiagnosis or delays 

[7]. These delays impose enormous costs on both 

the people and the health systems of countries. 

Early diagnosis of the disease affects the choice 

of treatment. Initiation of neuroprotective 

treatment to protect the nerves before too much 
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loss of nerve cells in the substantia nigra may 

slow the progression of PD. 

 

In recent years, electroencephalography (EEG) 

recordings are being used for diagnosing PD [8-

10]. Since a clear temporal resolution of the 

cortical electrical activity of EEG is achieved, it 

is mostly preferred for clinical and research use.  

Moreover, it is cheaper and easy to use, 

compared to MEG.   

 

Recent EEG studies on PD, showed that the 

amplitudes of theta and alpha brain waves change 

significantly with the slowing actions [10]. In 

order to reveal the hidden information about the 

differences during PD needs more attention to 

implement new methods in the analysis of EEG.  

These studies may also contribute to the 

discovery of other functions and dysfunctions of 

the brain. It is stated that if there is any 

deformation in the substantia nigra neurons, it 

will affect the information transfer between the 

cortex and the basal ganglia. These changes can 

also be revealed from EEG recordings [11, 12]. 

During PD, the EEG spectrum slows down [13, 

14]. Based on these changes, classification of PD 

and healthy control (HC) groups can be detected. 

Moreover, decision support systems can be 

developed.  

 

 Research on PD diagnosis from EEG data 

mostly focus on the development of new signal 

processing methods for feature extraction [15]. 

Linear features acquired from different 

frequency bands have achieved around 75-82% 

accuracy [16] whereas, nonlinear methods have 

also been used to extract information from EEG 

for PD diagnosis [17, 18] where around 80-95% 

classification accuracy rates were calculated. 

Besides feature extraction methods, the use of 

different machine learning methods and 

comparison of their performances are also 

searched [19]. 

 

Chaturvedi et al. compared high-resolution EEG 

measurements of 50 PD patients and 41 HC and 

found that the theta power in the left temporal 

region and the alpha1/theta ratio in the mid left 

region were the most effective variables in 

classification. Among machine learning 

methods, 56%, 78%, 74% and 68% accuracy 

results were obtained with Logistic Regression 

(LR), Random Forest, Support Vector Machines 

(SVM) and Decision Tree, respectively [20]. 

Betrouni et al. achieved 84% and 88% 

classification accuracy using Power Spectral 

Density (PSD) features with SVM and K-nearest 

Neighbor Algorithm (KNN) methods in 

classifying the level of cognitive impairment in 

PD [21]. Anjum et al. achieved 85.7% accuracy 

in their classification with a linear predictive 

coding for PD detection from EEG [22].  

 

Loh et al. transformed EEG data into 

spectrograms to train a two-dimensional 

convolutional neural network model by applying 

Gabor transform to resting state EEG data from 

16 individuals with HC and 15 individuals with 

PD, achieving 99.46% classification accuracy 

[23]. Lee et al. proposed a prediction method 

with 89.3% accuracy in classification using 

Hjorth parameter features and Gradient Boosting 

(GB) algorithm [24]. Suuronen et al. investigated 

how the number and placement of electrodes 

affect PD and HC subjects. Using a special 

budget-based search algorithm to select 

optimized channel sets for classification, they 

achieved an accuracy of 76% [25]. Karakaş et al. 

achieved 85.7% accuracy in the Iova data and 

63.25% accuracy in the Turku data sets using 

beta activity and amplitude reduction in EEG 

signals associated with PD [26].  

 

Onay et al. used triaxial accelerometer signals 

collected during a pedaling task in 13 HC, 13 PD 

and 13 FoG symptomatic individuals, the 

perceptual latency from the movement command 

to the start of the movement was estimated for 

each session. Features of the distributions of the 

latencies of each participant were extracted and 

69.2% success was achieved with SVM [27]. 

Orkan Olcay et al. used entropy and connectivity 

properties of chemosensor-derived EEG signals 

together to discriminate PD and HC with odor 

stimuli with over 80% classification performance 

[28]. 

 

Moreover, some deep learning studies in the 

literature have achieved higher classification 

results [29, 30]. The main drawback is that, they 

require high processing time and large data. On 

the other hand, a successful classification 
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performance can be achieved by using classical 

machine learning methods due to the limited data 

size. 

 

Most of the studies in the literature analyze EEG 

data of whole channels. Fewer studies searched 

for the regional and number of electrodes based 

differences. In this study, the data of 63 channels 

and 31 channels were analyzed by excluding Pz 

as it is the reference channel.  The 31 channels 

analyzed in this study consist of Fp1, AF3, F7, 

F3, FC1, FC5, T7, C3, CP1, O1, Oz, O2, CP5, 

P3, P7, PO3, PO4, P4, P8, CP6, CP2, C4, T8, 

FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz.  

 

This study proposes novel features to extract 

prominent features of EEG signals that can be 

used as biomarkers to identify Parkinson's 

patients with the help of machine learning 

algorithms. In this study, wSMI, KAC and SE 

features were used for the first time in PD 

classification in resting state EEG data. The 

classical and new established ensemble learning 

argorithms are used to diagnose PD. GB, 

Gaussian Naive Bayes (GNB), KNN, SVM, LR, 

Categorical Boosting Algorithm (CatBoost) and, 

Extreme Gradient Boosting Algorithm 

(XGBoost) are used with different metrics. 

  

In classification studies for PD diagnosis based 

on EEG, generally the accuracy metric is 

included. In these studies, 69.77% of the data 

used consisted of balanced classes, and the 

remaining percentage did not show a balanced 

distribution. Training data with unbalanced 

classes can lead to prediction errors and poor 

generalizations. In studies with patients, 

especially for the diagnosis of a disease, 

sensitivity, specificity, and accuracy measures 

are very useful in evaluating the results of the 

model, as they provide a measure of true 

positives. In this study, classification results were 

evaluated according to Accuracy, Precision, 

Recall, F1 score and AUC. The average number 

of electrodes in studies in the literature is 43.34 ± 

62.18 [19, 31]. 

 

The next section of the study continues with the 

"Material - Method" section, where data sets and 

signal processing methods are introduced. In this 

section, the features and classifiers are briefly 

described. In the third section, the results 

obtained using different classifiers are presented 

comparatively for different performance 

measures. Related discussions are summarized 

here. The last section summarizes the 

conclusions of the study. 

 

2. Materials and Methods 

 

2.1. Methods 

 

The open-source EEG dataset from the 

Narayanan Laboratory at the University of Iowa 

is used [32]. The dataset contains resting state 

EEG recordings of 14 PD and 14 HC groups. The 

EEG recordings were done by using Brain Vision 

64-channel electrodes system placed on the head 

according to the international 10-20 system. The 

HC group was recruited from physically and 

mentally healthy subjects who were 

demographically matched with PD in terms of 

gender and age and had no history of 

neuropsychiatric disorders. All of the 

participants signed the written informed consent 

form. In Table 1, demographic information of the 

dataset is given. EEG recordings contains 2 

minutes eyes open data with 500 Hz sampling 

frequency and a sampling rate of 0.1-100 Hz. The 

64 channels 10-20 EEG electrode locations are 

shown in Figure 1. The Pz channel was selected 

as the reference channel. 

 
Table 1. Iowa dataset demographic information for 

PD and HC groups 

Status   
PD HC 

Number 14 14 

Gender 

(male/female) 

8f/6m 8f/6m 

Age (mean 

years ± SD) 

70.5 ± 8.7 70.5 ± 8.7 

NAART − − 

MMSE − − 

MOCA 25.9 ± 2.7 27.2 ± 1.7 

UPDRS 13.4 ± 6.6 − 

PD years of  5.6 ± 3.2 − 

 

The mean PSD changes of 28 subjects and 31 

channels are given in Figure 2.  
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Figure 1. EEG 10-20 Electrode Placement System 

for 64 channels 

 

 
Figure 2. PD and HC relative PSD of 28 contacts 

and 31 channel frequency bands 

 

In Figure 2, delta, theta, alpha, beta, and gamma 

frequency bands are given per channel. There is 

a clear difference both between PD and HC 

groups, that is, they have different relative PSD 

values. A reduction of beta rhythm in frontal and 

central regions, and another reduction of gamma 

rhythm in central, parietal, and temporal regions 

was observed, rather than the Fp2, AF3 channels.  

 

In Figures 3-4, EEG topographic maps of PD and 

HC groups are given. Most of them are in gamma 

and beta bands, and slightly in alpha, more 

activation is observed in the HC group compared 

to PD. These differences are in accordance with 

the existing literature [1, 8-9].  

 
Figure 3. Topographic maps of band power in five 

frequency bands of the HC group 

 

 
Figure 4. Topographic maps of band power in 

five frequency bands of the PD group 

 

2.2. Preprocessing 

 

All stages of data analysis were performed with 

Python using CPU in the Google Colab 

environment. In order to process EEG data with 

Python, many libraries such as mne, numpy, 

pandas, matplotlip, etc. were installed and 

configured in the Google Colab Python 

environment.  

 

Since EEG data was recorded in the Brain Vision 

System, raw EEG files with vhdr extension were 

transferred to the Google Colab environment by 

converting them into raw objects with the mne 

library so that they can be processed in Python 

language. The data was transferred from other 

libraries. The data was first bandpass filtered 

between 0.5 Hz low and 45 Hz high frequencies 

and notch filtered at 60 Hz and 100 Hz. After 

filtering, these signals were divided into a non-

overlapping time window length of twenty 

seconds. Then, MSF, PSD theta, wSMI theta, 

wSMI beta features were extracted and binary 

classification was performed using CatBoost, 

XGBoost, GNB, KNN, SVM, GB and LR 

algorithms. In Figure 5, data analysis steps are 

depicted. 

 

  
Figure 5. EEG data analysis scheme 

 

 

• Iova EEG Data 
Set (PD, HC)

Raw Data

• Filter (Band pass 
filtering) and and 
Notch Filtering

• EEG Segment 

Preprocessing

• MSF

• SE

• KAC

• PSD s

• wSMI s

Feature 
Extraction

• CatBoost

• XGBoost

• GNB

• KNN

• SVM, GB and LR

Machine 
Learning 

• PD

• HC

Classification



Neslihan Baki, Nurhan Gürsel Özmen  

916 
 

2.3. Feature extraction 

 

Feature extraction is the transformation of the 

unprocessed data into digital values with a 

reduced size of dimension to lessen the 

complexity of processing information in which, 

the original signal characteristics are correctly 

decoded and evaluated with a well-performing 

classifier [33]. There are various studies that used 

PSD parameters from the subbands of 

decomposed EEG signals which obtained 

successful classification results [22]. In this 

study, the PSD of the five bands of the EEG 

signal, wSMI Delta, wSMI Theta, wSMI alpha, 

wSMI Beta, wSMI Gama and MSF, SE, KAC, 

are selected as the feature vector. 

 

2.3.1. Power spectral density  

 

PSD is the measure of the power content of a 

signal with respect to frequency. It allows time-

varying signals to be transferred to the frequency 

domain, resulting in power distributions of the 

frequency ranges of the signal [34]. The power 

distribution of a random signal at different 

frequencies is calculated by Fourier transform. 

The PSD equation is given in equation (1). 

 

𝑆(𝑓) = ∫  𝑅(𝑡)𝑒(−2𝜋𝑖𝑓)𝑑𝑡 =
∞

−∞
𝐹(𝑅(𝑡))         (1) 

 

2.3.2. Calculation of weighted symbolic 

mutual information  

 

The Weighted Symbolic Mutual Information 

(wSMI) measure is increasingly applied to EEG 

[35, 36]. It is based on the interactions between 

two signals and the non-linear coupling between 

them. In a selected tau time k samples of the 

signal are selected. The magnitudes of the 

samples are defined by a set of symbols based on 

the order relation which represents the temporal 

separation of the signals. In this data set, wSMI 

is calculated for the joint probability of each pair 

of symbols. In order to decrease the false 

correlations between two signal groups, the joint 

probability matrix P, is multiplied by binary 

weights. The wSMI can be calculated with the 

statement in equation (2), where X, and Y 

represent two different signals. 

 
     𝑤𝑆𝑀𝐼(𝑋, 𝑌) =

 
1

log 𝑘!
∑  𝑥∈X ∑  𝑦∈Y  𝑤(𝑥, 𝑦) 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 ( 

𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)        (2)                

2.3.3. Median spectral frequency  

 

The Median Spectral Frequency (MSF) is 

commonly used to show spectral change. It 

represents the midpoint of the power distribution 

of the compressed EEG spectral array. It is a 

measure of the frequency above and below 50% 

of the total power in the EEG. MSF is also 

defined as half of the total power [37]. The 

definition of MSF is given in equation (3): 

 

 ∑ 𝑃𝑗
𝑀𝐷𝐹
𝑗=1 = ∑ 𝑃𝑗

𝑀
𝑗=𝑀𝐷𝐹 = 1/2 ∑ 𝑃𝑗

𝑀
𝑗=1                  (3) 

 

2.3.4. Spectral entropy  

 

Spectral Entropy is the spectral power 

distribution of a signal based on Shannon entropy 

[38]. It indicates the flatness or complexity of the 

signal spectrum [39]. In the following, SE is 

calculated by equation (4). 

 

𝐻(𝑥, 𝑓𝑠) = − ∑ 𝑃(f)log2
𝑓𝑠/2
𝑓=0 [𝑃(f)]                 (4)   

 

Where P is the normalized PSD and fs is the 

sampling frequency.                 

 

2.3.5. Kolmogorov algorithmic complexity  

 

The Algorithmic Complexity or Kolmogorov 

complexity (KAC) is related to the minimum 

description length. The KAC of a sequence s is 

the length of the shortest run that computes s. It 

expresses the concepts of simplicity and 

complexity. If the length d(s) of an array s with 

the fewest bits is the minimum, this is the 

minimum description of s.  Here d(s) is the 

Kolmogorov complexity of s and is represented 

by K(s) [40]. It is represented by equation (5). 

                                  

 K(s) =   |d(s)|                                                    (5)                                                                                                       

 

2.4. Classification 

 

The EEG dataset contains a total of 28 data sets 

belonging to 14 PD and 14 HC groups. 10-fold 

cross-validation is used for classification. With 

this technique, the total data set is divided into k 

approximately equal parts. Machine learning 

structures are trained and tested k times. Each 

time, the part of the data to be tested is taken from 

the k chunks and all the remaining data is used 

for training the machine learning structure. The 
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PSD features of five frequency bands (MSF, 

KAC, wSMI Delta, wSMI Theta and wSMI 

Alpha) are selected and the performance of 

different classifiers on PD and HC group data is 

evaluated using Accuracy, Precision, F1 score, 

Recall, ROC-AUC metrics. Binary classification 

was performed with CatBoost, XGBoost, GNB, 

KNN, SVM, LR and GB algorithms in Python 

Google Colab environment. 

 

2.4.1. Gradient boosting algorithm  

 

GB algorithm is a method in which new models 

are created that account for the error in the 

previous model and then the residuals are added 

to make the final prediction.  It creates prediction 

models similar to decision trees (Random 

Forests) for regression and classification 

problems. The GB algorithm does not create 

nodes after each tree to make an improvement. 

Instead, it starts with a leaf. This leaf represents 

an initial estimate for all weights. The first 

estimate here is the average value. Then Gradient 

Boost creates a tree. Boosting differs from other 

classification algorithms in that it often 

compensates for the lack of weak learners [41]. 

GB algorithms can be customized according to 

the needs of the application, such as learning 

according to different loss functions. When used 

for classification, Log-Loss is used as the cost 

function. 

 

2.4.2. K Nearest neighbor algorithm  

 

KNN is a well-known supervised learning 

algorithm commonly preferred in classification. 

This algorithm searches for the closest points to 

the new point. K is the number of nearest 

neighbors of the unknown point which is usually 

chosen as an odd number.  In the K-NN method, 

the output is the class membership. An object is 

attained to the selected label by a majority vote 

of its neighbors [42]. 

 

2.4.3. Gaussian naive bayes classifier  

 

Naive Bayes Classification, is a simplified 

version of Bayes' theorem with the independence 

premise. Bayes' theorem is expressed in equation 

(6); normal distribution of features 

 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

P(B)
                                     (6) 

                                                                                                                                 

P(A|B) denotes the probability of event A when 

event B occurs, P(B|A) denotes the probability of 

event B when event A occurs. P(A) and P(B) 

show the a priori probabilities of events A and B, 

adding subjectivity to Bayes' theorem [43]. 

Naive Bayes classifiers perform well especially 

with a small set of training data to estimate the 

necessary parameters. 

 

2.4.4. Support vector machines 

 

SVM is a supervised learning method with three 

main components that are statistical learning 

theory, optimization algorithm and kernel 

functions [44]. In SVM, the most appropriate line 

separation is the one with equal and maximum 

distance to the data classes. While creating this 

maximum distance, called the margin, the 

samples that are closest to the separating line 

among the samples belonging to the data classes 

are used. These examples are called support 

vectors. In multidimensional space, lines are 

replaced by hyperplanes [45].  

 

2.4.5. Logistic regression  

 

LR, binary logistic model or logit model is a 

statistical approach that models the probability of 

a problem occurring between two alternatives by 

taking the logarithm of the rates for a problem. In 

this method, mathematical modeling is 

performed in order to define the relationship 

between independent variables and two or multi-

class categorical dependent variables [46]. When 

all independent variables are continuous, the 

logistic model is calculated with an expression 

given in equation (7); 

 

    𝐼𝑛
Pr (𝑥1,…,𝑥𝑝)

1−Pr (𝑥1,…,𝑥𝑝)
= 𝛽0 + ∑ 𝛽𝑗

𝑘
𝑗=1 𝑥𝑖𝑗              (7) 

 

2.4.6. Categorical boosting algorithm 

 

CatBoost is a new ensemble learning method 

derived from the GB and Decision Tree 

algorithms proposed by Yandex and shown to 

have the ability to deal well with heterogeneous 

data [47]. Moreover, CatBoost uses balanced 

forgetful trees as base predictors. Thus, it 
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overcomes the problems of overlearning. In 

general, it exhibits superior classification 

performance compared to other ensemble 

learning algorithms. 

 

2.4.7. Extreme gradient boost algorithm  

 

XGBoost is a high performance version of the 

GB algorithm that is optimized with various 

adjustments. It is quick, has high predictive 

power, can avoid overlearning, can manage 

empty data. The first step in XGBoost, is to make 

the first prediction. The prediction can be any 

number as it will converge with the operations to 

be performed in the next steps and the correct 

result will be reached. The first tree is completed 

by constructing the trees that predict the errors, 

calculating the similarity and gain scores for the 

trees, pruning and obtaining the model outputs 

[48]. 

 

3. Results and Discussion 

 

For all machine learning algorithms used in this 

study, k-layer cross-validation was used to 

evaluate the overall accuracy, as it provides 

much better and more reliable results than 

conventional training methods (e.g. 75% training 

data, 25% test data) [49]. Based on the classical 

and newly used features, PSD of five frequency 

bands, SE, MSF, KAC, wSMI Delta, wSMI 

Theta, wSMI Alpha, wSMI Beta, wSMI Gamma 

the performance of different classifiers on the PD 

and HC group data was evaluated using 

Accuracy, Precision, F1 score, Recall, ROC-

AUC metrics. The classification results are 

shown in Table 2 and Table 3 respectively, 

analyzing 63 channels and 31 channels. 

 
Table 2. 10-fold cross-validation results of 63 

channels 
Classifier

  

Accuracy Precision Recall F1 Score 

XGBoost  

 

CatBoost 

0.63 

(+/- 0.16) 

0.83 

(+/- 0.16) 

0.45 

(+/- 0.25) 

0.70 

(+/- 0.31) 

0.57 

(+/- 0.19) 

0.77 

(+/- 0.23) 

0.48 

(+/- 0.21) 

0.72 

(+/- 0.28) 
GNB 0.58 

(+/- 0.32) 

0.50 

(+/- 0.37) 

0.57 

(+/- 0.33) 

0.51 

(+/- 0.35) 

KNN 0.51 
(+/- 0.21) 

0.36 
(+/- 0.26) 

0.52 
(+/- 0.20) 

0.40 
(+/- 0.23) 

GB 0.63 

(+/- 0.22) 

0.47 

(+/- 0.29) 

0.57 

(+/- 0.25) 

0.50 

(+/- 0.27) 
SVM 

 

LR 

0.56 

(+/- 0.30) 

0.46 
(+/- 0.26) 

0.52 

(+/- 0.34) 

0.42 
(+/- 0.33) 

0.57 

(+/- 0.31) 

0.52 
(+/- 0.28) 

0.51 

(+/- 0.32) 

0.42 (+/- 
0.28) 

Table 3. 10-fold cross-validation results of 31 

channels 
Classifier

  

Accuracy Precision Recall F1 Score 

XGBoost  

 

CatBoost 

0.85 

(+/- 0.18) 

0.81 

(+/- 0.18) 

0.85 

(+/- 0.22) 
0.78 

(+/- 0.26) 

0.87 

(+/- 0.16) 
0.82 

(+/- 0.19) 

0.83 

(+/- 0.24) 
0.77 

(+/- 0.22) 

GNB 0.75 
(+/- 0.27) 

0.68 
(+/- 0.34) 

0.72 
(+/- 0.30) 

0.69 
(+/- 0.32) 

KNN 0.58 

(+/- 0.29) 

0.48 

(+/- 0.34) 

0.57 

(+/- 0.29) 

0.49 

(+/- 0.31) 
GB 0.68 

(+/- 0.18) 

0.57 

(+/- 0.28) 

0.65 

(+/- 0.22) 

0.57 

(+/- 0.25) 

SVM 

 

LR 

0.66 
(+/- 0.25) 

0.46 

(+/- 0.26) 

0.58 
(+/- 0.33) 

0.41 

(+/- 0.33) 

0.65 
(+/- 0.27) 

0.55 

(+/- 0.26) 

0.58 
(+/- 0.30) 

0.42 

(+/- 0.28) 

 

The XGBoost algorithm achieved the highest 

accuracy among the seven classifiers. The 

confusion matrixes and ROC-AUC results of the 

classifiers are shown in Figure 6 and Figure 7. 

XGBoost correctly predicted 12 and incorrectly 

predicted 2 of the 14 HC groups and correctly 

predicted 12 and incorrectly predicted 2 of the 14 

PD groups as given in Figure 6. The second best 

performing classifier is the CatBoost classifier, 

with 12 correct and 2 incorrect predictions of the 

14 HC groups.  Whereas, 11 correct and 3 

incorrect predictions of the 14 PD groups. The 

amount of True Positives and True Negatives is 

decreasing with GNB, KNN, SVM, GB and LR 

algorithms, respectively. 

 

The ROC curves and AUC values are seen in 

Figure 7. It is observed from the figure that, the 

XGBoost has the best seperation capability for 

the proposed features. However, SVM, LR and 

GB have lower AUC values. Although they use 

the same feature sets, the best seperation 

methodologies of the Machine Learning 

Algorithms bring this difference.  

The present study has 13 features, belonging to 

PSD of five frequency bands, and SE, MSF, 

KAC, wSMI Delta, wSMI Theta, wSMI Alpha, 

SMI Beta, wSMI Gamma. A successful 

classification accuracy was achieved compared 

to the machine learning results in the literature. 

 

The wSMI feature, KAC and SE features in this 

study were used for the first time in detecting PD 

from the resting state EEG data. The study in 

[50], is expanded with channel reduction and 

cross-validation parameters. 
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Figure 6. Confusion matrixes of classifiers 

 

 
Figure 7. ROC curve and AUC values for classifiers 

 

In the literature, accuracy metric is generally 

used in PD detection studies from EEG [19, 31]. 

In this study, precision, sensitivity, F1 score, 

AUC metrics were used. It is seen that the results 

are supporting each other.  Resting EEG or 

magnetoencephalogram (MEG) activity in PD 

patients undergoes a general loss of complexity 

compared to controls [51, 52]. The KAC features 

used in this paper are in accordance with that 

result. Studies have shown that beta and gamma 

band power is decreased in PD [53, 54]. 

Abnormalities in the beta band have been shown 

to be associated with dyskinesia (involuntary 

movements) in PD [55]. Therefore, the use of 

band power features are consistent with this 

view. New feature sets and channel-based studies 

will be continued to examine degeneration in 

different regions of the brain for future work.  

 

4. Conclusion 

 

In this study, new features wSMI, KAC, SE, 

MSF and subband PSDs were extracted from 63 

channels and 31 channels of EEG data. They 

were analyzed by several machine learning 

algorithms for two different set of channels. 

According to the results, the 31 channel 

accuracies and AUC performances are higher 

than the 63 channels with all algortihms. The use 

of fewer channels reduces the processing time for 

online applicatications. A successful 

classification accuracy (85.00%) and 0.86 AUC 

value were obtained with XGB algortihm. 

Compared to the literature, a successful 

classification result was obtained. The use of 

novel features yielded a successful classification 

that can be a tool for PD diagnosis. 
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