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ABSTRACT

In the paper we discuss the Apollonius Problem on the number of normals of an ellipse passing
through a given point. It is known that the number is dependent on the position of the given point
with respect to a certain astroida. The intersection points of the astroida and the ellipse are used
to study the case when the given point is on the ellipse. The problem is then generalized for 3-
dimensional space, namely for ellipsoids. The number of concurrent normals in this case is known
to be dependent on the position of the given point with respect to the caustics of the ellipsoid. If
the given point is on the ellipsoid then the number of normals dependends on the position of the
point with respect to the intersections of the ellipsoid with its caustics. The main motivation of
this paper is to find parametrizations and classify all possible cases of these intersections.
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1. Introduction

How many normals can one draw from a point to an ellipse? In the current paper we will try to solve this
problem and its generalization to 3 dimensions, using the methods of differential and integral calculus and
differential geometry, which were not around when Apollonius of Perga (c. III-II centuries BC) first asked and
answered this question in his famous work Conics [3]. Their number is not the only interesting question about
these normals. For example, theorem proved by Joachimstal in 1843 states that if AB1, AB2, AB3, and AB4 are
these normals, then points B1, B2, B3, and the point diametrically opposite to B4, with respect to the center O,
of the ellipse, are concyclic [37] (see also Sect. 17.2 in [13], [34], [16], [21], [44]). There are more results related to
this fact in [11], Sect. 17.7.3.

The problem about the number of normals, which Apollonius called as the shortest and sometimes the longest
line segments, appeared in the fifth book of Apollonius, which survived only in Arabic translation [45]. For
the outline of the solution of Apollonius, one can check [59], Chapter VII, p. 260-261. There is also a lively
discussion of this problem in pages 131-135 of [55], [35]. The problem was also mentioned by V.I. Arnold
in his paper [4], Chapter IV and related popular lecture [5] is available online both as a brochure and as a
YouTube video. The main objective of this paper is to study in detail the cases when point A is on the ellipse,
and generalize these results to three dimensions for ellipsoids. Some of the results in the current paper were
presented at the Maple Conference 2022 [2], again available as a YouTube video.

2. Apollonius problem for plane

Let the ellipse be defined by
x2

a2
+

y2

b2
= 1, (1)
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Figure 1: Ellipse x2

a2 + y2

b2 = 1 (green), its 4 normals (black), the Apollonius hyperbola y = xY
ϵX−(ϵ−1)x (blue),

and astroida 3
√
a2X2 +

3
√
b2Y 2 =

3

√
(a2 − b2)

2 (red). Created using GeoGebra. For more details see https:
//www.geogebra.org/calculator/upkya8nx.

where we assume that a > b > 0. Let us take an arbitrary point A(X,Y ) on the plane of the ellipse. We want
to find point B(x, y) on the ellipse such that AB is perpendicular to the tangent of the ellipse at B. The slope
of this tangent line is y′ = − b2x

a2y , and therefore y−Y
x−X = a2y

b2x . From this we obtain the equation of the rectangular

hyperbola y = xY
ϵX−(ϵ−1)x , where ϵ = a2

b2 . The intersection points B1, B2, B3, and B4 of this hyperbola with
the ellipse give us the required normals AB1, AB2, AB3, and AB4. In his solution, Apollonius also used
this hyperbola, which is now known as the Apollonius hyperbola [11], Sect. 17.5.5.6. The asymptotes of the
hyperbola are x = a2X

a2−b2 and y = b2Y
b2−a2 . One of the branches of this hyperbola passes through the center of the

ellipse and therefore, there are at least 2 intersection points with the ellipse. The other branch may or may not
intersect the ellipse. In the cases when X = 0 and Y = 0, the hyperbola degenerates to a pair of perpendicular
lines x = 0, y = b2Y

b2−a2 and x = a2X
a2−b2 , y = 0, respectively. Let us denote by n(A) the total number of intersections

of the hyperbola with the ellipse. Since the intersection points are the solutions of a fourth order equation,
n(A) can not exceed 4. Let us find points A, where n(A) jumps from 4 to 2. This happens when the Apollonius
hyperbola is tangent to the ellipse i.e. the slopes are equal at the intersection point: − x

ϵy = ϵXY
(ϵX−(ϵ−1)x)2

. Using
this and the equation of the ellipse, we obtain

x

a
=

a

a2 − b2

(
3

√
b2Y 2X

a2
+X

)
,
y

b
=

b

b2 − a2

(
3

√
a2X2Y

b2
+ Y

)
,

which when used back in the equation of the ellipse, after some simplifications gives

3
√
a2X2 +

3
√
b2Y 2 =

3

√
(a2 − b2)

2
. (2)

It is the equation of astroida in X,Y coordinates. This curve is of 6th order and its parametric equations
can be written as (x, y) =

(
a2−b2

a cos3 t, a2−b2

b sin3 t
)

. In the interior region of this astroida n(A) = 4. Outside

of the astroida n(A) = 2. On the astroida itself n(A) = 3, except for vertices
(
±a2−b2

a , 0
)

and
(
0,±a2−b2

b

)
of

the astroida, where again n(A) = 2. This is essentially what was done by Apollonius, which is a remarkable
achievement, taking into account the mathematical tools available at the time. In [11], Sect. 17.7.4 (see also p.
204, [50]) it was mentioned that this astroida is the evolute of the ellipse and therefore drawing normals to the
ellipse can be done by drawing tangent lines of the astroida.

Let us now suppose that point A(X,Y ) is on the ellipse: X = x, Y = y. Since the Apollonius hyperbola passes
through A(X,Y ), one of points B1, B2, B3, and B4, coincide with A. For the points of ellipse (1) in astroida (2),

403 dergipark.org.tr/en/pub/iejg

https://www.geogebra.org/calculator/upkya8nx
https://www.geogebra.org/calculator/upkya8nx
https://dergipark.org.tr/en/pub/iejg


Apollonius Problem and Caustics of an Ellipsoid

n(A) = 4. For the points of ellipse (1) outside astroida (2), n(A) = 2. For the intersection points N1, N2, N3, and
N4 of ellipse (1) and astroida (2), n(A) = 3. The coordinates of these points can be easily determined: (±x0,±y0)
and (±x0,∓y0), where

x0 =

√
a4(a2 − 2b2)3

(a2 − b2)(a2 + b2)3
, y0 =

√
b4(2a2 − b2)3

(a2 − b2)(a2 + b2)3
.

Thus we proved

Theorem 2.1. For ellipse (1) and astroida (2), the following cases are possible:

1. If a2 > 2b2 then the points (±x0,±y0) and (±x0,∓y0) separate the ellipse into 4 regions where n(A) = 4 and
n(A) = 2.

2. If a2 ≤ 2b2, then for all the points of ellipse (1), n(A) = 2.

Noting this, we can say that the Apollonius problem for the number of concurrent normals of an ellipse is
completely solved. There is also a three dimensional variant of this problem, where one takes point A(X,Y, Z)

outside of the plane of ellipse x2

a2 + y2

b2 = 1, z = 0 and counts the number of lines AB, such that B(x, y, 0) is on
the ellipse, and AB is perpendicular to the tangent of the ellipse at point B (see Fig. 2). But this variant is easily
reduced to the planar case. Consider the projection A′(X,Y, 0) of A onto plane z = 0. If A′B is a normal of the
ellipse then by The Theorem of the Three Perpendiculars, AB is also perpendicular to the tangent of the ellipse
at point B. Therefore, n(A) is 2, 3, or 4 depending on the position of point A with respect cylindrical surface
defined by the same equation for astroida (2).

Apollonius did not mention any practical uses for his results, except that these normals corresponding to
minimal and maximal distances, are worth investigating for their own sake and that, in contrast to the tangents
(See Appendix), the normals were not studied much by the earlier mathematicians. Because of this connection
with the extremal distances, there can be applications in optics, wavefronts, mathematical billiards, etc. One
of the applications of these results in astronomy can be a possible explanation for the presence of 4 images of
a distant quasar, whose light is being bent around an approximately elliptical Einstein Ring formed by two
galaxies 3.4 billion light-years away [27] (see also Figure 1 in [53]).

Figure 2: Ellipse x2

a2 + y2

b2 = 1, z = 0 (green), line AB (black), and astroidal cylinder 3
√
a2X2 +

3
√
b2Y 2 =

3

√
(a2 − b2)

2 (red). Created using GeoGebra.
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3. Apollonius problem for space

Let us now consider three dimensional generalization of this problem. How many concurrent normals of an
ellipsoid are there? In this form the problem was studied through analytic methods in [38], [20] (see also [32],
[49] for geometric considerations) and generalized for higher dimensions in [47]. The answer to this question
will be given in the next section. The literature about the problem of normals to surfaces of second order is vast
and we refer the reader to Chapter III, Sections E2 and E3 of [48], which contains a detailed discussion of the
history and many references for this 3 dimensional case and the previous planar case.

Let an ellipsoid be defined by
x2

a2
+

y2

b2
+

z2

c2
= 1, (3)

where we assume that a > b > c > 0. Let us take an arbitrary point A(X,Y, Z) and find the number n(A) of
points B(x, y, z) on the ellipsoid such that AB is the normal line of the plane tangent to the ellipsoid at B. Since
the outer normal vector of the plane tangent to the ellipsoid at B(x, y, z) is N =

(
x
a2 ,

y
b2 ,

z
c2

)
,

x−X
x
a2

=
y − Y

y
b2

=
z − Z

z
c2

= −t,

where t is a parameter. From this we find a parametric representation of the cubic hyperbola (see p. 204, [48])

r(t) =
(

a2X

a2 + t
,
b2Y

b2 + t
,
c2Z

c2 + t

)
,

whose intersections with the ellipsoid give the base points of the normals through A. The asymptotes of this
curve are lines

r1(t) =
(
t,

b2Y

b2 − a2
,

c2Z

c2 − a2

)
,

r2(t) =
(

a2X

a2 − b2
, t,

c2Z

c2 − b2

)
,

r3(t) =
(

a2X

a2 − c2
,

b2Y

b2 − c2
, t

)
.

If X = 0, Y = 0, and Z = 0 then the cubic hyperbola splits into a line, which served earlier as an asymptote of
the cubic hyperbola, and a hyperbola:

r(t) = r1(t), r(t) =
(
0,

b2Y

b2 + t
,
c2Z

c2 + t

)
;

r(t) = r2(t), r(t) =
(

a2X

a2 + t
, 0,

c2Z

c2 + t

)
;

r(t) = r3(t), r(t) =
(

a2X

a2 + t
,
b2Y

b2 + t
, 0

)
,

respectively. The cubic hyperbola passes through the center of the ellipsoid when t = ±∞, and goes to infinity
when t = −a2,−b2,−c2. Therefore, there are at least 2 intersections with the ellipsoid. For example, one can take
the points of the ellipsoid with maximal and minimal distances from A. On the other hand, these intersections
are determined by (

aX

a2 + t

)2

+

(
bY

b2 + t

)2

+

(
cZ

c2 + t

)2

= 1, (4)

which is a sixth order equation with respect to t, and therefore can not have more than 6 real solutions.
As before, let us denote the number of normals through A by n(A). We want to find points A, where n(A)
jumps from 2 to 4, or from 4 to 6. This happens when cubic hyperbola is tangent to the ellipsoid i.e. r′(t) =(
− a2X

(a2+t)2 ,−
b2Y

(b2+t)2 ,−
c2Z

(c2+t)2

)
, is orthogonal to N =

(
X

a2+t ,
Y

b2+t ,
Z

c2+t

)
. This can be expressed as r′(t) · N = 0, or

as
a2X2

(a2 + t)3
+

b2Y 2

(b2 + t)3
+

c2Z2

(c2 + t)3
= 0. (5)
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Figure 3: Ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 (green), its 6 normals AB1, AB2, . . . , AB6 (black), cubic hyperbola r(t) =(
a2X
a2+t ,

b2Y
b2+t ,

c2Z
c2+t

)
(red). Created using GeoGebra.

Equations (4) and (5) define the surface known as Caustics of an Ellipsoid also known as focal surface, surface of
centers, evolute of an ellipsoid, or just Cayley’s astroida [17] (see also p. 165, [60]). Cayley used the name Centro-
surface of an Ellipsoid, and equations (4) and (5), which appear in p. 358 of [17], were obtained using the fact
that the points of this surface are the centers of principal curvatures of ellipsoid (3) (see also p. 218 in [52]). The
centers and principal radii of curvature for more general surfaces were studied by G. Monge in Sect. XXV of
[46]. For a modern definition of the principal curvatures, see, for example, p. 158, [29]. A. Cayley’s graph of the
surface appears in p. 330 of [17] (also shown in p.116, [30]). One can also find many other images depicting this
surface in various papers, dissertations, and books. See for example pp. 49-53 in [8], p. 154 in Ch. 7 of [9], [22],
[36], p. 218 in [7], p. 257 in [61], p. 49 in [39] (also shown in p. 356, [12]), [62], p. 61 in [40], p. 10 in [18]. The part
of the surface where the two surfaces corresponding to minimal and maximal curvatures intersect (named as
"the purse"), was shown and mentioned in pages 37 and 109, respectively, of [6] (see also p. 218 in [7]). S.K.
Lando gave two popular lectures about the caustics, available online, one with a demonstration of the surface
at the end [43]. Another representation of the surface together with some applications of it in astronomy and
physics appeared in [58] (See also [57]). According to [58], the idea of using more general caustics in cosmology
is due to Ya. B. Zel’dovich (see [64], [63] and the references therein).

There are many visualizations of this surface as a physical model. Before the dawn of computer graphics and
3D printers, handmade models and sculptures represented the best medium for such mathematical objects [29].
In [42], there is a description of a model made out of gypsum by student H.A. Schwarz in the Arts Faculty (later
Prof. in Univ. Berlin), which is also mentioned in Sect. 197 (p. 282), [24] (see also p. 198, [48]). Stereographic
photo of one such model by unknown artist/maker from the same time period is shown in Figure 4, [19]. Two
more models of this surface together with models of centro-surfaces of paraboloids and hyperboloids can be
found in The Collection of Mathematical Models and Instruments at The University of Göttingen [33] (models
239 and 242). Similar models for the centers of curvature of paraboloids and hyperboloids were described in
[54] (see also [15]) and p. 283 in [24] (see also [25]), respectively (see also p. 264 and p. 34, respectively, in [40]).
See also the website of The TouchGeometry Project [23] for models of caustics of an elliptical paraboloid and a
hyperboloid of one sheet in Geometry Department of Karazin University in Kharkiv, Ukraine. Another such
model is in The National Museum of American History [14]. In Fig. 5, some models created using 3d printers
of laboratories at ADA University are shown.

Note that in general, it is not easy to exclude the parameter t from equations (4) and (5), to get an explicit
equation for the caustics (see [52], p. 113 in [30]). This surface is of 12th order and its equation can be written
as a 5× 5 determinant (see p. 114 in [30]). But if, for example, c = 0, then equations (4) and (5) are transformed
to (

aX

a2 + t

)2

+

(
bY

b2 + t

)2

= 1,
a2X2

(a2 + t)3
+

b2Y 2

(b2 + t)3
= 0,

from which one can easily eliminate parameter t, and obtain equation (2) for the astroida. This gives us another
solution for the planar case considered in the previous section. Similarly, if b = c then one can introduce a new
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Figure 4: Stereograph Card, Unknown artist/maker, Centro-Surface. Ellipsoid. about 1860. Gift of Weston J.
and Mary M. Naef, Getty Museum Collection. Open Content program. No copyright. Used with permission.

Figure 5: 3d models of the caustics created in the laboratories of ADA University. Photo credit: Dr. Araz
Yusubov (Assistant Professor, ADA). Acknowledgement: Nariman Vahabli (Lab Coordinator, ADA)

variable Y ′, such that (Y ′)2 = Y 2 + Z2 and then equations (4) and (5) can be written as(
aX

a2 + t

)2

+

(
bY ′

b2 + t

)2

= 1,
a2X2

(a2 + t)3
+

b2(Y ′)2

(b2 + t)3
= 0,

from which again the parameter t is easily eliminated to get

3
√
a2X2 + 3

√
b2(Y ′)2 =

3

√
(a2 − b2)

2
,

or
3
√
a2X2 + 3

√
b2(Y 2 + Z2) =

3

√
(a2 − b2)

2
,

which is a surface of revolution generated by rotating astroida (2) around x axis (see Fig. 6).

4. Caustics of Ellipsoid in GeoGebra and Maple

In this section a method of generating the surface, based on the cartesian coordinates, will be described.
The formulas for Gaussian curvature and mean curvature of an ellipsoid are given in [51], Example 5.2, and
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Figure 6: The surface of revolution generated by rotating the astroida around one of its axes. Created using
Maple 2022 for the cases (a, b, c) = (4, 4, 3) (left) and (4.1, 3, 3) (right).

Corollary 13.41, p. 413 in [1] (see also Chapter 4, [10] for some applications in geodesy):

K(x, y) =
1(

abc
(

x2

a4 + y2

b4 + z2

c4

))2 , H(x, y) =
|x2 + y2 + z2 − a2 − b2 − c2|

2(abc)2
(

x2

a4 + y2

b4 + z2

c4

) 3
2

.

The principal curvatures k1 and k2 are the roots of the quadratic equation x2 − 2Hx+K = 0 (Corollary 13.26,
p. 400, in [1]):

k1 = H −
√

H2 −K, k2 = H +
√

H2 −K.

The corresponding radii of the curvature are R1 = 1
k1

and R2 = 1
k2

, and the respective centers of the curvature
C1(x1, y1, z1) and C2(x1, y1, z1) can be determined using the formula (see p. 226, [26])

C1(x1, y1, z1) = (x, y, z)−R1 ·
N
|N|

, C2(x2, y2, z2) = (x, y, z)−R2 ·
N
|N|

,

where as before outer normal is N =
(

x
a2 ,

y
b2 ,

z
c2

)
. The GeoGebra Activity demonstrating the surface but based

on curvilinear coordinates (see the end of the current paper), can be found in https://www.geogebra.org. The
Maple Learn document can be found in https://learn.maplesoft.com. The images created using GeoGebra and
Maple 2022 are shown in Figure 7 and Figure 8, respectively.

Figure 7: The centers corresponding to smaller (left, R2) and greater (right, R1) principal radii of curvature. The
surfaces intersect (center). Created using GeoGebra.

We can now answer the question asked at the beginning of Sect. 2. The number of normals outside of the
two caustics is 2 (n(A) = 2). For the points of the space inside of only one and both of the caustics, n(A) = 4
and n(A) = 6, respectively (see [38], p. 123-124). On the caustics, n(A) = 3 or n(A) = 5, with some exceptions
on planes X = 0, Y = 0, Z = 0, and on the intersections of the two caustics, where again n(A) = 2 or n(A) = 4
(see Fig. 9).

In the case of an ellipsoid of revolution, for example, when a = b or b = c, one of the caustics becomes a
surface of revolution, shown in Figure 6, the other caustic degenerates to a line segment on the axis of symmetry
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Figure 8: The ellipsoid and its caustics with transparency applied. Created using Maple 2022 (left) and
GeoGebra (right).

of the surfaces shown in Figure 6, between the vertices. The number of normals of ellipsoid (3) for point A on
this line segment is infinite (n(A) = ∞), except the endpoints of this line segment where n(A) = 2. For the other
points of the space, the situation is identical to the planar case considered in Sect. 2.

Figure 9: Left image: The number of normals in the regions of space separated by the caustics of the ellipsoid.
Half of the caustics is hidden to make the inner regions visible. Right image: The caustics intersect each other
and the ellipsoid along some curves separating the regions where n(A) is different.

5. The intersections of an ellipsoid and its caustics with the coordinate planes

The intersection curves of ellipsoid (3) and its caustics (see Figure 10) with the coordinate planes x = 0, y =
0, z = 0 are found in p. 325, [17] (see also p. 115, [30]).
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Lemma 5.1. The intersections of ellipsoid (3) and its caustics with the coordinate planes are the following curves:

1. Ellipse (a cos t, b sin t, 0) (black),

2. Ellipse (a cos t, 0, c sin t) (yellow),

3. Ellipse (0, b cos t, c sin t) (red),

4. Astroida
(

a2−b2

a cos3 t, a2−b2

b sin3 t, 0
)

(pink),

5. Astroida
(

a2−c2

a cos3 t, 0, a2−c2

c sin3 t
)

(light blue),

6. Astroida
(
0, b2−c2

b cos3 t, b2−c2

c sin3 t
)

(purple),

7. Ellipse
(

a2−c2

a cos t, b2−c2

b sin t, 0
)

(green),

8. Ellipse
(

a2−b2

a cos t, 0, b2−c2

c sin t
)

(dark blue),

9. Ellipse
(
0, a2−b2

b cos t, a2−c2

c sin t
)

(orange).

Figure 10: The intersections of a triaxial ellipsoid and its caustics with the coordinate planes, the nodal curve
(grey), and the intersections of the ellipsoid with its caustics (cyan blue). The other colors are explained in
Lemma 5.1. The tangency points of the two caustics and some of the intersection points are also shown. See
https://www.geogebra.org/3d/tqjwgxwg for more details.

Let us now find intersections of Ellipses 1,2,3, Astroidas 4,5,6 and Ellipses 7,8,9, respectively.

Lemma 5.2. 1. If a2 ≥ 2b2, then Ellipse 1 and Astroida 4 intersect at (±x0,±y0, 0) and (±x0,∓y0, 0), where

x0 =

√
a4(a2 − 2b2)3

(a2 − b2)(a2 + b2)3
, y0 =

√
b4(2a2 − b2)3

(a2 − b2)(a2 + b2)3
.

dergipark.org.tr/en/pub/iejg 410

https://www.geogebra.org/3d/tqjwgxwg
https://dergipark.org.tr/en/pub/iejg


Y. Aliyev

2. If a2 ≥ 2c2, then Ellipse 2 and Astroida 5 intersect at (±x1, 0,±z1) and (±x1, 0,∓z1), where

x1 =

√
a4(a2 − 2c2)3

(a2 − c2)(a2 + c2)3
, z1 =

√
c4(2a2 − c2)3

(a2 − c2)(a2 + c2)3
.

3. If b2 ≥ 2c2, then Ellipse 3 and Astroida 6 intersect at (0,±y2,±z2) and (0,±y2,∓z2), where

y2 =

√
b4(b2 − 2c2)3

(b2 − c2)(b2 + c2)3
, z2 =

√
c4(2b2 − c2)3

(b2 − c2)(b2 + c2)3
.

4. Ellipse 1 and Ellipse 7 do not have real intersection points and the coordinates of the non-real intersection points
are (±x∗,±y∗, 0) and (±x∗,∓y∗, 0), where

x∗ =

√
a2(a2 − c2)2(2b2 − c2)

(a2 − b2)(2a2b2 − a2c2 − b2c2)
, y∗ =

√
b2(b2 − c2)2(2a2 − c2)

(b2 − a2)(2a2b2 − b2c2 − a2c2)
.

5. If b2 ≥ 2c2, then Ellipse 2 and Ellipse 8 intersect at (±x3, 0,±z3) and (±x3, 0,∓z3), where

x3 =

√
a2(a2 − b2)2(2c2 − b2)

(a2 − c2)(2a2c2 − a2b2 − b2c2)
, z3 =

√
c2(c2 − b2)2(2a2 − b2)

(c2 − a2)(2a2c2 − a2b2 − b2c2)
,

and x1 ≥ x3, z1 ≤ z3 with equality cases when 1
a2 + 1

c2 = 3
b2 .

6. If 2b2 ≥ a2 ≥ 2c2, then Ellipse 3 and Ellipse 9 intersect at (0,±y4,±z4) and (0,±y4,∓z4), where

y4 =

√
b2(b2 − a2)2(2c2 − a2)

(b2 − c2)(2b2c2 − a2b2 − a2c2)
, z4 =

√
c2(c2 − a2)2(2b2 − a2)

(c2 − b2)(2b2c2 − a2b2 − a2c2)
.

In particular, y2 ≥ y4 and z2 ≤ z4 if and only if 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 ≥ 0.

7. If a2 + c2 ≥ 2b2, then Astroida 4 and Ellipse 7 intersect at (±x5,±y5, 0) and (±x5,∓y5, 0), where

x5 =

√
(a2 − c2)3(2b2 − a2 − c2)3

a2(b2 − a2)(a2 + b2 − 2c2)3
, y5 =

√
(b2 − c2)3(2a2 − b2 − c2)3

b2(a2 − b2)(a2 + b2 − 2c2)
.

8. Astroida 5 and Ellipse 8 are tangent to each other at the points (±x6, 0,±z6) and (±x6, 0,∓z6), where

x6 =

√
(b2 − c2)3

c2(a2 − c2)
, z6 =

√
(a2 − b2)3

a2(a2 − c2)
,

These points also divide Astroida 5 and Ellipse 8 into parts which belong to different caustics. These points are on,
in and outside ellipsoid (3) if 1

a2 + 1
c2 = 3

b2 , < 3
b2 , and > 3

b2 , respectively.

9. If a2 + c2 ≤ 2b2, then Astroida 6 and Ellipse 9 intersect at (0,±y7,±z7) and (0,±y7,∓z7), where

y7 =

√
(b2 − a2)3(2c2 − b2 − a2)3

b2(c2 − b2)(b2 + c2 − 2a2)3
, z7 =

√
(c2 − a2)3(2b2 − c2 − a2)3

c2(b2 − c2)(b2 + c2 − 2a2)3
.

These points are on, in and outside ellipsoid (3) if 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 = 0, < 0, and > 0, respectively.

Proof. By direct substitution of the given coordinates in the equations of the curves, we can prove the claim
about the intersections. The inequalities involving coordinates are also proved by direct substitutions. For
tangency of the curves in part 8, additionally, the slopes of the curves are compared. In parts 8 and 9, the
last claim about the position with respect to ellipsoid (3), follows directly from the substitution in (3) of the
coordinates x6, z6 and y7, z7, respectively.

One can experiment with these intersection points and the curves by moving the sliders in GeoGebra Activity
https://www.geogebra.org/3d/tqjwgxwg.
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6. The number of normals for the points of an ellipsoid

As for an ellipse, if point A is on ellipsoid (3), then one of points B1, B2, . . . , B6 coincides with A. The
description all possible cases for the regions on an ellipsoid, where n(A) jumps from 2 to 4, or from 4 to 6,
is not as trivial as in the planar case. It seems that the problem in this setting did not attract much attention
and remains unstudied. In the remaining part of the paper we will highlight the 3 cases of intersections of the
ellipsoid and its caustics (see Figure 8). In general, these intersections are some curves on ellipsoid (3), and
a simple parametrization for these curves is given at the end of this paper. Using the intersections of these
curves with the coordinate planes, which we found in the previous section, one can categorize 3 possible cases:
(i) none of the caustics intersect the ellipsoid, (ii) only one of the caustics intersects the ellipsoid, (iii) both of the
caustics intersect the ellipsoid. These intersections have many different shapes and positions, and the complete
categorization of all general cases is shown in Figure 11.

Theorem 6.1. For ellipsoid (3) and its caustics defined by (4) and (5), the following cases are possible:

1. If a2 < 2c2 then there are no intersections of the caustics with ellipsoid (3),

2. If b2 < 2c2 ≤ a2 then only one of the caustics intersects ellipsoid (3),

3. If b2 ≥ 2c2, then both of the caustics intersects ellipsoid (3).

In all cases, for the points of ellipsoid (3) lying outside of the two caustics n(A) = 2, for the points of ellipsoid (3) lying
in only one of these caustics n(A) = 4, for the points of ellipsoid (3) lying in both of these caustics n(A) = 6, and for the
intersection points of ellipsoid (3) and these caustics n(A) = 3 or 5, except some of the points of ellipsoid (3), where the
caustics intersect each other or these caustics intersect the coordinate planes.

Proof. Let us first note that if ellipsoid (3) and one of its caustics intersect, then they should also intersect on
at least one point of the coordinate planes. Indeed, suppose on the contrary that ellipsoid (3) and one of its
caustics intersect but they do not intersect on any of the coordinate planes. Then one of the intersection curves
should be situated completely in the 1st octant. Denote this curve by Γ. The part of the caustic bounded by Γ is
a smooth surface outside of ellipsoid (3), and therefore it has a tangent plane which does not intersect ellipsoid
(3). This tangent plane contains also the corresponding normal of ellipsoid (3) because the principal radii are
tangent to the caustics (see p. 312, [41]). This is a contradiction because the normals intersects ellipsoid (3). It
follows that the problem of existence of intersections of ellipsoid (3) and its caustics can be studied just by their
cross sections with the coordinate planes, which was done in Lemma 5.1 and Lemma 5.2. The remaining claims
follow directly from the results in [38].

Depending on whether a2 ≤ 2b2 or a2 > 2b2, the caustic corresponding to the greater principal radius (the red
caustics in Figure 11) is encompassed by ellipsoid (3) or ellipsoid (3) is encompassed by this caustic. Similarly,
depending on whether a2 + c2 ≥ 2b2 or a2 + c2 < 2b2, the (blue) caustic corresponding to the smaller principal
radius is encompassed by the (red) caustic corresponding to the greater principal radius or vice versa (cf. p. 326
and p. 363, [17]). It is obvious that if a2 + c2 ≤ 2b2 then a2 < 2b2. Similarly, if b2 < 2c2 ≤ a2 then 1

a2 + 1
c2 < 3

b2 .
Detailed classification of the cases of intersection of the ellipsoid and its caustics is done in Figure 11 based on

the sign of the expressions 1
a2 + 1

c2 − 3
b2 and 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2. Note that if b2 ≥ 2c2 and 2b4 + 2c4 −

a2b2 − a2c2 − 2b2c2 ≥ 0 then 1
a2 + 1

c2 > 3
b2 . Indeed, since 1

a2 + 1
c2 > 3

b2 can be written as b2c2 + a2b2 − 3a2c2 > 0,
it is sufficient to show that

b2c2 + a2b2 − 3a2c2 > 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2.

This inequality can be written as 3b2c2 + 2a2(b2 − c2) > 2b4 + 2c4. Since a > b > c, it is sufficient to show that
3b2c2 + 2b2(b2 − c2) ≥ 2b4 + 2c4, which simplifies to b2 ≥ 2c2. Similarly, if 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 ≥ 0

then a2 + c2 < 2b2. Indeed, by rewriting the given inequality we obtain a2 + c2 ≤ 2b2 − c2(a2+b2−2c2)
b2 < 2b2.

Theorem 6.2. If 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 ≤ 0 and 1
a2 + 1

c2 ≥ 3
b2 then the two caustics and ellipse (3) intersect

at a unique point of each octant.

Proof. The intersection curve of the two caustics (see Figure 10) is called the nodal curve and its parametrization
was given in p. 351, [17]:

(x(t))2 =
((γ − α)t+ α)((γ − α)t− 2γ)2((β − γ)t+ γ)3

−βγa2(αγ +Ωt)(3t− 2)2
, (y(t))2 =

t2(t− 1)((γ − α)2t+ 3αγ)3

−αγb2(αγ +Ωt)(3t− 2)2
,
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)
Figure 11: Classification of intersections of ellipsoid (green) and its caustics (red and blue). Created using Maple
2022 for the following values of (a, b, c):
(i) (4.7, 4.4, 4) (a2 < 2c2, a2 + c2 < 2b2);
(ii) (4.9, 4.4, 4) (a2 < 2c2, a2 + c2 > 2b2);
(iii) (4.7, 4, 3) (b2 < 2c2 < a2, a2 + c2 < 2b2);
(iv) (5, 4, 3) (b2 < 2c2 < a2, a2 + c2 > 2b2, a2 < 2b2);
(v) (5, 3.3, 2.5) (b2 < 2c2 < a2, a2 > 2b2);
(vi) (4, 3, 2) (b2 > 2c2, a2 + c2 < 2b2, 1

a2 + 1
c2 < 3

b2 );
(vii) 5, 3.7, 2.5 (b2 > 2c2, a2 + c2 > 2b2, a2 < 2b2, 1

a2 + 1
c2 < 3

b2 );
(viii) (5, 2.8, 1.8) (b2 > 2c2, a2 > 2b2, 1

a2 + 1
c2 < 3

b2 );
(ix) (5, 4.4, 1.6) (b2 > 2c2, 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 > 0);
(x) (4.5, 3.5, 1.4) (b2 > 2c2, a2 + c2 < 2b2, 1

a2 + 1
c2 > 3

b2 , 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 < 0);
(xi) (5, 3.7, 2) (b2 > 2c2, a2 + c2 > 2b2, a2 < 2b2, 1

a2 + 1
c2 > 3

b2 );
(xii) (5, 3, 1) (b2 > 2c2, a2 > 2b2, 1

a2 + 1
c2 > 3

b2 ).

(z(t))2 =
((γ − α)t− γ)((γ − α)t+ 2α)2((α− β)t− α)3

−αβc2(αγ +Ωt)(3t− 2)2
,

where α = b2 − c2, β = c2 − a2, γ = a2 − b2, Ω = α2 − βγ, and 0 ≤ t ≤ min
(

α
α−β ,−

γ
β−γ

)
. Note that − γ

β−γ ≥ α
α−β

iff a2 + c2 ≥ 2b2. Also note that max
(

α
α−β ,−

γ
β−γ

)
< 2

3 . Consider the function f(t) = x(t)2

a2 + y(t)2

b2 + z(t)2

c2 − 1.
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Simplifying using Maple we obtain that f(t) = p(t)(q(t))2

a4b4c4(3t−2)2r(t)
, where

p(t) = (a4b2 + a4c2 + a2b4 + c4a2 + b4c2 + c4b2 − 6a2b2c2)(a2 − 2b2 + c2)t2

+(11a4b2c2 + 11a2b2c4 + 3a2b6 + 3b6c2 − b2a6 − c2a6 − a2c6 − b2c6 − a4b4 − 5a4c4 − b4c4 − 17a2b4c2)t

+(a2 − b2)(b2 − c2)(a2b2 + b2c2 − 3a2c2),

q(t) = (a2 + b2 + c2)(a2 − 2b2 + c2)t2 + (4b4 + a2b2 + b2c2 − 3a2c2)t− 2b4,

r(t) = (a4 + b4 + c4 − a2b2 − b2c2 − a2c2)t+ (a2 − b2)(b2 − c2).

Note that r(t) > 0 whenever t ≥ 0. We will consider 3 cases.
Case 1. Suppose that a2 − 2b2 + c2 > 0. Note that

p(0) = (a2 − b2)(b2 − c2)(a2b2 + b2c2 − 3a2c2) > 0,

p

(
α

α− β

)
= −c2(a2 − c2)(b2 − c2)(2a2 − b2 − c2)(2a4 + 2b4 − a2c2 − b2c2 − 2a2b2)

(a2 + b2 − 2c2)2
< 0

p (1) = −b4(a2 − c2)2 < 0, p(+∞) = +∞.

Therefore, one of the zeros of p(t) is in the interval
(
0, α

α−β

)
, and the other zero is in the interval (1,+∞).

Similarly,
q(−∞) = +∞, q(0) = −2b4 < 0,

q

(
α

α− β

)
= −c2(3a2(b2 − c2) + c2(a2 + c2 − 2b2))(2a2 − b2 − c2)

(a2 + b2 − 2c2)2
< 0, q(+∞) = +∞,

Therefore, one of the zeros of q(t) is in the interval (−∞, 0), and the other zero is in the interval
(

α
α−β ,+∞

)
.

Case 2. Now suppose that a2 − 2b2 + c2 < 0.

p(−∞) = −∞, p(0) > 0,

p

(
− γ

β − γ

)
=

a2(a2 − c2)(a2 − b2)(a2 + b2 − 2c2)(2b4 + 2c4 − a2b2 − a2c2 − 2b2c2)

(2a2 − b2 − c2)2
< 0.

Therefore, one of the zeros of p(t) is in the interval (−∞, 0), and the other zero is in the interval
(
0,− γ

β−γ

)
.

Similarly,

q

(
− γ

β − γ

)
=

a2(3c2(b2 − a2) + a2(a2 + c2 − 2b2))(a2 + b2 − 2c2)

(2a2 − b2 − c2)2
< 0,

q(1) = a4 − a2c2 + c4 > 0, q(+∞) = −∞.

Therefore, one of the zeros of q(t) is in the interval
(
− γ

β−γ , 1
)

, and the other zero is in the interval (1,+∞).

Case 3. Let us now suppose that a2 − 2b2 + c2 = 0. In this case p(t) and q(t) are linear functions and
− γ

β−γ = α
α−β . As in Case 1, p(0) > 0, p

(
α

α−β

)
< 0, and therefore, the only root of p(t) is in the interval

(
0, α

α−β

)
.

As in Case 2, q
(
− γ

β−γ

)
< 0, q(1) > 0, and therefore, the only root of q(t) is in the interval

(
− γ

β−γ , 1
)

.

We proved that in all the cases there is only one zero t0 of f(t) in the interval 0 ≤ t ≤ min
(

α
α−β ,−

γ
β−γ

)
.

Note that t0 is the solution of quadratic equation p(t) = 0 with minus sign before the square root of its
discriminant. Coordinates x(t0), y(t0), z(t0) of the intersection point of the two caustics and ellipsoid (3) in
the first quadrant can be obtained from substitution of t0 in Cayley’s parametrization of the nodal curve.
The obtained expressions are not simple and we will not include them here (See Figure 10, the intersection
point of the cyan blue curves). Note also that if 1

a2 + 1
c2 = 3

b2 then (x(t0), y(t0), z(t0)) = (x6, 0, z6), and if
2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 = 0 then (x(t0), y(t0), z(t0)) = (0, y7, z7).
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(i) and (ii) (iii) and (iv)

(v) (vi) and (vii) (viii)

(ix) (x) and (xi) (xii)
Figure 12: Classification of the cases for positions of regions divided by the intersection curves (black) of
ellipsoid (cyan blue) and its caustics (not shown). View from the top of z-axis. Created using GeoGebra (cf.
Fig. 11). See https://www.geogebra.org/3d/uergsexn for more details.
(i) and (ii) (a2 < 2c2);
(iii) and (iv) (b2 < 2c2 < a2, a2 < 2b2);
(v) (b2 < 2c2 < a2, a2 > 2b2);
(vi) and (vii) (b2 > 2c2, a2 < 2b2, 1

a2 + 1
c2 < 3

b2 );
(viii) (b2 > 2c2, a2 > 2b2, 1

a2 + 1
c2 < 3

b2 );
(ix) (b2 > 2c2, 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 > 0);
(x) and (xi) (b2 > 2c2, a2 < 2b2, 1

a2 + 1
c2 > 3

b2 , 2b4 + 2c4 − a2b2 − a2c2 − 2b2c2 < 0);
(xii) (b2 > 2c2, a2 > 2b2, 1

a2 + 1
c2 > 3

b2 ).

In the remaining part of the paper we will find a parametrization for the intersection curves of each of the
caustics with ellipsoid (3). First of all, note that ellipsoid (3) can be parametrized in curvilinear coordinates ξ, η
as

(x(ξ, η))2 = −a2(a2 + ξ)(a2 + η)

βγ
, (y(ξ, η))2 = −b2(b2 + ξ)(b2 + η)

αγ
, (z(ξ, η))2 = −c2(c2 + ξ)(c2 + η)

αβ
,

where −a2 ≤ ξ, η ≤ −c2. In p. 324, [17] (see also p. 218, [52]) a similar parametrization of the caustics is given:

(x(ξ, η))2 = − (a2 + ξ)3(a2 + η)

a2βγ
, (y(ξ, η))2 = − (b2 + ξ)3(b2 + η)

b2αγ
, (z(ξ, η))2 = − (c2 + ξ)3(c2 + η)

c2αβ
,

where again −a2 ≤ ξ, η ≤ −c2. By substituting the last three equalities in (3), we obtain

η(ξ) = −
1 + (a2+ξ)3

βγa2 + (b2+ξ)3

αγb2 + (c2+ξ)3

αβc2

(a2+ξ)3

βγa4 + (b2+ξ)3

αγb4 + (c2+ξ)3

αβc4

.
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Substitution of this equality in the above parametrization of the caustics and taking ξ = t gives

(x(t))2 =
a2(a2 + t)3((b2 + c2)t+ 3b2c2)

(a2 − c2)(a2 − b2)((a2b2 + a2c2 + b2c2)t+ 3a2b2c2)
,

(y(t))2 =
b2(b2 + t)3((a2 + c2)t+ 3a2c2)

(b2 − a2)(b2 − c2)((a2b2 + a2c2 + b2c2)t+ 3a2b2c2)
,

(z(t))2 =
c2(c2 + t)3((a2 + b2)t+ 3a2b2)

(c2 − a2)(c2 − b2)((a2b2 + a2c2 + b2c2)t+ 3a2b2c2)
,

where −a2 ≤ t ≤ −b2 and −b2 ≤ t ≤ −c2 correspond to the two intersections of the caustics with ellipsoid
(3) (See Figure 10, the cyan blue curves). This parametrization determines the curves on ellipsoid (3) which
separate the regions of the ellipsoid with different values for n(A), thus completing the solution of the
Apollonius problem for triaxial ellipsoid (see Fig. 12). Several of the preceding results conducted by means
of the intersections with the coordinate planes, might have been conducted more simply by means of the last
parametrization.

7. Conclusion

In the paper the Apollonius problems for 2 dimensions (ellipse) and 3 dimensions (ellipsoid) were discussed.
The number of concurrent normals of an ellipse (an ellipsoid) is dependent on the position of the point of
concurrency with respect to the caustics of the ellipse (the ellipsoid). The cases when the point of concurrency
is on the ellipse (the ellipsoid), required the study of several different cases of intersections of the caustics
with the given ellipse (ellipsoid). It would be interesting to generalize the results to 4 (see [39]) and higher
dimensions.

8. Appendix

The tangent lines of an ellipse, and the tangent lines and planes of an ellipsoid are much easier to study than
the normals. For completeness, the problem on the number of concurrent tangent lines (planes) of an ellipse
(ellipsoid) will be discussed here. Let us take point A(X,Y ) outside of ellipse (1) and find points B(x1, y1) and
C(x2, y2) on ellipse (1) such that AB and AC are tangent lines of ellipse (1) at B and C, respectively. Since AB

and AC have the same slopes as ellipse (1) at points B and C, respectively, we have y−Y
x−X = − b2x

a2y , which can be

written as x(x−X)
a2 + y(y−Y )

b2 = 0. This is equation of an ellipse through points O and A, with center at
(
X
2 ,

Y
2

)
and

semiaxes parallel to the semiaxes of the original ellipse (see Fig. 13). Its intersections with the original ellipse
(1) are on line xX

a2 + yY
b2 = 1, which is obtained from subtraction of the equations of the ellipses. The coordinates

of points B and C are then determined by

x1 = a ·
X
a − Y

b

√(
X
a

)2
+
(
Y
b

)2 − 1(
X
a

)2
+
(
Y
b

)2 , y1 = b ·
Y
b + X

a

√(
X
a

)2
+
(
Y
b

)2 − 1(
X
a

)2
+
(
Y
b

)2 ,

x2 = a ·
X
a + Y

b

√(
X
a

)2
+
(
Y
b

)2 − 1(
X
a

)2
+
(
Y
b

)2 , y2 = b ·
Y
b − X

a

√(
X
a

)2
+
(
Y
b

)2 − 1(
X
a

)2
+
(
Y
b

)2 .

If we denote by t(A) the total number of tangent lines of the ellipse passing through A, then t(A) = 2 outside
of the ellipse, t(A) = 0 inside of the ellipse, and t(A) = 1 on the ellipse. The equations of the tangent lines are
y−Y
x−X = yi−Y

xi−X (i = 1, 2).
Similarly, for ellipsoid (3), if A is outside of ellipsoid (3), then point B, such that AB is tangent to ellipsoid

(3) can be determined by intersecting (3) with another ellipsoid x(x−X)
a2 + y(y−Y )

b2 + z(z−Z)
c2 = 0. All these

intersection points are on plane xX
a2 + yY

b2 + zZ
c2 = 1 (see Fig. 14). The number of tangent lines tl(A) and tangent

planes tp(A) of ellipsoid (3), which pass through A is infinity (tl(A) = tp(A) = ∞) for exterior points of ellipsoid
(3), tl(A) = tp(A) = 0 for interior points, and tl(A) = ∞ and tp(A) = 1 for the points of ellipsoid (3) itself.
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Figure 13: Ellipse x2

a2 + y2

b2 = 1 (green), its 2 tangents (black), line xX
a2 + yY

b2 = 1 (blue), and ellipse x(x−X)
a2 +

y(y−Y )
b2 = 0 (red). See https://www.geogebra.org/calculator/em993rev for more details.

By solving xX
a2 + yY

b2 + zZ
c2 = 1 for z, we obtain z = − (xX b2+yY a2−a2b2)c2

a2b2Z . By using this in (3) and taking x = t,
we obtain parametrization for the intersection curve of ellipsoid (3) with plane xX

a2 + yY
b2 + zZ

c2 = 1 (see Fig. 14)

as B (t, y(t), z(t)), where z(t) = − (tX b2+y(t)Y a2−a2b2)c2

a2b2Z , and

y(t) =
b2(−XY c2t+c2a2Y±

√
−X2Z2b2c2t2+2X Z2a2b2c2t+Y 2Z2a4c2−Y 2Z2a2c2t2+Z4a4b2−Z4a2b2t2−Z2a4b2c2)

a2(Y 2c2+Z2b2) .

Here t1 ≤ t ≤ t2, where t1, t2 (t1 ≤ t2) are the solutions of quadratic equation(
X2

a2
+

Y 2

b2
+

Z2

c2

)
t2 − 2Xt− a2

(
Y 2

b2
+

Z2

c2
− 1

)
= 0.

There are other ways to parametrize the intersection of a quadric surface with a plane (see [56] and its
references). One of them can be implemented using GeoGebra command IntersectConic (IntersectPath) (see
https://www.geogebra.org/).

It is now straightforward to find the tangent lines and tangent planes passing through A(X,Y, Z) and
B (t0, y(t0), z(t0)) for t1 ≤ t0 ≤ t2. The equation of the tangent line can be written as

x−X

t0 −X
=

y − Y

y(t0)− Y
=

z − Z

z(t0)− Z
.

Using the components of normal vector N =
(

x
a2 ,

y
b2 ,

z
c2

)
of ellipsoid (3) at point B (t0, y(t0), z(t0)), the equation

of the tangent plane can be written as

t0(x−X)

a2
+

y(t0)(y − Y )

b2
+

z(t0)(z − Z)

c2
= 0.

The intersections of a triaxial ellipsoid with planes have many applications outside of mathematics [28], [31].
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Figure 14: Ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 (green), plane xX
a2 + yY

b2 + zZ
c2 = 1 (blue), ellipsoid x(x−X)

a2 + y(y−Y )
b2 +

z(z−Z)
c2 = 0 (red), their intersection curve (ellipse, black), tangent plane (grey), and tangent line (black). See

https://www.geogebra.org/3d/uvh3uqdj for more details.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

References

[1] Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. 3rd Edition. Chapman and
Hall/CRC, New York (2017). https://doi.org/10.1201/9781315276038

[2] Aliyev, Y.: Cayley’s Centro-Surface: Old and New Attempts to Draw this Elusive Surface and Some New Ideas Around It, In: Contributed
Talks, Maple in Education, Maple Conference, Nov 02-04 (2022). https://www.maplesoft.com/mapleconference/2022/
full-program.aspx and https://youtu.be/x-lhM7oja_Q

[3] Apollonius of Perga: Conics Books V to VII, The Arabic Translation of the Lost Greek Original in the Version of the Banū Mūsā, Gerald J.
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