
INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

Model Driven Engineering of Communication
Protocol Artifact with Design Pattern Usage in

Distributed and Real-Time Embedded Systems: An
Industrial Experience

Deniz Akdur*‡, Ebru Özpolat**, Tuna Başıbüyük**

* ASELSAN Inc., Ankara, Turkey

* Department of Information Systems, Informatics Institute, METU, Ankara, Turkey

** ASELSAN Inc., Ankara, Turkey

(denizakdur@aselsan.com.tr, eozpolat@aselsan.com.tr, tturk@aselsan.com.tr)

‡ Corresponding Author; Deniz Akdur, ASELSAN, Gölbaşı, Ankara, Turkey, Tel: +90 312 592 6000/82183,

Fax: +90 312 592 6006, denizakdur@aselsan.com.tr

Received: 05.08.2017 Accepted:21.09.2017

Abstract- Distributed and real-time embedded systems, in which collections of independent computers interoperate, appear to
users as a single coherent system by creating "systems of systems". The scale and complexity of such systems makes it infeasible
to deploy them in standalone configuration, which highlights the necessity of more systematically designed and implemented
communication protocol assets. These assets should be not only close-to error proneness with abstraction, but also reusable to
achieve maximum efficiency and effectiveness during software development life cycle. To address these challenges in a specific
industrial context, we designed and implemented reusable artifact for communication protocols via model driven engineering
with the help of design pattern usage. This artifact is currently in use by many teams in the company as we report its solution
approach and its impacts in this paper.

Keywords Model driven engineering, design pattern, distributed, real-time, embedded.

1. Introduction

Distributed and Real-Time Embedded (DRE) systems, in
which collections of independent computers interoperate,
appear to users as a single coherent system [1]. They are
combined with other embedded systems to create “systems of
systems” [2]. Since the scale and complexity of DRE systems
makes it infeasible to deploy them in disconnected, standalone
configurations [3], communication is at the heart of all
distributed systems. An open system is one that is prepared to
communicate with any other open system by using standard

rules that govern the format, contents, and meaning of the
messages sent and received. These rules are formalized in
what are called protocols [1]. To allow a group of computers
to communicate over a network, they must all agree on the
protocols to be used.

The latest modern DRE systems have numerous
components, in which there are various kinds of
communication protocols. ASELSAN [4], one of Turkey's
leading defense companies, develops hybrid systems by
combining various radars and electronic warfare systems in a
single product. These products have a large number of both

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

92

internal and external interfaces with different components like
transmitters, receivers, power supplies, antennas, display units
via different communication protocols such as serial channels
(i.e., RS232, RS422) VxWorks Message Queue, TCP, UDP,
Peripheral Component Interconnect Express (PCIe) [5].

When the number of projects was less and there was no
need to care about reusability and portability, projects'
communication protocol assets were developed
independently. In that case, every project had different assets
for the same purpose (i.e. every project had its own TCP or
Serial Channel implementation). Due to the major increase in
complexity and size of the products, it was very crucial to have
reusable communication protocol assets, to achieve maximum
efficiency and effectiveness [6] during Software
Development Life Cycle (SDLC). This was not a crucial need
for the implementation, but also maintenance. For the
implementation phase, developers started to complain about
unnecessary waste of time on reinventing the wheel for a
specific communication protocol. Moreover, in the
maintenance phase, there was no chance for a new coming
engineer to easily and quickly understand the different
communication protocol implementations although he/she
took part in such a similar implementation in another project.
In summary, developers wanted to spend most of their time
and effort on the actual system scenarios (“business logic”)
instead of standard communication protocol implementation.
If there would be an asset not only a reusable, but also close-
to error proneness with abstraction [7], we would also achieve
maintainability and portability.

With all of these motivations, the importance of more
systematic software engineering practices were highlighted
and to address these challenges, an R&D project has been
started to design and implement a reusable artifact for
communication protocols, in which Model Driven
Engineering (MDE) is used. In order to get rid of accidental
complexities during implementation [8], our Model Driven
Development (MDD) approach, which is a subset of MDE, is
enriched with design pattern usage by making it easier to reuse
successful designs and architectures, which also support
extensibility [9]. On one hand, the user of this artifact can
benefit from it as an pre-built library without knowing its
details via just implementing its given interfaces [5]. On the
other hand, the user can integrate the output of this artifact as
a reference project in IBM Rational Rhapsody Developer for
C++ tool [10], which is also used as MDE tool in the company
for automatic code generation. In that situation, the user can
understand the underlying mechanisms by seeing and
analyzing the necessary UML models within the artifact.

Software documentation is very important not only in the
process of implementation, but also in test and maintenance
[11] since careful documentation can save an organization’s
time, effort and money [12]. The emergence of wide spectrum
of embedded systems, and the increasing use of software for
implementing the functionality, has led to increasing demands
for more sophisticated embedded software maintenance,
which highlights the importance of good documentation [13].
This problem can be solved with the help of MDE [11] and we
achieved this via our MDE tool, in which we implemented our
MDD approach. While implementing our asset, we carefully

comment our design, asset usage and key points; then the
generated code and documentation is always synchronized
with the help of MDE.

This communication protocol artifact is currently in use
by many teams in the company as we report in this paper.

The remainder of this paper is organized as follows.
Section 2 presents the literature review. In Section 3, the
solution is presented. Section 4 examines the evaluation of our
solution in the industrial context, in which the applicability
and usefulness of the approach are shown. Finally, Section 5
presents conclusion.

2. Literature Review

As software projects grow in scale and scope, the
extensibility of existing software and reusing existing code are
gaining more importance [6, 9]. There are several industrial
experiences on the benefits of software reuse [14-16]. “Reuse”
lowers development costs by reducing development time,
increases reliability and also reduces process risks [17]. In
addition to this, it is generally agreed that the most common
realistic way to manage the software complexity is developing
it using appropriate methods of abstraction [18]. Modeling is
seen as a way to better handle this growing complexity of
software development by helping engineers to work at higher
levels of abstraction and facilitates communication [19].

Nowadays, the state-of-the-art in software abstraction is
MDE [20], which can be seen as the systematic use of models
as primary artifacts during a software engineering process.
MDD, as a subarea of MDE, has recently become a hot topic
in both industry and academia. There are several books, e.g.,
[21-24], many research articles, e.g. [25, 26], many reports,
e.g. [27, 28] in the development and application of model-
driven technology for DRE systems.

On the other hand, expressing proven techniques as
design patterns help the designer choose among design
alternatives that make a system extensible and avoid
alternatives that compromise reusability [29]. A design pattern
is a general reusable solution to a commonly occurring
problem in software design [30]. Although software patterns
do not address extensibility explicitly, almost every pattern
that supports changeability also supports reusability and
extensibility [9]. In fact, a design pattern is a way of reusing
abstract knowledge about a problem and its solution [31],
which can be seen as successful family of proven solution to
a recurring problem that arises within a certain context [17].
There are also several books and many research articles [32-
36] on design pattern usage in embedded systems.

Although there are some communication protocol studies,
generally, they do not make use of object-oriented frameworks
and they use the facilities offered by the Socket API, which
has severe limitations, and is considered a complex, non-
portable and error-prone [37]. On the other hand, despite its
necessity, there are few studies to exploit the benefits of MDE
on communication protocol implementation, but either to
simplify or manage the design of specific system architecture
(i.e. network services for the Internet, which is based on a
specific Client-Server architecture [38] or manage

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

93

communications with and between Resource-Constrained
Systems within a heterogeneous Wireless Sensor Network
(WSN) [39]). Apart from these, there are also some attempts
to create a consistent set of interfaces and APIs for
communicating embedded systems as a communication layer
(i.e. the Multicore Association's MCAPI/MRAPI [40]). In our
MDE approach, which is enriched by design pattern usage, we
achieve not only portability, maintainability and non-error
proneness but extendibility by supporting not only a specific
architecture (i.e. Client-Server) but also some others (i.e. serial
channels or PCIe) according to our needs.

3. Solution

3.1. Selection of the solution approach

Early in the project, after we identified the challenges and
needs, the first immediate step was to list the candidate
solution approaches from the software engineering domain
applicable to the problem. After conducting a literature review
to see if approaches or tools applicable to our context have
been proposed before, we saw that if MDD is enriched with
software design patterns, which help designers build on the
collective experience of skilled software engineers by
capturing existing, well-proven experience, the impact of such
a systematic software engineering approach would be
maximized in SDLC. In other words, reusing the code and
reusing experience complete each other in MDD with design
pattern usage. Thus, we decided our solution approach as
MDD of communication protocol artifact with design pattern
usage. We discuss this approach’s design and development
aspects next.

3.2. Design and development aspects

In our problem domain, the communication-related
components should:

 Establish the connection according to protocol type
and corresponding settings

 Marshall data

 Send data

 Receive data

 Unmarshall data

 Close the connection

As an architectural design decision, the layered
architecture [41] is used in our embedded software projects.
These layers are mainly L1 (Communication Protocol), L2
(Communication Middleware) and L3 (Functionality), which
deals with “business logic”. The artifact presented in this
paper corresponds to L1, which handles with all the above
operations except “Marshall” and “Unmarshall” operations,
which are the responsibilities of L2.

3.2.1Modeling the real-time scenario via MDD

Due to real-time requirements during receiving data
operations, the user of this artifact must be informed as soon

as a connection is established or any data arrives. In order to
realize this, a four-state-statechart is modeled in our solution
domain as in Fig. 1. In the Initial state, nothing is done until a
connection request. With this connection request,
EstablishConnection state becomes active, in which necessary
settings are arranged in order to communicate. A success
scenario leads to WaitMessage state, where any incoming data
is waited. A successive arrival of this incoming data is
informed to the user of the artifact. Then, by reentering the
same state, new messages are waited. During the
EstablishConnection and WaitMessage states, any
unsuccessful operation causes transition to Error state, in
which connection is retried until an establishment or a closure
request.

Fig. 1. The statechart used in MDD in our solution domain

The functions called in states or transitions between states
of the statechart shown in Fig.1 are implemented in
GeneralCommunication class, which introduces one more
level of inheritance between ICommunication interface and
specific protocol implementations as depicted in Fig. 2. The
responsibility of GeneralCommunication class is to hold both
the common functions, which are independent of the
underlying protocol like "ManageError" and the functions,
which are inherited in the underlying protocol and overridden
accoding to the underlying protocol API like
ReturnToInitialState(), SendMessage(), CloseConnection(),
EstablishConnection() and ReceiveData(). ICommunication
interface represents the interface between the user which
stands in L2 in our architectural design Furthermore, the user
in L2 is abstracted via IUser interface. As in our application
domain, in defense domain projects, to provide the real-
timeliness’ of communication between software modules is
very critical. Therefore, each instance of
GeneralCommunication including the statechart figured out
on Fig. 1. is coupled with a single active task in the operating
system (OS). This statechart can be seen as the backbone of

Initial EstablishConnection

evEstablishConnection

evCloseConnection/
ReturnToInitialState();
itsIUser->ConnectionIsClosed();

WaitMessage

evConnectionIsEstablished/
itsIUser->ConnectionIsEstablished()

evWaitForTheMessage

evCloseConnection/
ReturnToInitialState();
itsIUser->ConnectionIs
Closed();

Error

evEstablishConnection

evConnectionIsClosed/
itsIUser->Communication
Error

evCloseConnection/
ReturnToInitialState();
itsIUser->ConnectionIsClosed();

evConnectionCouldntEstablished/
itsIUser->CommunicationError()

evConnectionCouldnt
Established

evConnectionIsEstablished/
itsIUser->ConnectionIsEstablished()

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

94

the artifact, since it presents a common model for all
communication protocol types and is inherited by every
sibling of GeneralCommunication. With the help of this
statechart abstraction, MDD manages the complexity in the
communication protocol implementations without error-prone
and accidental complexities by automating our artifact
generation through productivity and interoperability [42].

 3.2.2 Building the interfaces with bridge design pattern

When an abstraction has several possible
implementations, accommodating them by using inheritance
(i.e.ComponentAWithSerialChannel, ComponentAWithTCP,
ComponentBWithSerialChannel…) might be an alternative
solution. However, this approach isn't always flexible enough
whenever the number of protocol types increases [29]. In our
solution, two varying concepts that can be encapsulated are
communication protocols, which are referred as
implementation and the inter-dependent modules’ specific
interface requirements, which are referred as abstraction. In
order to avoid a permanent binding between an abstraction and
its implementation, we intended to hide the implementation
details of the protocols by implementing the same interface via
ICommunication class and hide the interface specific details
by using IUser interface as shown in Fig.2. By this way, when
GeneralCommunication is selected or switched at run-time,
both its abstractions (i.e. IUser) and implementations (i.e.
SerialChannel, UDP, TCP, etc.) are extensible by subclassing.
In this case, the Bridge Pattern [29] helps to combine the
different abstractions and implementations by extending them
independently.

Fig. 2. The Bridge Pattern usage in our solution domain

New communication protocol types can be easily added
by extending GeneralCommunication. By this way, we
provide improved extensibility with the help of this pattern
[29]. Moreover, the user, who implements IUser, knows
neither the implementation details nor the type of
communication protocol.

Siblings of IUser are independent from the underlying
communication protocols and also provide the user
standardized functions to implement project-specific

behavior. These standardized functions are functions related
to connection status and the function regarding parsing the
received message. The implementation of these interface
functions can vary depending on the inter-dependent modules’
requirement; whereas siblings of ICommunication are already
standardized (i.e. TCP Application Programming Interface
(API)) and already implemented in our artifact, which makes
them easier to be a reusable artifact. By this way, our artifact
consists of IUser, ICommunication and siblings of
ICommunication. From the user point of view, implementing
IUser is sufficient to get benefit from this artifact.

 3.2.3 Implementing protocols with adapter design pattern

In order to add a new communication protocol type
implementation, SendMessage(), CloseConnection(), and
EstablishConnection() interfaces, as shown in Fig.2, should be
implemented according to the new protocol type API.
Moreover, ReceiveData() function in GeneralCommunication
should be overridden. For some protocols a level of
inheritance is introduced in order to handle different usages.

As shown in Fig.3, TCP Server and Client usage are
handled in different classes, similarly UDP Multicast and
UDP Client. At that point, adapting the protocol APIs to
ICommunication Interface is a challenging problem.

Fig. 3. The Adapter Pattern usage in our solution domain

 “Establishing Connection”, “Receiving Data” or
“Sending Data” operations are straightforward and easy to
implement in the well-known communication protocol types
like TCP, UDP by being as a child of ICommunication.
However, some memory based protocols like PCIe [43] or
COTS PCI Mezzanine Card (PMC) modules might have
different APIs, which are hard to encapsulate with
ICommunication interface. High-Level Data Link Control
(HDLC) is one such a challenging API and in order to
overcome this challenge, we came up with Adapter Pattern
with object composition [29] via HDLC_API_Adaptee as
shown in Fig.3.

ICommunicat ion
«Interface»

SendMessage(cpMessage:char*,i...
CloseConneciton():void
EstablishConnection():void

IUser
«Interface»

CommunicationError(ErrorNo:int,c...
ConnectionIsClosed(pHaberlesme...
ConnectionIsEstablished(pHaberle...
ParseMessage(cpMessage:char*,i...

1..*1

Bridge Pattern

ComponentA ComponentB GeneralCommunicat ion

ReceiveData():void

TCP SerialChannelUDP

GeneralCommunicat ion

TCP

SerialChannel

UDP

TCPClient TCPServer UDPClient UDPMulticast

HDLCSerialChannel
HDLC_API_Adaptee

1

Adapter Pattern

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

95

4. Evaluation in the industrial context

4.1. Usage

Due to confidentiality reasons, we are unable to report the
application of our artifact on a real sub-system of the case-
study projects. Instead, to demonstrate the applicability and
usefulness of our approach, we report next its evaluation on a
representative example.

In Fig.4, the representative example of object diagram for
a standard user class is presented. In that situation, this user
class (i.e. ComponentA, ComponentB) inherits from IUser
and overrides CommunicationError(),
ConnectionIsEstablished(), ConnectionIsClosed() and
ParseMessage() functions for TCPClient and SerialChannel.

Fig. 4. The representative example of Object Diagram

In order to clarify the scenario, a communication diagram
for a realistic scenario is given in Fig 5.

Fig. 5. Communication diagram for a realistic scenario

According to that scenario, as a display unit, Console SW
sends a message to SW1 via TCP. After getting this message,
SW1 sends a message (either changing this received data by
applying some business logic or directly bypassing it) to HW1
via PCIe and SW2 via Message Queue. Then SW2, finally
sends its message to HW2 via serial channel.

In order to understand the details of the realistic scenario
above, a representative sequence diagram of our artifact usage
is given just for one communication protocol between two
units (either SW or HW) in Fig. 6. In this scenario, after
creation of IUser and GeneralCommunication instances,
necessary configurations depending on communication
protocol type are made (In the scenario mapping,

itsMyUser:IUser might be itsConsoleSW:IUser,
itsSW1:IUser, or similar objects and
comm1:GeneralCommunication might be
itsTCP:ICommunication, itsPCIe:ICommunication, or similar
objects). Then, after connection establishment,
sending/receiving operations are occurred.

Fig. 6. The representative example usage of our artifact

4.2. Impacts, challenges and lessons learned

Our artifact had been designed and developed in ~490
person-hours and released to customers after its acceptance
test process. On the other hand, its functionalities and
capabilities have been still enriched with the feedback from
users of this artifact by realizing their change requests (CRs)
although it is in maintenance phase. As of March 2017, our
artifact is used in 49 projects within 108 software
configuration items (SCI) as shown in Table 1.

Table 1. Total subscription of this artifact

Year

2010 2011 2012 2013 2014 2015 2016 2017

of Projects 6 12 22 26 30 35 41 49

of Users (SCI) 14 31 47 55 64 81 93 108

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

96

It is agreed that advanced middleware technologies [44,
45] by itself will not deliver the capabilities envisioned for
next-generation distributed systems; therefore MDD, as a part
of MDE, is needed not only to assist system developers in
understanding their designs and but also to reduce the costs
associated with trial and error by enriching interoperability
[46]. The impact of MDD is very clear that the development
time is very rapid when compared to ordinary scenario-based
development. By this way, reusable artifact makes it easier to
model and implement new CRs. Furthermore, verifying &
validating a new communication protocol within the artifact is
faster since all the implementations are derived from the same
model.

Moreover, from the point of the user of our artifact,
artifact adaptation to the project (i.e. linking the library or
referencing the project with necessary configuration described
in previous section) takes less than 1 person-hour without any
extra training. It is obvious that the impact of this reusable
artifact make the project gain a considerable amount of time
on the communication protocol type related implementations.

In Table 2, data taken from the company’s change
management tool are presented.

Table 2. Data taken from change management tool

Year

2010 2011 2012 2013 2014 2015 2016

Reported Bugs

6

3

2

1

0

1

0

Time spent for
bug fixing and
verification
(person-hour)

26.53

34.75

8.58

13.00

0.00

5.00

0

Change
Requests

2 14 1 2 1 0 0

Time spent for CR
implementation
and verification
(person-hour)

21.00

246.5

6.17

61.05

10.00

0.00

0

Total time spent
for bug fixing and
CRs (person-hour)

47.53

281.3

14.75

74.05

10.00

5.00

0

By analyzing Table 1 and Table 2 data, it is seen that:

 The number of users of this artifact increases,
whereas the number of reported bugs is decreased in time.
Since we keep our artifact alive and up-to-date by dealing with
reported bugs and CRs, the artifact has become more robust.

 In 2011, the number of users of this artifact becomes
more than double. As a result, CRs make the peak, some of
which causes major changes to our artifact (i.e. request for
supporting both kernel mode and user space mode). For
example, until that time, regarding VxWorks users, our
artifact was running just in Kernel Mode. However, among

these new users in 2011, some of them requested Real-Time
Process (RTP) Mode from our artifact. This request made the
development team spend lots of time while investigating RTP
Mode usage. Therefore, such CRs, which are not related with
our design approach, affected total time spent for CRs and this
result in its peak value.

 In 2013, there was a considerable amount of time
spent for total development and verification of this artifact
although the number of reported bugs and CRs are not too
much. In fact, the reason of this increase addresses the major
challenges in embedded software development. Moving some
projects to new embedded processors with new cores (i.e. to
Intel processors with Pentium cores from PowerPC cores)
required our artifact to support new functionalities and to
extend our implementation without affecting the available
capabilities besides changing our development framework.

o Supporting both little-endian & big-endian
architectures [47] and also both PowerPC and Pentium
cores.

o Upgrading embedded OS version (i.e., VxWorks),
since the BSP (Board Support Package) of the processor
supports only one version of the OS.

o Serving different users for different OSs caused
changes on the protocol API function and their usage. (i.e.,
in one VxWorks version (6.4) TCP keep parameters can be
adjusted for whole sockets as a single adjustment; whereas
in another version (6.8), TCP keep parameters can be
adjusted for each socket separately).

o Supporting/Upgrading all development framework
since this is not backward compatible (i.e., all users are also
IBM Rational Rhapsody [10] users).

Although there were above challenges, we coped all of
them with the help of our MDD approach and benefited from
design pattern usage when dealing with new CRs.

 In 2016, there was no reported bugs and CR on this
artifact, which shows its robustness and maturity.

As a layered architecture, L1 and most part of L2 are
automatically generated via MDD [5], whereas L3, which
includes scenarios, is implemented manually. This shows that
major part of our software is benefits model-driven
approaches and close-to error prone characteristics of software
complexities. Furthermore, using these reusable artifacts
provides an already verified software module.

Table 1 and Table 2 data are visualized in Fig 7 graph.

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

97

Fig. 7. Visualization of data from change management tool

5. Conclusion

The presented artifact for communication protocols based
on MDE with design patterns is close-to error proneness with
abstraction, but also reusable to achieve maximum efficiency
and effectiveness in our projects as summarized with
quantitative results on Table 2.

Creation process of the classes that our artifact contains
(i.e. TCP, UDP, SerialChannel) is not realized by our artifact.
However, it is better to have an artifact, which is independent
of how its products are created, composed, and represented
[29]. Since our artifact serves for different OSs, as a future
work, we plan to extend our current artifact with the usage of
Abstract Factory design pattern to isolate the user from
creation process.

Acknowledgements

The authors would like to thank all their colleagues in
ASELSAN for their contributions during the development,
and usage of this artifact.

References

[1] A. S. Tanenbaum and M. v. Steen, Distributed systems :
principles and paradigms, 2nd ed. Upper Saddle RIiver,
NJ: Pearson Prentice Hall, 2007.

[2] N. Wang, C. D. Gill, D. C. Schmidt, A. Gokhale, B.
Natarajan, J. P. Loyall, et al., "QoS-enabled Middleware,"
in Middleware for Communications, Q. Mahmoud, Ed.,
ed: Wiley, 2004.

[3] A. Gokhale, K. Balasubramanian, A. S. Krishna, J.
Balasubramanian, G. Edwards, G. Deng, et al., "Model
driven middleware: A new paradigm for developing
distributed real-time and embedded systems," Science of
Computer Programming, vol. 73, pp. 39-58, 9/1/ 2008.

[4] ASELSAN. (2017, 12/02/2017). ASELSAN. Available:
www.aselsan.com.tr

[5] D. Akdur and V. Garousi, "Model-Driven Engineering in
Support of Development, Test and Maintenance of
Communication Middleware: An Industrial Case-Study,"
in International Conference on Model-Driven Engineering
and Software Development (MODELSWARD), 2015.

[6] IEC/PAS, "Dependability of software products containing
reusable components – Guidance for functionality and
tests," vol. 62814, ed, 2012.

[7] J. Hutchinson, J. Whittle, M. Rouncefield, and S.
Kristoffersen, "Empirical assessment of MDE in industry,"
in 33rd International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA, 2011, pp. 471-
480.

[8] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N.
Wang, "Model Driven Middleware," in Middleware for
Communications, Q. Mahmoud, Ed., ed: Wiley, 2004.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland,
and M. Stal, Pattern-Oriented Software Architecture
Volume 1: A System of Patterns: Wiley, 1996.

[10] IBM. (2013, 16/08/2013). Rational Rhapsody family.
Available: http://www-
03.ibm.com/software/products/en/ratirhapfami

[11] W. Chao, L. Hong, G. Zhigang, Y. Min, and Y.
Yuhao, "An automatic documentation generator based on
model-driven techniques," in Computer Engineering and
Technology (ICCET), 2010 2nd International Conference
on, 2010, pp. V4-175-V4-179.

[12] D. Parnas, "Precise Documentation: The Key to
Better Software," in The Future of Software Engineering,
S. Nanz, Ed., ed: Springer Berlin Heidelberg, 2011, pp.
125-148.

[13] M. Lindvall, S. Komi-Sirviö, P. Costa, and C.
Seaman, "Embedded Software Maintenance," Data and
Analysis Center for Software2003.

[14] F. Belli, "Dependability and Software Reuse --
Coupling Them by an Industrial Standard," in SERE-C '13
Proceedings of the 2013 IEEE Seventh International
Conference on Software Security and Reliability
Companion 2013, pp. 145-154.

[15] D. Akdur and Ç. Özdemir, "The Impacts of Reusable
and Configurable Modules on Software Quality in Real-
Time Embedded Systems: Radar Utility Libraries (In
Turkish: Gerçek Zamanlı Gömülü Sistemlerde Yeniden
Kullanılabilir ve Yapılandırılabilir Yazılımların Kaliteye
Etkisi: Radar Projeleri Destek Kütüphaneleri)," in 8th
Turkish National Software Engineering Symposium (In
Turkish: Ulusal Yazılım Mühendisliği Sempozyumu
(UYMS)), Cyprus, 2014, pp. 177-186.

[16] P. Mohagheghi, S. Ict, and R. Conradi, "An
Empirical Investigation of Software Reuse Benefits in a
Large Telecom Product," ACM Transactions on Software
Engineering and Methodology, vol. 17, pp. 13:1-13:31,
2008.

[17] I. Sommerville, Software Engineering: Addison
Wesley, 2010.

[18] J. Kramer, "Is abstraction the key to computing?,"
Commun. ACM, vol. 50, pp. 36-42, 2007.

[19] E. Arisholm, L. C. Briand, S. E. Hove, and Y.
Labiche, "The impact of UML documentation on software
maintenance: an experimental evaluation," Software
Engineering, IEEE Transactions on, vol. 32, pp. 365-381,
2006.

[20] J. Hutchinson, J. Whittle, and M. Rouncefield,
"Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success

of
Projects;
2010; 6

of
Projects;
2011; 12

of
Projects;
2012; 22

of
Projects;
2013; 26

of
Projects;
2014; 30

of
Projects;
2015; 35

of
Projects;
2016; 41

of
Projects;
2017; 49

of Users
(SCI);

2010; 14

of Users
(SCI);

2011; 31

of Users
(SCI);

2012; 47

of Users
(SCI);

2013; 55

of Users
(SCI);

2014; 64

of Users
(SCI);

2015; 81

of Users
(SCI);

2016; 93

of Users
(SCI);

2017; 108

of Projects

of Users (SCI)

Reported Bugs

Change Requests

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Akdur et al., Vol.1, No.3, 2017

98

or failure," Science of Computer Programming, vol. 89,
Part B, pp. 144-161, 2014.

[21] B. P. Douglass, Real-time UML: Developing
Efficient Objects for Embedded Systems: Addison-Wesley,
2000.

[22] B. P. Douglass, Real Time UML: Advances in the
UML for Real-time Systems: Addison-Wesley, 2004.

[23] G. M. Nicolescu, P. J., Model-Based Design for
Embedded Systems CRC Press, 2009.

[24] S. Gerard, J.-P. Babau, and J. Champeau, Model
Driven Engineering for Distributed Real-Time Embedded
Systems: Wiley-IEEE Press, 2010.

[25] D. Akdur, V. Garousi, and O. Demirörs, "Cross-
factor analysis of software modeling practices versus
practitioner demographics in the embedded software
industry," in 6th Mediterranean Conference on Embedded
Computing (MECO), Montenegro, 2017.

[26] D. Akdur, O. Demirörs, and V. Garousi,
"Characterizing the development and usage of diagrams in
embedded software systems," in 43rd Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), Vienna, Austria, 2017.

[27] J. Davies, J. Gibbons, J. Welch, and E. Crichton,
"Model-driven engineering of information systems: 10
years and 1000 versions," Science of Computer
Programming, vol. 89, Part B, pp. 88-104, 9/1/ 2014.

[28] D. Akdur, O. Demirörs, and V. Garousi. (2015,
Technical report of a world-wide survey on software
modeling and model-driven engineering in the embedded
software industry. [Technical Report]. Available:
https://drive.google.com/file/d/0BzPI4c-
GGTgoVlAzNDR6Q2I3ZDA/view

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software: Addison-Wesley, 1998.

[30] C. Zhang and D. Budgen, "What Do We Know about
the Effectiveness of Software Design Patterns?," IEEE
Transactions on Software Engineering, vol. 38, pp. 1213-
1231, 2012.

[31] H. Mu and S. Jiang, "Design patterns in software
development," in Software Engineering and Service
Science (ICSESS), 2011 IEEE 2nd International
Conference on, 2011, pp. 322-325.

[32] H. Kun-Yuan, L. Yen-Chih, L. Chi-Hua, and L. Jenq
Kuen, "The support of software design patterns for
streaming RPC on embedded multicore processors," in
Signal Processing Systems, 2008. SiPS 2008. IEEE
Workshop on, 2008, pp. 263-268.

[33] R. Vincke, S. Van Landschoot, P. Cordemans, J.
Peuteman, E. Steegmans, and J. Boydens, "Algorithm
Parallelization Using Software Design Patterns, an
Embedded Case Study Approach," in P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2013 Eighth
International Conference on, 2013, pp. 470-473.

[34] T. Ovatman and F. Buzluca, "Software Design
Pattern Behavior in Shared Memory Multiprocessor
Systems," in Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference
on, 2009, pp. 1-4.

[35] J. S. Fant, H. Gomaa, and R. G. Pettit, "Architectural
Design Patterns for Flight Software," in
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011 14th
IEEE International Symposium on, 2011, pp. 97-101.

[36] S. Siegl, K. S. Hielscher, and R. German, "Modeling
and Statistical Testing of Real Time Embedded
Automotive Systems by Combination of Test Models and
Reference Models in MATLAB/Simulink," in Systems
Engineering (ICSEng), 2011 21st International
Conference on, 2011, pp. 180-185.

[37] D. C. Schmidt and S. D. Huston, C++ Network
Programming: Mastering complexity with ACE and
patterns: Addison-Wesley, 2002.

[38] J. Martinez, P. Merino, and A. Salmeron, "Applying
MDE Methodologies to Design Communication Protocols
for Distributed Systems," in Complex, Intelligent and
Software Intensive Systems, 2007. CISIS 2007. First
International Conference on, 2007, pp. 185-190.

[39] F. Fleurey, B. Morin, A. Solberg, and O. Barais,
"MDE to Manage Communications with and between
Resource-Constrained Systems," in Model Driven
Engineering Languages and Systems. vol. 6981, J. Whittle,
T. Clark, and T. Kühne, Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 349-363.

[40] D. Stewart, M. Domeika, S. A. Hissam, S. Hovsmith,
J. Ivers, R. Dickson, et al., "Chapter 17 - Multicore
Software Development for Embedded Systems: This
Chapter draws on Material from the Multicore
Programming Practices Guide (MPP) from the Multicore
Association," in Software Engineering for Embedded
Systems, ed Oxford: Newnes, 2013, pp. 563-612.

[41] B. P. Douglass, Real-Time Design Patterns : robust
scalable architecture for Real-time systems. Boston, MA:
Addison-Wesley, 2003.

[42] A. G. Kleppe, J. Warmer, and W. Bast, MDA
Explained: The Model Driven Architecture: Practice and
Promise: Addison-Wesley Longman Publishing Co., Inc.,
2003.

[43] W. Qiang, X. Jiamou, L. Xuwen, and J. Kebin, "The
research and implementation of interfacing based on PCI
express," in Electronic Measurement & Instruments, 2009.
ICEMI '09. 9th International Conference on, 2009, pp. 3-
116-3-121.

[44] S. R. Gopalan. (1998). A Detailed Comparison of
CORBA, DCOM, and Java/RMI. Available:
http://my.execpc.com/~gopalan/misc/compare.html

[45] A. S. Krishna, D. C. Schmidt, R. Klefstad, and A.
Corsaro, "Real-time CORBA Middleware," in
Middleware for Communications, Q. Mahmoud, Ed., ed:
Wiley, 2004.

[46] R. Schantz and D. C. Schmidt, "Middleware for
Distributed Systems," in Encyclopedia of Computer
Science and Engineering, B. Wah, Ed., ed, 2008.

[47] A. S. Tanenbaum and T. Austin, Structured
Computer Organization, 6th ed.: Prentice Hall, 2012.

	Deniz Akdur*‡, Ebru Özpolat**, Tuna Başıbüyük**
	Received: 05.08.2017 Accepted:21.09.2017
	Table 1. Total subscription of this artifact
	Table 2. Data taken from change management tool
	Acknowledgements
	References

