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ABSTRACT 

 
This article revisits the cognitive load theory to explore the use of worked examples to 

teach a selected topic in a higher level undergraduate physics course for distance learners 
at the School of Distance Education, Universiti Sains Malaysia. With a break of several 

years from receiving formal education and having only minimum science background, 
distance learners need an appropriate instructional strategy for courses that require 

complex conceptualization and mathematical manipulations. As the working memory is 

limited, distance learners need to acquire domain specific knowledge in stages to lessen 
cognitive load. This article charts a learning task with a lower cognitive load to teach 

Fermi-Dirac distribution and demonstrates the use of sequential worked examples. 
Content taught in stages using worked examples can be presented as a form of didactic 

conversation to reduce transactional distance. This instructional strategy can be applied 

to similar challenging topics in other well-structured domains in a distance learning 
environment. 

 
Keywords: Worked examples, cognitive load theory, instructional strategy. 

 
INTRODUCTION 

 

Open and distance learning provides the working adult with opportunities to upgrade 
themselves in terms of academic qualifications as well as skills to remain attractive in the 

labor market. Distance learners are usually adult learners and the transition from a non-
student to a student role can be a harrowing experience for some (Rice, 1982). Acquiring 

domain specific knowledge in stages is an important strategy for these learners to be 

successful. Higher level undergraduate STEM courses such as physics courses usually 
require complex conceptualization and mathematical manipulations.  Strategies to teach 

physics courses can be drawn from cognitive load theory (CLT) which views the human 
cognitive architecture as a natural information processing system (Paas et al., 2003; 

Sweller, 2012; Wong et al., 2012). Based on a cognitive architecture that consists of a 

limited working (short-term) memory that interacts with an unlimited long-term memory, 
CLT requires instructional strategies to engage students in activities that focus on schema 

acquisition and automation and ensure a processing capacity that learners can handle. 
Consequently, instruction should be designed in ways to enable working memory to 

process instructions and construct schema using appropriate levels of cognitive load. 
Since the learner’s working memory load should not be exceeded when processing 

instruction, instructional strategies should keep the total levels of intrinsic and extrinsic 

cognitive load to within the working memory limits of the learner. Recent studies showed 
that there is continuous keen research interest on CLT and instructional strategies 

appropriate for distance learners (Abeysekera and Dawson, 2015; Asraj et al., 2011; Choi 
et al., 2014; Chu, 2014; Wong et al., 2012). 
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Previous studies have shown that in well-structured domains such as physics and 

mathematics, worked examples can be used as a cognitive load reducing technique 

(Sweller and Cooper, 1985; VanLehn, 1996). A worked example usually presents a 
problem based on a principle or theory that has been introduced and provides solution 

steps that lead to the final answer.  Learning from worked examples has been reported to 
be the preferred mode by novices (LeFevre and Dixon, 1986; Renkl, 2002) and is 

particularly effective during the initial stages of cognitive skill acquisition (Renkl and 

Atkinson, 2002; Renkl and Atkinson, 2003). It is particularly helpful to distance learners 
as it can be considered as a form of guided didactic conversation as proposed by 

Holmberg (1983) who views effective distance learning as a guided conversation between 
learner and teacher separated by a transactional distance. Zhu and Simon (1987) found 

that the entire curriculum of a three-year program in algebra can be taught in two years 
without performance deficits by using carefully designed sequential worked examples to 

induce problem-solving mathematical skills even when face-to-face instruction is absent. 

While worked examples are preferred to problem solving, the extent to which learners 
benefit from studying the examples is believed to depend greatly on how well they 

explain the given solutions to themselves (Chi et al., 1989; Salden et al., 2010). Chi et al. 
(1989) noted that learners who benefited from the study of physics worked examples are 

those who frequently related the operators to domain principles or principle-based 

explanations. These learners were also observed to frequently elaborate on the 
application conditions and goals of operators.   

 
The complex interactions and procedures required in higher level undergraduate physics 

courses have implications for designing instruction. Teachers as well as instructional 
designers who use highly complex learning tasks from the start of the course are likely to 

pile excessive cognitive load on the learners (van Merrienboer et al., 2003). Sweller et al. 

(1998) rightly posited that working memory is incapable of highly complex interactions 
unless most of the information with which learners reason has previously been stored in 

the long-term memory. A good instructional strategy should enable learners to acquire 
and store domain specific knowledge in stages to lessen cognitive load from complex 

reasoning processes involving combinations of unfamiliar information at the beginning. A 

sequence of worked examples that allows the acquisition and storing of domain specific 
knowledge and an effective construction of schemas is thus suggested. This article 

revisits the cognitive load theory and illustrates how worked examples can be used as a 
strategy to teach the topic on the Fermi-Dirac distribution function in Statistical Physics 

to distance learners at the School of Distance Education (SDE), Universiti Sains Malaysia. 

The Physics program is one of the eleven undergraduate programs offered to students 
who possess the Sijil Tinggi Persekolahan Malaysia (which is equivalent to the ‘A’ level 

qualification) and who wish to pursue their first degree while keeping a full-time job. The 
students who are mostly in their thirties have left formal education for several years. 

Being a dual-mode university, Universiti Sains Malaysia maintains a relatively low intake 
of distance learners to concentrate its resources and to ensure that the degree programs 

offered via distance learning are equivalent to those offered to conventional face-to-face 

students. This implies that while the entry requirements are more flexible for students 
registering for the distance programs, the exit requirements such as the total number of 

credit hours are similar to the face-to-face students. The flexible entry requirements 
implies that students with minimum science background may be allowed to register for a 

science program if they fulfill other conditions.  

 
The SDE has been utilizing web and video conferencing learning environment as the main 

delivery mechanism for its degree programs. This delivery system allows real time 
interaction between teacher and student(s), as well as student and student with the 

capability of presenting teaching materials using software such as Microsoft PowerPoint, 
simulation packages or video clips. A document camera that is linked to the system is also 

available should the teacher choose to teach while writing on paper or to demonstrate 3-

D objects during the lesson. Recorded web and video conferencing sessions are kept in a 
learning management system that also stores course contents and activities, assignments 

as well as assessment grades.  In addition, students are given printed materials including 
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textbooks and in-house publications. Since the beginning of the 2006/07 academic year, 

STEM courses have been taught in English. 

 
COGNITIVE LOAD THEORY 

 
Cognitive load theory is a useful framework of instructional strategies for complex 

cognitive domains due to the characteristics and relations between working memory and 

long-term memory, both of which are structures that constitute human cognitive 
architecture. It is essentially an instructional theory and is concerned with the learning of 

complex cognitive tasks where learners are often overwhelmed (Paas et al., 2004). Since 
the main purpose of instruction is to construct schemas in the long-term memory, 

teachers and instructional designers should avoid strategies that ignore working memory 
limitations. For the unaided individual (learner) the working memory is believed to be 

able to hold about 7 items or chunks of information (Miller, 1956). Information is stored 

in the long-term memory as schema after being processed by working memory. The 
information that needs to be learned is known as an element while a schema is a 

cognitive construct that organizes the elements according to the manner with which they 
will be dealt with (Sweller, 1994). Schemas can also act as elements themselves in higher 

order schemas. This implies that acquired schemas can subsequently act as elements 

when a learner is faced with more complex tasks in the future.  Intrinsic cognitive load 
depends on the content to be learned, and is characterized or determined by the number 

of interacting elements that the learning task or learning material comprises (Sweller, 
1994, 2010). For complex cognitive domains, intrinsic cognitive load may be high and 

instructional strategy is therefore required for meaningful learning. Larkin et al. (1980) 
suggest that working memory may contain about 20 elements, given the uncertainty on 

how information should be packaged into elements. Examples of information stored in the 

working memory during problem-solving in physics include the current goal (e.g. how to 
interpret symbols in a particular equation), the status of various quantities, and the 

assigning of symbols to quantities. While intrinsic cognitive load depends on the inherent 
complexity of the subject material, the key to reducing intrinsic cognitive load in a 

difficult subject is to find simpler learning tasks where some interacting elements can be 

removed (Paas et al., 2003). This is particularly important to distance learners who have 
left formal education for several years and are beginning to embark on an undergraduate 

program.  
 

When a learner has gained familiarity with a domain and the need to devote attention to 

the required cognitive processes is greatly reduced, automation is said to have occurred. 
Automatic processing occurs when information stored in schemas can be processed 

automatically without conscious control or effort (Stoica et al., 2011; Sweller, 1994) and 
thus frees cognitive resources for other activities. Worked examples can be used as an 

instructional strategy to help learners gain familiarity with a domain and reduce cognitive 
load. 

 

STATISTICAL PHYSICS AS AN UNDERGRADUATE COURSE FOR DISTANCE LEARNERS 
 

Statistical Physics predicts the average value of the thermodynamic properties based on 
probabilistic treatment of an atomic model of the system. It is obvious that complete 

information of a system with a large number of degrees of freedom cannot be obtained 

and thus statistical consideration can be used to predict the macroscopic properties from 
the atomic model. Students taking this course are expected to have come from a science 

background where calculus, probability and permutations have already been taught in 
high school. In university these students would have studied Newtonian mechanics, 

quantum mechanics, electrodynamics and thermodynamics in their first and second years 
before registering for this course. Typical learning outcomes are often stated as the 

ability to describe the statistical nature of concepts and laws of thermodynamics as well 

as the ability to use the Boltzmann, Fermi-Dirac and Bose-Einstein distributions to solve 
problems in some physical systems.  
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Statistical Physics is a core course for students majoring in Physics at the School of 

Distance Education. The distance learners from two different batches indicated that part 

of the difficulty in learning Statistical Physics lies in the high intrinsic load as the 
subtopics almost always contain abstract concepts and mathematics-related problems 

where problem-solving skills are required. These subtopics are linked in many ways but 
unfortunately most sources of information do not give a complete understanding on how 

they are linked. As distinct elements must be learned separately, the distance learner has 

to integrate them mentally from different sources. This process inevitably creates a high 
extraneous cognitive load that is known as the split-attention effect (Mayor and Moreno, 

2003). The split-attention effect implies that giving attention to different sources of 
information increases the extraneous cognitive load on working memory and thus 

impedes the learning process. One of the topics in Statistical Physics that the distance 
learners at SDE find hard to understand is the derivation of the FD function. A needs 

analysis survey involving a total of 40 respondents from two different academic years 

indicated the following were lacking: 
 

 an understanding of the abstract concept of the Pauli Exclusion Principle. 
Specifically, how this principle is translated into the arrangement of particles 

among energy levels; 

 a simpler method to derive the FD function without using different sources of 
techniques and information such as the difficult Lagrange method and the 

Stirling approximation.  
 

WORKED EXAMPLES IN THE TEACHING OF PHYSICS 
 

While the worked example effect has been the focus of research in recent years (Cooper, 

1990; Leppink et al., 2014; Margulieux and Catrambone, 2016; Mwangi and Sweller, 
1998; Stoica et al., 2011; Sweller, 1994), studies on using worked examples as 

instructional strategies in higher level physics courses are rare. Two previous studies by 
Cooper (1990) and Chi et al. (1989), involved low level undergraduate physics courses. 

Cooper (1990) described how a worked example can be used to teach insulation 

resistance testing and discussed the difference in cognitive load between a split source of 
information and an integrated format of instruction. The study, however, did not analyze 

the conceptual structure of the subject content nor identify essential factual and 
procedural knowledge. Chi et al. (1989) found that the extent to which learners in 

Mechanics gain from the use of examples depended on how well they explained the 

solutions to the worked examples to themselves. Knowing how to explain the solutions 
shown is deemed necessary as worked examples typically contain unclear actions. 

Learners should therefore compensate for the action gaps in the examples by providing 
explanations for a particular action that is shown in the worked example.  

 
Worked examples make more efficient use of students’ limited cognitive resources than 

problem-solving (Moreno, 2006). While problem-solving skills in well-structured domains 

such as higher level physics courses require a large number of schemas as extensive 
search processes are involved, learning via worked examples is believed to be a practice 

method that makes more efficient use of students’ limited cognitive resources than 
problem-solving (Moreno, 2006). Worked examples are believed to be more effective as 

they involve less random processes than problem-solving (Sweller, 2006). They model the 

process of problem-solving by presenting an example problem and showing the necessary 
steps towards the final answer to the problem (Renkl, 2002; Renkl and Atkinson, 2002).  

 
The sequential worked-example effect is based on the premise that choosing a simpler 

learning task that omits some interacting elements can reduce intrinsic cognitive load and 
therefore facilitate learning. Sequencing the learning material in a simple-to-complex 

order so that learners avoid the full complexity at the outset is suggested as a way to 

control intrinsic cognitive load and lessen the instantaneous load (de Jong, 2010; van 
Merrienboer et al., 2003). For higher level courses, a single worked example for a 

particular instructional area will probably not result in reducing the cognitive load 
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(Sweller, 2006). The effectiveness of worked examples is believed to be due to a 

lengthened ‘example phase’ where a number of examples are presented before learners 

are expected to engage in problem-solving (Renkl and Atkinson, 2003). Similarly, Cooper 
and Sweller (1987) reported that learners who were trained with worked examples or an 

extended period were better able to solve problems as well as transfer problems 
compared to those who were subject to conventional problem-solving training. 

 

Sequential worked examples can be utilized to teach the derivation of the Fermi-Dirac 
(FD) distribution function of a system of particles as this topic can be divided into 

different stages of presentations. In a system with a relatively small amount of particles 
and fixed energy the occupation numbers of the energy levels can be calculated easily.  

The difficulty arises when the number of particles is very large. A general expression for 
the average occupation numbers is therefore needed. The FD distribution function is an 

expression that describes the most probable distribution of identical and 

indistinguishable particles (fermions) that obey the Pauli Exclusion Principle. It gives the 
number of particles occupying state i that has energy Ei. It can be expressed as  

  
  /
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


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where k is the Boltzmann constant, T is the absolute temperature, Ei is the energy of the 

state i and Ef is the Fermi energy, which is characteristic of the system being described. 

 
The derivation of the function has a physical significance as it gives the expected number 

of particles occupying the state i that has energy Ei. In other words, the function gives the 
probability that a state with energy Ei is occupied by a particle. The FD distribution clearly 

indicates that at the temperature at absolute zero (T = 0 K) particles will fill up available 
energy states below the characteristic energy level Ef following Pauli Exclusion Principle. 

  

The derivation of the FD distribution function can be also as a sequence of physics 
principles selected and applied to the problem situation. In a previous study, Sweller 

(1988) noted that problem solving by means-ends analysis may impede learning as it 
demands a high cognitive processing capacity that is consequently inaccessible for 

schema acquisition especially for novices. The study shows that expert and novice 

problem solvers in physics use different strategies, with novices using the means-ends 
analysis. Novices were reported to work backwards from the goal where subgoals were 

set. The backward process were performed until they obtain the required equations for 
the subgoals were obtained. With this achieved, the backward process were consequently 

reversed and a forward-working sequence commenced. As the domain specific knowledge 

and the memory of problem states of the experts were different, they could proceed with 
the forward-working sequence with the appropriate choice of equations that leads to the 

goal. Since distance learners with minimum science background are considered novices, 
worked examples may be a better instructional strategy than problem solving.  

 
WORKED EXAMPLES AS AN INSTRUCTIONAL STRATEGY TO TEACH THE FD DISTRIBUTION 

FUNCTION 

 
Learners can be instructed on the derivation of FD distribution function via different 

learning tasks.  Most of these tasks require highly complex mathematical skills such as 
calculus, the use of Stirling’s approximation as well as the method of Lagrange 

multipliers. A usual route to teach FD distribution function starts at imagining a three-

dimensional virtual space such that a state of the particle is represented by a point in this 
space. All possible states of the particle are located only in 1/8 of the total space for 

positive values on the three orthogonal axes. Some of the major steps of determining the 
density of states are listed as follows: 

 
a) Relate the kinetic energy of a particle to its momentum 

b) From (a) the expressions 
2 2p mE and 

3/2 1/22dp m E dE are obtained 
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c) Obtain the density of states which is expressed as
3/ 2 1/ 2

3

4
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g E dE m E dE

h


  

d) Modify the density of states for the spin orientation to be taken into 

consideration to obtain the actual density of states which is 

dEEm
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3
2

8
  

Further steps involving the partition function, the Helmholtz free energy and the method 

of Lagrange multipliers are required before the learner can finally obtain the FD 

distribution function. These learning tasks therefore involve a high cognitive load and 

element interactivity. Using highly complex learning tasks from the beginning will affect 

learning, performance and motivation negatively as it imposes excessive cognitive load 

on the learners (van Merrienboer et al, 2003; Sweller et al., 1998).  

 

A better learning task should present a lower intrinsic cognitive load and starts with 

understanding the difference between permutations and combinations of objects before 

moving on to arranging indistinguishable particles among the energy levels of a system 

with a fixed total number of particles and energy. This route is particularly helpful for 

distance learners who have minimum science background. The FD statistics can be 

derived from simple concepts associated with the arrangements of indistinguishable 

particles subject to the Pauli Exclusion Principle.  The procedures to be applied are 

basically the combination of particles in the different energy states in the various 

available energy levels subject to Pauli Exclusion Principle. For the derivation of the FD 

distribution function, the learning task takes the simpler route of comparing two similar 

systems of particles subject to Pauli Exclusion Principle in which the second system has 

one less particle than the first. 

 

This learning task therefore lets learners start their work on relatively simple content and 

progress towards more complex content. It also omits many interacting elements that are 

associated with the earlier learning tasks that rely mainly on the density of states and the 

method of Lagrange multipliers. In view of this, teachers as well as instructional 

designers can use sequential worked examples as a strategy to reduce cognitive load and 

facilitate learning in higher level undergraduate physics courses. The worked examples 

should be able to demonstrate how to apply the required procedures to the specific steps 

leading to the derivation of the FD distribution function. 

 

In this learning task it is clear that a sequence of worked examples should consist of: 

 

i. example(s) that differentiate permutation and combination; 

ii. example(s) showing the distribution of indistinguishable particles in systems 

with a fixed amount of energy and a small number of particles for non-

degenerate energy levels; 

iii. example(s) showing the distribution of particles obeying the Pauli Exclusion 

Principle for a system with the degeneracy of energy levels; 

iv. example(s) showing the derivation of the FD statistics; 

v. example(s) showing the derivation of the FD distribution function based on the 

comparison of two systems of particles where the second system has one less 

particle at an arbitrary energy level. 

 



148 
 

Although the worked examples are sequenced, they should all be integrated examples 

rather than split-source examples. This is important to note that Mwangi and Sweller 

(1998) found the latter examples difficult to comprehend. 
 

Worked Example on Permutations and Combinations  
Question 

Five boxes are labeled A, B, C, D and E.  Find the number of ways the three boxes can be 

chosen if  
i. the order is important 

ii. the order is irrelevant 
 

Solution 
This is a question that involves the concepts of permutation and combination. In the case 

of permutation, the order should be taken into consideration but in combination the order 

is irrelevant.  
If order is important then ABC is considered a different arrangement from ACB and so on. 

For permutation, we need to use the formula  
 

    1 2 ... 1n

rP n n n n r      

 

where n is the total number of available boxes and r is the number of boxes that will be 

chosen.  
 

The answer for (i) is 

  5

3 5 4 3 60P      

 

When the order of choice is not relevant: ABC, ACB, etc are the same selection. For 
combination, the formula to use is 

 

 
!

! !

n

r

n
C

r n r


 
 

 

The answer for (ii) is therefore 

  5

3

5 4 3
10

3!
C

 
   

 

Worked Example on the Distribution of Indistinguishable Particles for Non-degenerate 
Energy Levels 

Question 

A system consists of three indistinguishable particles and a fixed total energy of 3ϵ. Show 
the possible macrostates i.e. show how the particles can be placed in any of the four non-

degenerate energy levels: 0, ϵ, 2ϵ and 3ϵ. 
 

Solution 

The macrostate is defined by the energy. This will then allow us to have the following 
possibilities, each defining a microstate of the system: 

 
i. one particle in the energy level state of 3ϵ and the remaining two in the energy 

level state 0; 

ii. one particle in the energy level state of 2ϵ, one in the energy level state of ϵ 
while the last particle is in the energy level state of 0. 

iii. all three particles are in the energy level state of ϵ. 
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 I II III 

3ϵ  

 

  

2ϵ    

ϵ    

0    

Figure 1.The possible macrostates of a system with  
three indistinguishable particles with a total energy of 3ϵ. 

 

In this case we have three ways to ‘arrange’ the particles among the energy levels as 

shown in Figure 1. A macrostate is defined by the specification of the number of particles 

in each energy level. Thus in this isolated system consisting of three particles with a total 

energy of 3ϵ, there are three macrostates. Since the energy levels do not degenerate, 

there is only one energy state in each energy level. Moreover, since the particles are 

indistinguishable (i.e. the particles are not labeled), interchanging the particles will not 

result in a different distribution.  

 

Worked Example Comparing the Differences on the Distribution When Particles in a 

System with Degenerate Energy Levels are Subject to Pauli Exclusion Principle. 

Question 

A system consists of three indistinguishable particles and a fixed energy of 3ϵ. The 

degeneracy of the energy level is 2. Show the possible macrostates if (a) the particles are 

not subject to Pauli Exclusion Principle (b) the particles are subject to Pauli Exclusion 

Principle.  

 

Solution 

Since the degeneracy of the energy levels is 2, there are two energy states in each energy 

level. Moreover, since the particles are indistinguishable (i.e. the particles are not 

labeled), interchanging the particles among the states or energy levels will not result in a 

different distribution. 

  

For (a), the particles are not subject to Pauli Exclusion Principle and thus more than one 

particle can be placed in an energy state.  There are three possible macrostates (labeled 

as macrostates I, II and III). In macrostate I, one particle is placed in energy level 3є and 

two in the energy level at ground state (є=0) to meet the condition of a total number of 

three particles and a total energy of 3є. There are altogether 6 possible microstates 

among the energy states as shown in Figure 2. Microstates 1 – 4 exist because two 

particles can exist at the same time in one energy state as they are not subject to the 

Pauli Exclusion Principle. 
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 I 1 2 3 4 5 6 

3ϵ        

      

2ϵ        

      

ϵ        

      

0        

      

Figure 2.The distribution of particles not subject to  

Pauli Exclusion Principle for macrostate I. 

 
In macrostate II, there is one particle each in energy levels 0, є and 2є, giving the total energy 

3є as required. There are eight microstates in this macrostate as shown in Figure 3. 

 

 II 1 2 3 4 5 6 7 8 

3ϵ          

        

2ϵ          

        

ϵ          

        

0          

        

Figure 3.The distribution of particles not subject to Pauli Exclusion Principle  
for macrostate II. (Note that the distribution for particles that obey the Pauli Exclusion 

Principle is similar). 

 
 

Next, we look at macrostate III. In macrostate III, there are three particles in the energy 

level є, which gives a total energy of 3є. In this macrostate there are four microstates as 

shown in Figure 4. 

 
 

 III 1 2 3 4 

3ϵ      

2ϵ      

ϵ      

    

0      

Figure 4.The distribution of particles not subject to  
Pauli Exclusion Principle for macrostate III. 
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For (b) the number of macrostates is reduced since the particles are now subject to the 

Pauli Exclusion Principle. Only macrostates I and II are possible. However, unlike the 
previous example for macrostate I, microstates 1 – 4 in Figure 3 are now not possible as 

there are two particles in one energy state. Thus only microstates 5 and 6 in Figure 3 are 
allowed. Figure 5 shows the distribution of particles subject to Pauli Exclusion Principle 

for macrostate I. Macrostate III is not allowed as there are three particles in energy level 

3є that has only two energy states. 
 

 I 5 6 

3ϵ    

  

2ϵ    

  

ϵ    

  

0    

  

Figure 5.The distribution of particles subject to  
Pauli Exclusion Principle for macrostate I. 

 
Worked Example on Obtaining the FD Statistics 

Question 

Obtain the FD statistics that describes the system of particles which obey the Pauli 
Exclusion Principle. 

 
Solution 

A system of particles obeying the Pauli Exclusion Principle is described by a set of 

occupation numbers that specifies the number of particles in the energy levels. We note 
that in this case, one-particle states are only permitted to have occupation numbers of 0 

or 1. Each energy level contains a number of energy states, gj. Let us suppose in an 
arbitrary level j, a certain arrangement of nj particles is such that in State 1, there is only 

one particle, p.  In this case, alphabets are temporarily attached to the particles although 

they are indistinguishable.  Not more than one particle may occupy each permitted energy 
state, which implies some energy states may be empty.  A possible arrangement for the 

particles where only the first few states are represented is shown in Figure 6. 
 

 

  

  

  

 

 

 

 

 

 

 

 

 
Figure 6. A possible arrangement of particles subject to  

Pauli Exclusion Principle for an arbitrary energy level with several energy states. 

State 1 p 

State 2  

State 3 q 

State 4 r 

State 5 
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The first particle p is “spoilt for choice” as there are gj possible locations. The second 

particle q has only (gj – 1) possible locations and the third particle r has (gj – 2) locations, 

and finally the last particle has very little choice i.e. (gjnj + 1) locations.  The total 

number of ways in which a particular sequence of nj alphabets can be allocated to the 

available gj states is simply     

 
!

!

j

j j

g

g n
  

 

Next, we remove the alphabets and this number of arrangements is divided by the 

number of arrangements of nj particles among themselves i.e. 

 
!

!( )!

j

j

g j

n

j j j

g
C

n g n



  

 

Finally, we should take into consideration all energy levels of the total number of 

indistinguishable particles, the total number of arrangements, t, becomes 

   
 

!

! !

j

j j j j

g
t

n g n



  

 

This is the FD statistics. Therefore for a particular energy level Ej in a system of fermions 

(i.e. particles with half-integer spin) there is a definite number of gj states that will 

possess this energy. Due to the Pauli Exclusion Principle, the maximum number of 

fermions that can occupy this energy level will thus be gj. 

 

Worked Example on the Derivation of FD Distribution Function 

Question 

Derive the FD distribution function. 

 

Solution 

A distribution function is a general expression for the average occupation numbers when 

the total number of particles is very large. The goal is to find the average number of 

particles (fermions) in a state with a certain amount of energy as a function of 

temperature. The FD distribution function can be derived by comparing two systems 

(assemblies) of particles that obey the Pauli Exclusion Principle in which the second 

system has one less particle than the first. The two systems have the same energy levels 

with the same degeneracy. This method of comparison will help us avoid using Lagrange 

multipliers. 

 

Suppose the first system consists of five indistinguishable particles and a total energy of 

4ϵ. The degeneracy of the energy level is 3. This implies that the second system should 

only consist of four particles. Three possible macrostates of the first system are shown in 

Figure 7. The degeneracy level is represented by the ‘trays’. 
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Figure 7. The distribution of particles for the first system. 
 

 

From the FD statistics, the statistical weight of the first macrostate is  

 
     

1

3! 3! 3!
27

2! 3 2 ! 2! 3 2 ! 1! 3 1 !
kW     

  
 

 
Here k=1 denotes the first macrostate while the degeneracy of the energy levels, gj, is 3. 

The number of particles in each energy level, nj, can be seen in Fig. 7. Similarly, the 

statistical weights for the second and third macrostates are 

 
   

2

3! 3!
3

3! 3 3 ! 2! 3 2 !
kW    

 
 

     
1

3! 3! 3!
9

3! 3 3 ! 1! 3 1 ! 1! 3 1 !
kW     

  
 

Note that 0! = 1. 
 

 
The total number of microstates is 

 27 3 9 39k

k

W       

 

The average occupation number for a certain energy level can also be obtained from this 
simple system. For instance, the average occupation number in level 1 is 

 
   

1 1

2 27 1 91
1.615

39
k k

k

N N W
  

  

  

 

An arbitrary level l is chosen where one particle is taken out for the second system. If 

energy level 2 is chosen then the second system will have a total energy of 2ϵ, and in 
every macrostate of the first system the occupation number of all energy levels with the 

exception of level l = 2 will be the same i.e. 

*

j jN N
where j≠l. (If 

j l
 then for a 

particular macrostate k,
* 1lk lkN N 

). 
 

Only two macrostates are possible as shown in Figure 8. 
 

Macrostate, k 

Energy  
Level,j 

3 = 3 

2 = 2 

1 =  

0 = 0 
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Figure 8. The distribution of particles for the second system. 
 

We denote jkN and 
*

jkN  as the occupation numbers of level j in macrostate k in the first 

and second systems, respectively. There are no macrostates in the second system that 
corresponds to the states in the first system where the level l is not occupied. For such 

macrostates, the statistical weights represented by 
*

lkW  are therefore nil. 

 

Since   *! 1 ! !lk lk lk lk lkN N N N N    the ratio of the statistical weights of corresponding 

macrostates in the first and second systems is 

    
 

 
    

**

* * * * *

1 !! 1 !

! ! 1 !

j jk jkj jk jk jklk lk

j jlk j jk jk j jk j jk l lk

g N Ng N N NW N

W g N N g N g N g N

  
  

    
    

  

(We are not really interested in this ratio of

*

lk

lk

W

W
. To obtain the FD distribution function we 

are actually interested in getting the ratio of the average number of particles in a state at 

energy Ej to the number of states with this energy, which is 
j

j

N

g
. But we have to go on 

with several more steps before we can obtain the answer that we want). 
 

For systems with a very large number of particles, the removal of a particle from an 
energy level will not make any significant change in the average occupation number of 

that level. Thus the average occupation number of the arbitrary energy level of the first 

system can be assumed to be equal to that of the second system. The summation over all 
macrostates leads to     

  
* * *

l l l l l lg N N             

 

where k

k

W  and 
* *

k

k

W  are the total number of microstates in the first and 

second systems, respectively.  
 

We now need to take the natural logarithms of both sides and together with the definition 
of entropy we have 

Macrostate, k 

Energy 
Level,j 

3 = 3 

2 = 2 

1 =  

0 = 0 
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*

*
ln ln ln

l

l l

l l

N S

kg N


    


      

 

Remember that for the microcanonical ensemble, S = k ln Ω. 
 

Based on Gibb’s free energy, the difference in entropy which is related to the temperature 

and the difference in energy can be expressed as   

  NuUST          

where µ is the chemical potential for each particle. Since there is only one particle less in 

the second system used for comparison, 1N  and lU    .  

 

The difference in entropy can be written as 

  lS
T

 
           

 

For systems with a large number of particles and since level l was selected arbitrarily and 
can be representing any energy level j, the relation between the occupation number, 

entropy and degeneracy, chemical potential µ and temperature T can then be expressed 

as 

  kTNg

N
j

jj

j  



ln

       

(The chemical potential µ is sometimes referred to as the Fermi level). Removing the natural 

logarithm from the equation leads to 

  
kT

jj

j
j

e
Ng

N 




  

 

Taking the reciprocal  
 

  kTkT

j

jj
jj

ee
N

Ng  





















1

   

 1



kT

j

j
j

e
N

g


  

 
Finally, 

  

1

1
j

j
kT

j

N
e

g

 


 
  
  

        

 
We have obtained the ratio that we wanted. This is the FD distribution function which is the 

average number of particles (e.g. fermions) in a state. However, we do not have to denote the 

ratio as it is well-understood. Thus the FD distribution function can be expressed as 

    
  /

1

1
i f

FD E E kT
f

e





       

  
where k is the Boltzmann constant, T is the absolute temperature, Ei is the energy of the 

state i and Ef is the Fermi level. 
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DISCUSSIONS 

 

The worked examples suggested here can help the distance learners to focus on how 
abstract principles are used to solve problems that are related to the derivation of the FD 

distribution function. In the first worked example, there is an application of an 
elementary probability principle. While this worked example appears to be at a 

fundamental level of understanding particle arrangement it is particularly useful to 

distance learners with minimum science background. They need to know the principle 
which includes the permutation (and combination) principle as well as the meaning of n 

and r besides the types of problems to which the formula applies.   Rather than having 
concrete features that inhibit transfer to new problems, the worked examples presented 

here as a sequence promote conceptual understanding. Distance learners who have been 
exposed to this sequence of worked examples should also be able to derive the Bose-

Einstein and the Maxwell-Boltzmann distribution functions.  The teaching of the FD 

distribution function is not limited to these worked examples. While these sequential 
worked examples are prepared according to the findings of the needs analysis survey 

their potential use is obviously not limited to students in the distance learning mode. 
Teachers can also modify these worked examples to expand the scope of the subtopics 

required. However, in recent years, there has been some concern that when learners rely 

too heavily on worked examples, they are unable to glean conceptual information about 
the procedure from these concrete examples and thus are unable to transfer the 

necessary skills to new problems (Catrambone, 1998; Margulieux and Catrambone, 2016; 
Renkl, 2002). The use of sequential worked examples is believed to be able to overcome 

over-reliance on demonstrated solutions as learners need to relate the operators to 
domain principles as well as link all the examples in their attempt to understand the main 

content that is being taught.  Sequential examples can be considered as a form of 

scaffolding practice within the cognitive load theory (Rosenshine and Meister, 1992; van 
Merrienboer et al., 2003) to assist learners bridge the gap between their current abilities 

and the intended goal. As scaffolds, the worked examples that are presented as a 
sequence provide temporary support and allow the distance learners to participate at an 

ever increasing level of competence as they move from a lower level worked example to a 

higher level one. In particular, the distance learners move from simpler tasks of 
permutations and combinations to the distribution of indistinguishable particles in energy 

levels in systems that obey the Pauli Exclusion Principle as well as those that do not.  In 
the last worked example, the distance learners are exposed to a higher level task that 

requires complex mathematical manipulations to derive the FD distribution function. 

Avoiding a single long example with action gaps should help the distance learners to 
generate explanations for the actions shown and subsequently relate these to the 

scientific principles involved.  
 

CONCLUSION 
 

This article suggests that choosing a simpler learning task that minimizes interacting 

elements and the use sequential worked examples can be used as an instructional 
strategy in physics for distance learners. Well-arranged sequential worked examples can 

help distance learners avoid the split-attention effect as they do not have to give 
attention to sources of information from various sources. A simpler learning task and 

well-arranged sequential worked examples are expected to lower the intrinsic and 

extraneous cognitive load. The strategies and examples presented here can be tested in 
an empirical study by teachers and researchers in similar disciplines in a distance learning 

environment. 
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