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ABSTRACT 

Point-of-care (POC) analysis has emerged as a pivotal approach in providing rapid and 

convenient medical diagnostics. Smartphone-based solutions further augment the 

accessibility and ease of POC, enabling efficient on-the-go analysis. The integration of 

smartphone technology with POC has paved the way for innovative applications such 

as the Vivoo App, which empowers users to monitor various health parameters 

conveniently. Our study validated the accuracy and reliability of the smartphone-based 

POC urinalysis Vivoo mobile application. A comparative approach was followed 

wherein artificial urine samples were analyzed using both the Vivoo and traditional 

laboratory methods. A diverse range of health parameters were assessed. A total of 2618 

strips were used over the course of this study to evalate the accuracy of Vivoo. The test 

strips results appeared to match exactly the expected measurement results. In addition, 

when the ±1 color block acceptance criterion was applied, 2608 of 2618 measurements 

of the tested strips were found to have met the expected measurement results 

completely. Based on the results, the 95% confidence interval for the exact match 

agreement proportion of Vivoo is 87.55% ± 1.27% and 99.62% ± 0.24%. As a wellness 

product, this study thus concludes that the Vivoo is appropriate in terms of both device 

reliability and performance. The app's ability to provide accurate and timely health 

results offers promising opportunities to improve individual health management. 

 

Introduction 

Point-of-care (POC) analysis is a form of testing that allows for the immediate testing of medical samples at 

the point of care without the need for conventional laboratory analysis [1]. Point-of-care testing is described 

as conducting tests at the patient care site or in its nearby vicinity [2]. This method offers several benefits, such 

as rapid results, reduced costs, and improved patient outcomes [3]. In recent years, one emerging trend in POC 

analysis has been the use of smartphone-based technology for diagnostics, including through urine analysis 

[4]. Point-of-care technology delivers relevant data directly at the location of treatment, facilitating quick 

clinical judgments. As the healthcare focus moves towards precision medicine, overall population well-being, 

and the effective handling of chronic conditions, the significance of its potential is on the rise. Over the past 

ten years, various notable trends in POC have surfaced or gained more prominence. 

Urine analysis is one of the most common diagnostic tests in clinical practice, providing valuable information 

about kidney function, urinary tract infections, and other medical conditions [5, 6, 7, 8]. Urine analysis, a 

fundamental diagnostic tool in medical practice, plays a pivotal role in assessing and monitoring various health 

conditions [9]. Urine analysis provides crucial insights into an individual's health, revealing information about 

kidney function, hydration levels, and potential underlying medical conditions [2, 10]. This non-invasive 

method provides critical insights into an individual's metabolic, renal, and systemic health. Analyzing 

components such as pH, specific gravity, and the presence of proteins, glucose, ketones, and blood cells can 

help in the early detection and management of conditions like diabetes, kidney disease, urinary tract infections, 
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and liver problems. The advent of home urine test kits has further revolutionized this field, enabling patients 

to conduct preliminary assessments in the comfort of their homes. These test, which often use dipsticks with 

color-changing pads, offer a convenient and rapid means to track health indicators. By allowing for frequent 

monitoring, home urine analysis can facilitate early intervention and timely consultation with healthcare 

professionals [4]. This not only empowers individuals in their health management but also aids in reducing the 

burden on healthcare systems by preventing the escalation of untreated conditions. Thus, urine analysis, 

especially when accessible at home, stands as a cornerstone in preventive healthcare and patient empowerment. 

Traditional urine analysis involves laboratory-based testing, which can be both time-consuming and expensive. 

However, smartphone-based urine analysis offers a rapid and cost-effective alternative that typically utilizes a 

disposable test strip that is dipped into a urine sample [11, 12, 13]. The smartphone app provides a visual 

readout of the test results, which can be used by healthcare professionals for diagnosis and treatment of 

different diseases, medical conditions, and overall health and wellness [14, 15, 16, 17]. 

Smartphone-based POC urinalysis is a rapidly growing field that has the potential to revolutionize the ways in 

which patients are diagnosed and treated for various conditions. It is a promising technology due to its rapid 

and low-cost diagnosis of urine biomarkers [18, 19]. Smartphone-based urine analysis typically involves the 

use of mobile devices equipped with high-resolution cameras and specialized software applications. The 

purpose of these applications is to evaluate images of urine test strips and calculate the concentration of 

different analytes in the urine. This process is done by comparing color changes to a pre-calibrated colorimetric 

scale. This process becomes more complex when AI algorithms are used. AI significantly improves accuracy 

and makes it possible to identify small variations that might be overlooked by the human eye. The idea assumes 

that smartphones which are widely available and equipped with advanced imaging software, can be used for 

rapid and cost-effective urine analysis. This approach has significant implications for healthcare, especially in 

the diagnosis and management of medical conditions [20, 21]. The process typically involves dipstick 

preparation, image capture, image analysis, and results. This system has several advantages, such as rapid 

results, cost-effectiveness, remote monitoring, and accessibility. Smart-phone based POC systems can be 

applied to chronic disease management, infection detection, pregnancy testing, and wellness-associated 

parameter testing. Advancements in artificial intelligence and machine learning could further enhance the 

accuracy and capabilities of smartphone-based urine analysis. Integration with electronic health records and 

telehealth platforms could also broaden its impact [22, 23]. Traditionally, urinalysis has been performed in 

laboratory settings using specialized equipment, which can be time-consuming and require patients to travel 

to a healthcare facility [24, 25]. With the increasing ubiquity of smartphones and the development of innovative 

POC diagnostic technologies, it is now possible for patients to perform their own urinalysis at home or in a 

healthcare facility by using their smartphone as a diagnostic platform [25]. 

The widespread accessibility of smartphones and tablets offers several significant prospects for the integration 

of point-of-care testing (POCT) [26]. Incorporating POCT with these platforms also facilitates the storage of 

data on a cloud-based server for telemedicine purposes. While a standardized approach for seamlessly 

integrating this data into regular medical records is yet to be established, enabling the sharing of this 

information beyond the limitations of a specific hospital or device will set the stage for future advancements. 

Numerous POCTs under development have capitalized on the optical sensing functionalities of the integrated 

complementary metal oxide semiconductor cameras found in smartphones and tablets [28, 29]. These cameras 

can be employed for tasks such as capturing images or spectra and subsequently analyzing them.  

The accuracy and reliability of smartphone-based POC analysis rely heavily on artificial intelligence (AI) and 

image processing algorithms [30, 31]. AI algorithms can detect subtle changes in color or intensity that may 

be difficult for the human eye to discern. Image processing algorithms can help reduce noise and improve the 

signal-to-noise ratio, leading to more accurate and reliable results [32, 33]. AI and image processing can also 

be used to develop predictive models for diagnosing and treating diseases based on large datasets of POC 

analysis results [34, 35]. 

In recent years, machine learning (ML) techniques have been increasingly used for the analysis of POC 

urinalysis test results [36, 37]. ML algorithms can be trained to analyze images of urine test strips captured by 

smartphone cameras and provide diagnostic information based on test results [38, 39, 40]. This approach has 

the potential to significantly improve the accuracy and speed of POC urinalysis, as well as increase its 

accessibility and affordability [41, 42]. However, the development of ML algorithms for POC urinalysis 

requires extensive validation studies to ensure their accuracy and reliability [43].  

Due to advancements in POC, urinalysis has evolved into a trustworthy and efficient diagnostic method. Recent 

progress in AI technology has enhanced the precision, reliability, and efficiency of urine analysis diagnostics. 

These tools now have the capacity to recognize various medical issues and deliver precise insights into an 

individual's health by examining the physical and chemical attributes of urine. Urine test strips provide a rapid 
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and convenient means of initial urinalysis, swiftly detecting substances such as glucose, nitrite, urobilinogen, 

bilirubin, protein, ketone, albumin, creatinine, pH, and leukocyte esterase. The development of multi-

component test strips enables the simultaneous identification of these substances using just one urine sample. 

The focus of this study is on the accuracy and reliability of smartphone-based POC urinalysis, particularly the 

use of AI and ML algorithms for analyzing test results. The aim of the study is to validate the accuracy of the 

Vivoo urine analysis platform for measuring different chemical components found on the Vivoo test strip. In 

this study, artificial urine solutions were used to test the accuracy of the Vivoo results. The results of our study 

suggest that the Vivoo urine analysis is a reliable method for measuring various chemical components in urine. 

The use of AI and image processing algorithms in POC urinalysis has the potential to significantly improve 

the accuracy and speed of diagnosis and increase its accessibility and affordability to consumers. 

Material and Methods 

The Vivoo App processes each strip image in three steps: 1) sensor and reference detection, 2) color correction, 

and 3) sensor value prediction.  

Detecting the strip through sensors and references 

In our patented process, named "Analysis of urine test strips with mobile camera analysis and providing 

recommendation by customizing data" (patent number: US20220405973A1) [44], we first began by employing 

an object detection model to localize the Vivoo test strip and its sensors and reference boxes. Next, we used 

segmentation to extract the sensors and references. With the extracted references and object detection results, 

we conducted a series of checks, including on strip position, distance, movement, perspective, and lighting 

conditions. 

We then positioned the strip carefully to achieve optimal test results. To do this, we used the strip's bounding 

box as a reference for its position, defined edge margins to the screen, and hit the test bounding box. Although 

it was not necessary for the strip to be positioned exactly, we were conscious of the possibility of the strip 

failing the check if positioned at an angle or too close, even if it is centered correctly. We also took into account 

the appropriate strip distance, as this was crucial for improved test outcomes. We ensured that the strip was 

not too far away, which would present challenges in extracting sensor colors accurately, or too close, which 

can cause blurriness or shadow interference. The width and height of the strip bounding box helped determine 

the distance, and we ensured they were within a predefined range. During testing, we also maintained the strip's 

movement and stability, recognizing that if the strip moved, the resulting image could become blurry, leading 

to incorrect test results. To maintain stability during the image-capturing process, we used the strip's bounding 

box as a reference for its position and ensured that its movement speed was slower than its predefined value. 

Overall, these steps were critical for ensuring the secure positioning of the strip and producing accurate results 

during testing. 

We recognized the importance of having the strip's face parallel to the camera to obtain accurate test results 

and proper strip perspective. To achieve this, we calculated the distance between all corner boxes, compared 

these distances to calculate differences, and used them to determine the strip's vertical and horizontal 

perspectives. Accurately determining the strip's perspective was a crucial step in achieving reliable test results, 

as it ensured that the strip was viewed correctly by the camera, allowing for accurate readings during testing. 

Additionally, consistent lighting conditions were essential to achieving accurate test results, as inconsistent 

lighting could cause partial dark regions over sensors, and shadows could also cause color changes on some 

regions of the strip surface. To maintain consistent lighting, we calculated the overall brightness and checked 

for deviations, as well as calculated the overall color changes and analyzed deviations. These steps helped 

identify any discrepancies in the lighting conditions and allowed for corrections to be made to achieve 

consistent lighting. Throughout testing, we monitored and adjusted the lighting to maintain consistency, 

recognizing its importance for achieving accurate and reliable test results. 

Color correction 

In this step, a dominant color is calculated for each extracted reference box. These reference colors are used to 

perform color correction on extracted sensors. Color correction normalizes the environment light by comparing 

extracted reference colors with the original printed reference colors.  

Fig 1 depicts a flowchart of how color correction functions in the Vivoo App. 8-bit RGB refers to integer 

values of color channels R, G, and B, which are between the range of 0 to 255. Float linear RGB refers to float 

values in range [0, 1]. Precision of float linear values are higher than integer 8-bit values. The inherent 

component in Fig 1 is Root Polynomial Regression [45], in which a correction matrix is computed from the 

original reference colors and the observed (extracted) reference colors using least-squares regression. Fig 2 

presents the result of applying the color correction to the entire image. 
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Fig 1 Color correction functioning in the Vivoo App [44] 

 

 

 
Fig 2 Color correction: (a) the detected Vivoo urine test strip, (b) the Vivoo urine test strip after color 

correction  

 
Sensor value prediction 

The Vivoo App contains an ML model for each sensor called sensor models. They predict the value of each 

sensor. We used Convolutional Neural Networks (CNNs) [46] as the architectural basis for these models. The 

models are trained with thousands of lab images, and these lab images are created using urine samples with 

values that are already established. 

While training a sensor model, the CNN automatically learns the features that are crucial for differentiating 

images of each sensor value. The most important features are the color ranges, the extent of color change in 

the sensor image, the possible shapes created by sensor reaction to the urine sample, etc. These features are 

different for each sensor value. 

Vivoo app validation 

The experimental design covers the validation studies of Vivoo App produced by Vivosens Biotechnology 

R&D, Ind. And Trade Co. Ltd. This analytical validation study was conducted in the True Testing Services 
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between October and December 2022. To evaluate the accuracy of the Vivoo, this study employed the use of 

artificial urine samples. Potential factors that may affect the product’s performance include ambient light 

during scanning, image resolution of the phone camera, and partial shading. To eliminate the effects of these 

factors, all tests were conducted using the same phone in the same environment, and under the same lighting 

conditions. 

Preparation of urine solutions 

This study used the following materials to prepare artificial urine solutions for testing: BIORAD Urinalysis 

Control 1 and 2, distilled water, Gündüz Kimya Buffer Solutions (pH: 10/pH: 7/pH: 4), sodium chloride salt, 

Sunlife Vitamin C Tablet, Aromel Kimya Calcium Chloride, MAGNORM tablet, Cayman Chemical 

Creatinine, and Supelco Malondialdehyde tetrabutylammonium (MDA) salt. We conducted chemical analyses 

of the BIORAD Urinalysis Control 1 and 2 obtained by the Roche Cobas U-411 Analyzer. 

Vivoo was designed to with the purpose of examining the existence and/or quantification of the subsequent 

chemical constituents in urine: bilirubin, ketones, leukocytes, nitrites, protein, specific gravity, pH, creatinine, 

calcium, vitamin C, magnesium, sodium, and MDA. As such, we did not consider blood, glucose, and 

urobilinogen specified in the BIORAD Urinalysis Control solutions when preparing the artificial urine 

solutions. Additionally, since the BIORAD Urinalysis Control solutions did not account for creatinine, 

calcium, vitamin C, magnesium, sodium, and MDA, we prepared additional stock solutions using sodium 

chloride salt, Sunlife Vitamin C Tablet, Aromel Kimya Calcium Chloride, MAGNORM tablet, Supelco MDA, 

and Cayman Chemical Creatinine (Supplementary file 1). 

Verification of urine solutions 

We prepared 41 artificial urine solutions for this study, which were verified as follows: the Roche Cobas U-

411 Urine Analyzer was used to verify the solutions for testing bilirubin, ketone, leukocyte, nitrite, protein, 

and specific gravity; the Ohaus ST 2100 F Benchtop pH Meter was used to verify the solutions for testing pH; 

the enzymatic photometric methodology with the Abbott/Architect C8000 was used to verify the solutions for 

testing creatinine, calcium, magnesium, and sodium; the Urine Analyzer BC401 (Contec Medical Systems 

Co., Ltd.) was used to verify the solutions for testing vitamin C; and the solutions for testing MDA were 

verified visually at the Vivosens Biotechnology laboratory. All solutions used for conducting tests were stored 

at 4°C.  

Experimental procedure and statistical analysis 

We performed the following procedure to test the Vivoo test strips. First, we downloaded the Vivoo App from 

the Apple Store and created a user account. We then applied artificial urine solutions onto the Vivoo test strips 

and waited for 90 seconds before scanning the test strip onto the Vivoo App via a smartphone (iPhone 13 IOS 

15.6.1) (Fig 3). After scanning, we discarded the test strip. We repeated these steps to obtain experimental 

replicates. We then saved the results that we obtained in a datasheet (Ref. Attachment 11.14 Vivoo). Finally, 

we conducted a statistical analysis of the results of the Vivoo test strips by using IBM SPSS Statistics Version 

26. We performed a two-sided confidence intervals analysis. The sample size for bilirubin, ketones, leukocytes, 

nitrites, proteins, calcium, creatinine, vitamin C, and MDA solutions was 200. The sample size for pH, specific 

gravity, magnesium, and sodium solutions were 207, 203, 204, and 204 respectively. 

 

 
Fig 3 Illustration of the urine test strip analysis process using the smartphone-based reader Vivoo App. a) apply urine to 

the Vivoo test strip, b) capture the image of the test strip using the Vivoo, c) obtain the results for each artificial urine 

solution used for this study 
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Results  

Chemical analysis of urinalysis solutions 

The results from the chemical analysis conducted on BIORAD Urinalysis Control 1 show that the sample 

tested negative for bilirubin, blood, ketones, leukocytes, nitrite, and protein (total). The glucose level was 

within the normal range, and the pH was slightly acidic between 5 - 6.5. The specific gravity was also within 

the normal range of 1.005 - 1.020, and the urobilinogen level was normal. 

In contrast, the BIORAD Urinalysis Control 2 created significantly different results. Bilirubin was present in 

the sample at a concentration of 3 - 6 mg/dL (50 -100 umol/L) (2+ - 3+), and blood was present at a 

concentration of 150 - 250 Ery/uL (4+ - 5+). The glucose level was high, ranging from 250 -1000 mg/dL (14 

- 56 mmol/L) (3+-4+), and ketones were also present in the sample at a concentration of 50 - 150 mg/dL (5 - 

15 mmoI/L) (3+ - 4+). The leukocyte concentration was elevated, ranging between 100 - 500 Leu/uL (2+ - 

3+), and nitrite was present in the sample. The pH was alkaline within a range of 7 - 8, and protein (total) 

concentration was high, ranging between 100 - 500 mg/dL (1.0 - 5.0 g/L) (3+ - 4+). The specific gravity was 

within the normal range of 1.000 - 1.020, and urobilinogen was present at a concentration of 8 - 12 mg/dL (135 

- 203 umol/L) (3+ - 4+) (Table 1). 

 

Table 1 Chemical analysis of the BIORAD Urinalysis Control 1 and 2 measured by the Roche Coban U 411 Analyzer 

Parameter BIORAD Urinalysis Control 1 BIORAD Urinalysis Control 2 

Bilirubin Negative 3 - 6 mg/dL (50 -100 umol/L) (2+ - 3+) 

Blood Negative 150 - 250 Ery/uL (4+ - 5+) 

Glucose Normal 250 -1000 mg/dL (14 - 56 mmol/L) (3+-4+) 

Ketones Negative 50 - 150 mg/dL (5 - 15 mmoI/L) (3+ - 4+) 

Leukocytes Negative - 25 100 - 500 Leu/uL (2+ - 3+) 

Nitrite Negative Positive 

pH 5 - 6.5 7 - 8 

Protein (total) Negative 100 - 500 mg/dL (1.0 - 5.0 g/L) (3+ - 4+) 

Specific gravity 1.005 - 1.020 1.000 - 1.020 

Urobilinogen Normal 8 - 12 mg/dL (135 - 203 umol/L) (3+ - 4+) 

 

It is important to note that BIORAD Urinalysis Control 1 and 2 are quality control solutions used for 

monitoring the performance of urinalysis tests in medical laboratories. These solutions contain various 

substances that simulate the properties of human urine and can be used to assess the accuracy and precision of 

urinalysis tests. The results from our analysis indicate that BIORAD Urinalysis Control 1 and 2 had 

significantly different properties in its chemical composition. We have thus demonstrated that the artificial 

urine solutions used in this experiment are suitable for use in validating the accuracy of the Vivoo App. 

Verification of artificial urine solutions 

The results obtained from various verification methods for the artificial urine solutions prepared for testing 

different parameters were determined to be within the desired value ranges. The verification results of the 

artificial urine solutions prepared for testing provided in Supplementary file 2.  

Descriptive statistics 

Descriptive statistics on the test results into the accuracy of Vivoo for measuring each of the 13 chemical 

components found on the Vivoo test strip are provided as a tables in Supplementary file 3. The Vivoo App 

was used to analyze various components in artificial urine samples. The app analyzed the levels of bilirubin, 

ketones, leukocytes, nitrites, pH, specific gravity, protein, magnesium, sodium, calcium, creatinine, vitamin 

C, and MDA. The analysis was conducted using a total of 200 strips each for bilirubin, ketones, leukocytes, 

nitrites, protein, calcium, creatinine, vitamin C, and MDA.  Additionally, pH, specific gravity, protein, 

magnesium, and sodium were analyzed using 207, 203, 204, 204, and 204 strips, respectively. 

Vivoo categorized bilirubin measurements into four potential outcomes: 0 mg/dL, 1 mg/dL, 3 mg/dL, and 5 

mg/dL. To assess Vivoo's bilirubin readings, we employed artificial urine solutions (specifically, solutions 1, 

7, 2, and 5) corresponding to these measurements. Our findings revealed that when using solution 1, all tested 

strips achieved the anticipated bilirubin measurement, with a 100% accuracy rate. For Solution 2, accuracy 

stood at 98%, while solution 5 demonstrated 92% accuracy, and solution 7 yielded an 86% accuracy rate. 
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When applying the ±1 color block acceptance criterion, all bilirubin solutions displayed 100% agreement with 

the expected bilirubin measurement. 

Vivoo categorized ketone measurements into five potential outcomes: 0 mg/dL, 5 mg/dL, 15 mg/dL, 50 mg/dL, 

and 150 mg/dL. To assess the accuracy of Vivoo's ketone readings, we utilized artificial urine solutions 

(specifically, solutions 1, 7, 3, 2, and 5) corresponding to these measurements. Our findings indicated that 

solution 1 yielded the expected ketone measurement in 100% of the tested strips, while solution 2 achieved a 

97.5% accuracy rate. Solution 5 demonstrated an 80% accuracy rate, solution 3 showed 75% accuracy, and 

solution 7 resulted in a 70% accuracy rate. When applying the ±1 color block acceptance criterion, all ketone 

solutions exhibited 100% agreement with the expected ketone measurement. 

Vivoo categorized leukocyte measurements into four potential outcomes: 0 Leu/uL, 25 Leu/uL, 100 Leu/uL, 

and 500 Leu/uL. To assess the accuracy of Vivoo's leukocyte readings, we employed artificial urine solutions 

(specifically, solutions 1, 2, 4, and 5) corresponding to these measurements. Our findings indicated that when 

using solution 1 and solution 5, all tested strips achieved the anticipated leukocyte measurement, resulting in 

a 100% accuracy rate. For solution 4, accuracy stood at 90%, while solution 2 exhibited a 64% accuracy rate. 

Applying the ±1 color block acceptance criterion, all leukocyte solutions exhibited a 100% agreement with the 

expected leukocyte measurement. 

Vivoo categorized nitrite measurements into two potential outcomes: either positive or negative. To assess the 

accuracy of Vivoo's nitrite readings, we utilized artificial urine solutions (specifically, solutions 1 and 5) 

corresponding to these categories. Our findings revealed that all tested strips precisely identified the presence 

or absence of nitrites in the designated artificial urine solutions for nitrite testing. 

Vivoo categorized pH measurements into nine possible outcomes: 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, and 9. Artificial 

urine solutions (solutions 1, 9, 10, 3, 11, 12, 13, 14, and 15, respectively) with these measurements were used 

to test the accuracy of Vivoo readings of pH. Our results indicated that the Vivoo accurately measured their 

expected pH values. More specifically, solution 1 was measured accurately by 52.2% of the strips; solution 9 

was measured accurately by 69.6% of the strips; solution 10 was measured accurately by 78.3% of the strips; 

solution 3 was measured accurately by 100% of the strips; solution 11 was measured accurately by 95.7% of 

the strips; solution 12 was measured accurately by 95.7% of the strips; solution 13 was measured accurately 

by 82.6% of the strips; solution 14 was measured accurately by 47.8% of the strips; and solution 15 was 

measured accurately by 95.7% of the strips. Furthermore, when applying the ±1 color block acceptance 

criterion, it was evident that, except for solutions 1 and 11, all solutions exhibited a complete agreement, 

reaching 100%, with their anticipated pH values. 

Vivoo categorized specific gravity measurements into seven possible outcomes: 1.000, 1.005, 1.010, 1.015, 

1.020, 1.025, and 10.30. Artificial urine solutions (solutions 1, 2, 16, 8, 17, 18, and 19, respectively) with these 

measurements were used to test the accuracy of Vivoo readings of specific gravity. Our results demonstrated 

that the Vivoo accurately measured their expected specific gravity values. More specifically, solution 1 was 

measured accurately by 100% of the strips; solution 2 was measured accurately by 75.9% of the strips; solution 

16 was measured accurately by 96.6% of the strips; solution 8 was measured accurately by 100% of the strips; 

solution 17 was measured accurately by 93.1% of the strips; solution 18 was measured accurately by 65.5% of 

the strips; and solution 19 was measured accurately by 86.2% of the strips. Moreover, when applying the ±1 

color block acceptance criterion, it was evident that all solutions exhibited a complete agreement, reaching 

100%, with their anticipated specific gravity values. 

Vivoo categorized protein measurements into five potential outcomes: 0 mg/dL, 25 mg/dL, 75 mg/dL, 150 

mg/dL, and 500 mg/dL. To evaluate the accuracy of Vivoo's protein readings, we employed artificial urine 

solutions (specifically, solutions 1, 7, 2, 6, and 5) corresponding to these measurements. The strips precisely 

measured their anticipated protein values, with solution 5 achieving 100% accuracy, and solutions 1, 2, 6, and 

7 reaching 97.5%, 77.5%, 95%, and 80% accuracy, respectively. When applying the ±1 color block acceptance 

criterion, all protein solutions exhibited 100% agreement with their expected protein measurements. 

Vivoo categorized magnesium measurements into four potential outcomes: 0.5 mg/dL, 3.6 mg/dL, 6-7.2 

mg/dL, and 10.8-14.4 mg/dL. To assess the precision of Vivoo's magnesium readings, we employed artificial 

urine solutions (specifically, solutions 1, 34, 35, 36, 37, and 38) corresponding to these measurements. The 

Vivoo accurately measured their expected magnesium measurements, with solution 35 showing 100% 

accuracy, and solutions 1, 34, 36, 37, and 38 showing 61.8%, 61.8%, 73.5%, 79.4%, and 88.2% accuracy, 

respectively. When applying ±1 color block acceptance condition, solutions 35, 36, 37, and 38 showed 100% 

agreement with their expected magnesium measurements, and solutions 1 and 34 showed 97.1% agreement. 

Vivoo categorized sodium measurements into four possible results: 0 mg/dL, 100 mg/dL, 200-400 mg/dL, and 

500 mg/dL. We employed artificial urine solutions (specifically, solutions 1, 39, 10, 8, 6, and 16) 

corresponding to these measurements to assess the precision of Vivoo's sodium readings. The results showed 
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that the strips tested using solution 1 had a 100% accuracy rate. Strips tested using solution 39 had a 91.2% 

accuracy rate, strips tested using solution 10 had a 64.7% accuracy rate, strips tested using solution 8 had a 

97.1% accuracy rate, strips tested using solution 6 had a 94.1% accuracy rate, and strips tested using solution 

16 had a 79.4% accuracy rate. When applying the ±1 color block acceptance criterion all strips tested using 

solutions 1, 39, 10, 8, 6, and 16 exhibited 100% agreement with their expected sodium measurements. 

Vivoo categorized calcium measurements into five potential outcomes: 4 mg/dL, 10 mg/dL, 20 mg/dL, 30 

mg/dL, and 40 mg/dL. To assess the precision of Vivoo's calcium readings, we utilized artificial urine solutions 

(specifically, solutions 1, 25, 26, 27, 28, and 29) corresponding to these measurements. The outcomes revealed 

that strips tested with solutions 1 and 25 achieved a perfect accuracy rate of 100%. Strips tested with solution 

26 displayed a 72.5% accuracy rate, while those with solution 27 had a 77.5% accuracy rate. Strips tested using 

solution 28 showed a 90% accuracy rate, and those tested with solution 29 reached a 67.5% accuracy rate. 

When applying the ±1 color block acceptance criterion, all calcium solutions exhibited 100% agreement with 

their anticipated calcium measurements. 

Vivoo categorized creatinine measurements into five potential outcomes: 10 mg/dL, 50 mg/dL, 100 mg/dL, 

200 mg/dL, and 300 mg/dL. We utilized artificial urine solutions (specifically, solutions 20, 21, 22, 23, and 

24) corresponding to these measurements to evaluate the precision of Vivoo's creatinine readings. The 

outcomes indicated that 60% of strips measuring solution 20, 60% of strips assessing solution 21, 87.5% of 

strips analyzing solution 22, 85% of strips examining solution 23, and 80% of strips testing solution 24 

accurately measured their expected creatinine levels. When applying the ±1 color block acceptance criterion, 

all creatinine solutions demonstrated 100% agreement with their anticipated creatinine measurements, 

underscoring the accuracy of Vivoo's creatinine readings, particularly when employing the ±1 color block 

acceptance criterion. 

Vivoo categorized vitamin C measurements into five potential outcomes: 0 mmol/L, 0.6 mmol/L, 1.4 mmol/L, 

2.8 mmol/L, and 5 mmol/L. We utilized artificial urine solutions (specifically, solutions 1, 30, 31, 32, and 33) 

corresponding to these measurements to assess the precision of Vivoo's vitamin C readings. The outcomes 

indicated that the Vivoo accurately measured their expected vitamin C levels for 97.5% of strips tested with 

solution 1, 87.5% of strips tested with solution 30, 82.5% of strips tested with solution 31, 97.5% of strips 

tested with solution 32, and 100% of strips tested with solution 33. Moreover, when applying the ±1 color 

block acceptance criterion, all vitamin C solutions exhibited a 100% agreement with their anticipated vitamin 

C measurements, highlighting the high accuracy of Vivoo's vitamin C readings, particularly when employing 

the ±1 color block acceptance criterion. 

Vivoo categorized MDA measurements into two potential outcomes: either positive or negative. We utilized 

artificial urine solutions (specifically, solutions 1 and 40 without MDA, and 41 with MDA) corresponding to 

these categories to assess the precision of Vivoo's MDA readings. The outcomes revealed that all strips 

precisely detected the absence of MDA for solutions 1 and 40, while 99.5% of Vivoo accurately identified the 

presence of MDA for solution 41. Moreover, when applying the +1 color block acceptance criterion, all MDA 

solutions demonstrated 100% agreement with their expected results, emphasizing the high accuracy of Vivoo's 

MDA readings, especially when employing the +1 color block acceptance criterion. 

Confidence intervals 

The analysis evaluated 2618 strip measurements, of which 2292 measurements were consistent with their 

expected values. With the ±1 color block acceptance criterion, 2608 strip measurements met their expected 

values.  

When applying the ±1 color block acceptance criterion, all values aligned with their anticipated measurement 

outcomes, with a 95% confidence interval for the exact match agreement proportion of Vivoo at 94% ± 3.29% 

for bilirubin, 81.5% ± 5.38% for calcium, 84.5% ± 5.02% for ketones, 74.5% ± 6.04% for creatinine, 88.5% ± 

4.42% for leukocytes, 99.5% ± 0.98% for MDA, 90% ± 4.16% for protein, 87.75% ±4.51% for sodium, and 

88.18% ± 4.44% for specific gravity.  In the case of magnesium, when we employed the ±1 color block 

acceptance criterion, the 95% confidence interval for Vivoo's exact match agreement proportion is 77.45% ± 

5.74%, and the agreement proportion falls within a 95% confidence interval of 97.06% ± 2.31%. As for pH, 

with the same ±1 color block acceptance criterion, Vivoo's exact match agreement proportion has a 95% 

confidence interval of 79.71% ± 5.48%, while the agreement proportion is within a 95% confidence interval 

of 98.07% ± 1.88%. 

Out of the total number of tested strips (2618), 2292 exhibited an exact match with their expected measurement 

results. Furthermore, when we applied the ±1 color block acceptance criterion, 2608 out of 2618 measurements 

conformed entirely to the expected results. We conducted a 95% confidence interval calculation for Vivoo's 

exact match agreement proportion, resulting in 87.55% ± 1.27%. Upon the application of the ±1 color block 

acceptance criterion, Vivoo's exact match agreement proportion's 95% confidence interval was 99.62% ± 
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0.24%. When we individually assessed each of Vivoo's 13 components, the 95% confidence interval for the 

exact match agreement proportion varied between 74.50% and 99.50%, depending on the specific component. 

Following the application of the ±1 color block acceptance criterion, 11 out of 13 components on Vivoo 

displayed results that perfectly aligned with the expected measurement values. 

We observed a lack of exact match percentages for 2 out of the 13 components on Vivoo, namely magnesium 

and pH. However, in terms of Vivoo's presentation of its results to users, magnesium exhibited an exact match 

percentage of 77.45%. While this component didn't achieve a 100% match, the exact match percentage remains 

relatively high. When considering the confidence intervals for these components under the ±1 color block 

acceptance criterion, magnesium, and pH yielded values of 97.06% and 98.07%, respectively (Table 2). 

 
Table 2 Confidence intervals results of Vivoo 

Chemical 

Component 

frequency n proportion 95% 

Confidence 

Interval 

Lower Bound 

95% 

Confidence 

Interval 

Upper Bound 

Standard Error 

of the Estimate 

± 

Total 2292a 2618 87.55 % 86.28 % 88.81 % 0.65 % 1.27 

% 

2608b 2618 99.62 % 99.38 % 99.85 % 0.12 % 0.24 

% 

Bilirubin 188a 200 94.00 % 90.71 % 97.29 % 1.68 % 3.29 

% 

Ketone 169a 200 84.50 % 79.48 % 89.52 % 2.56 % 5.02 

% 

Leukocyte 177a 200 88.50 % 84.08 % 92.92 % 2.26 % 4.42 

% 

pH 165a 207 79.71 % 74.23 % 85.19 % 2.80 % 5.48 

% 

203b 207 98.07 % 96.19 % 99.94 % 0.96 % 1.88 

% 

Specific 

gravity 

179a 203 88.18 % 83.74 % 92.62 % 2.27 % 4.44 

% 

Protein 180a 200 90.00 % 85.84 % 94.16 % 2.12 % 4.16 

% 

Magnesium 158a 204 77.45 % 71.72 % 83.19 % 2.03 % 5.74 

% 

198b 204 97.06 % 94.74 % 99.38 % 1.18 % 2.31 

% 

Sodium 179a 204 87.75 % 83.25 % 92.24 % 2.30v 4.51 

% 

Calcium 163a 200 81.50 % 76.12 % 86.88 % 2.75 % 5.38 

% 

Creatinine 149a 200 74.50 % 68.46 % 80.54 % 3.08 % 6.04 

% 

Vitamin C 186a 200 93.00 % 89.46 % 96.54 % 1.80 % 3.54 

% 

MDA 199a 200 99.50 % 98.52 % 100.00 % 0.50 % 0.98 

% 

a: True/False (Exact Match), b: True/False (± 1 Color Block) 

 

The experiment conducted aimed to validate the accuracy of Vivoo urine analysis for measuring 13 different 

chemical components found on the Vivoo test strip. The study used artificial urine solutions to test the accuracy 

of the Vivoo readings for bilirubin, ketones, leukocytes, nitrites, pH, specific gravity, protein, magnesium, 

sodium, calcium, creatinine, vitamin C, and MDA. Overall, the results show that the Vivoo provided accurate 

measurements for all chemical components tested. 

The results of this study suggest that the Vivoo urine analysis is an accurate method for measuring various 

chemical components in urine. These findings are in line with previous studies that have demonstrated the 

reliability of urine analysis as a diagnostic tool [32]. In addition, the use of artificial urine solutions allowed 
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for controlled testing conditions, ensuring that the results were not influenced by other factors. Ho wever, it 

should be highlighted that this study successfully demonstrated the accuracy of the Vivoo in measuring 

chemical components in artificial urine solutions, indicating its potential effectiveness for testing real human 

urine samples. 

Discussion 

In the realm of medical diagnostics, the integration of smartphone technology with urinalysis presents a transformative 

approach, revolutionizing how urine analysis is conducted and interpreted. This integration leverages the ubiquity and 

advanced capabilities of smartphones to offer a convenient, rapid, and user-friendly means of conducting urine tests. By 

utilizing smartphone cameras and specialized apps, individuals can perform self-testing, where the smartphone interprets 

the results from urine test strips [47]. Furthermore, the advent of smartphone and AI-based technologies has 

revolutionized the landscape POC diagnostics of urine analysis. This innovative approach combines the accessibility of 

smartphones with the advanced analytical capabilities of AI, paving the way for rapid, accurate, and user-friendly urine 

testing methods [17]. Our study presents a comprehensive analysis of the accuracy of Vivoo App which is a AI integrated 

urine analysis app, which are designed to measure various chemical components in urine. The methodology involved 

using 2618 strips with artificial urine solutions to measure 13 different chemical components by Vivoo App, including 

bilirubin, ketones, leukocytes, nitrites, pH, specific gravity, protein, magnesium, sodium, calcium, creatinine, vitamin C, 

and MDA. 

The chemical analysis of BIORAD Urinalysis Control 1 and 2 provides insightful data for understanding the efficacy and 

reliability of urinalysis testing, particularly in relation to the Vivoo App, a health monitoring tool. Control 1's results are 

indicative of a normal urinary profile.  

In contrast, Control 2's results simulate a pathological urinary state. The presence of bilirubin and blood at significant 

levels suggests hepatic pathology or hematuria, potentially indicative of liver dysfunction or urinary tract damage [48]. 

Elevated glucose and ketones are hallmarks of uncontrolled diabetes mellitus [49]. The elevated leukocyte count and the 

presence of nitrite are suggestive of a urinary tract infection. The alkaline pH (7 - 8) can be associated with certain renal 

tubular acidosis or urinary tract infections [50]. High protein concentration points towards possible kidney damage or 

disease [51]. The presence of urobilinogen at elevated levels could indicate liver disease or hemolytic conditions [52]. 

The contrast between Control 1 and Control 2 is crucial for validating the Vivoo App. It demonstrates the app's ability to 

differentiate between normal and pathological conditions, a key feature for a reliable urinalysis tool. This differentiation 

is essential for users relying on the app for health monitoring, as it can guide them in seeking professional medical advice 

when abnormal results are detected. Tchemical analysis of BIORAD Urinalysis Control 1 and 2 highlights their suitability 

as quality control solutions for urinalysis tests. Their distinct chemical compositions, simulating both normal and 

pathological conditions, provide a robust platform for validating the accuracy and precision of the Vivoo App. This 

analysis underscores the importance of comprehensive quality control in the development and maintenance of digital 

health monitoring tools. 

The comprehensive analysis of the Vivoo App's performance in measuring various chemical components in artificial 

urine solutions presents a robust picture of its accuracy and reliability. The study meticulously evaluated the App's ability 

to quantify 13 distinct chemicals, including bilirubin, ketones, leukocytes, nitrites, pH, specific gravity, protein, 

magnesium, sodium, calcium, creatinine, vitamin C, and MDA. The initial verification of the artificial urine solutions, as 

outlined in Supplementary file 2, confirmed that the preparations were within the desired value ranges. This step was 

critical to ensuring the validity of subsequent tests and analyses. 

The accuracy assessment of bilirubin, ketones, leukocytes, nitrites, pH, specific gravity, protein, magnesium, sodium, 

calcium, creatinine, vitamin C and MDA are demonstrated high accuracy, The findings from this study underscore the 

reliability and accuracy of the Vivoo App in measuring a range of chemical components in artificial urine. The use of the 

±1 color block acceptance criterion significantly enhanced the agreement rates, highlighting the importance of considering 

minor variations in color readings. The study's methodology, involving a large number of strips for each test, lends 

credibility to the results. 

A significant portion of the analysis focuses on the assessment of exact match agreement proportions, both with and 

without the ±1 color block acceptance criterion. Our results show that a high percentage of measurements were consistent 

with their expected values. Notably, with the ±1 color block acceptance criterion, the vast majority of strip measurements 

aligned with anticipated outcomes, as evidenced by the 95% confidence intervals calculated for each component. These 

confidence intervals provide a quantitative measure of the accuracy of Vivoo App’s readings, indicating a high level of 

precision across most of the tested components. 

The overall exact match agreement proportion of Vivoo, considering all 13 components, falls within a 95% confidence 

interval of 87.55% ± 1.27%. However, this proportion dramatically increases to 99.62% ± 0.24% when the ±1 color block 
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acceptance criterion is applied. This criterion's application seems to significantly enhance the match agreement, 

demonstrating the potential flexibility and reliability of Vivoo App in different analytical settings. 

In conclusion, our study robustly demonstrates the accuracy of Vivoo App in measuring a range of chemical components. 

The high exact match percentages and narrow confidence intervals indicate the reliability of Vivoo App. Our study aligns 

with previous research underscoring the reliability of urine analysis apps as a diagnostic tool, adding to the growing body 

of evidence supporting the use of such non-invasive testing methods with potential applications in medical diagnostics, 

research, and personal health monitoring.  

Conclusion 

Smartphone-based POC urinalysis is a rapidly evolving field that has the potential to revolutionize health 

monitoring and disease prevention. With the widespread availability of smartphones and their ability to 

integrate various sensors and devices, it is now possible to perform a range of medical tests using just a 

smartphone and a urine sample. One of the most promising applications of smartphone-based POC is the 

detection of various biomarkers in urine, which can provide valuable insight into a person's health status and 

risk of developing certain diseases.  

Despite the promising results of smartphone-based POC urine analysis, there are still some limitations that 

must be addressed before this technology can be widely adopted. One of the main challenges is the lack of 

standardization in urine analysis methods and the potential for user error. The accuracy of urine analysis can 

be affected by factors such as the timing of the sample collection, the sample volume, and the user's technique 

in using the smartphone app. Therefore, it is essential to develop standardized protocols and guidelines for 

smartphone-based POC urine analysis to ensure consistency and accuracy across different users and devices. 

Another limitation of smartphone-based POC urine analysis is the need for further validation and testing to 

ensure the accuracy and reliability of the results. While the Vivoo App has shown promising results in 

smartphone-based POC urinalysis, there is a need to develop more sophisticated urine analysis technology that 

can measure a wider range of biomarkers with higher accuracy and sensitivity. 

Looking to the future, there are many exciting possibilities for the development of smartphone-based POC 

urine analysis. One such possibility is the integration of AI and machine learning algorithms for improving the 

accuracy and reliability of urine analysis results. AI can aid in identifying patterns and correlations in urine 

analysis data that may not be visible to the human eye, which can in turn enable more precise and personalized 

health recommendations. Another direction for future research is the development of new sensors and devices 

that can measure a wider range of biomarkers in urine. In conclusion, smartphone-based POC urine analysis 

has the potential to transform the way we monitor our health and prevent diseases. The validation of the Vivoo 

Application is thus a significant step forward in this field, but there are still many challenges and opportunities 

that need to be addressed. By collaborating with healthcare providers, technology companies, and regulatory 

bodies, we can ensure that smartphone-based POC urine analysis is safe, effective, and accessible to all. With 

continued research and innovation, we can unlock the full potential of this technology to improve our health 

and well-being. 
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