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In this paper, we introduce the class of demi-strongly order bounded operators on a 

Riesz space generalization of strongly order bounded operators. Let M be a Riesz 

space, an operator H from M into M is said to be a demi-strongly order bounded 

operator if for every net {uα} in M+ whenever 0 ≤ uα ↑ ≤ u′′,
u′′ in M∼∼ and  {uα − H(uα)} is order bounded in M, then {uα} is order bounded in 

M. We obtain a characterization of the b-property by the term of demi-strongly order 

bounded operators. In addition, we study the relationship between strongly order 

bounded operators and demi-strongly order bounded operators. Finally, we also 

investigate some properties of the class of demi-strongly order bounded operators.   

 
1. Introduction 

 

In order to give our results, we need the following 

definitions and notations: Let 𝑀 be a Riesz space. 

The order dual of 𝑀 is denoted by 𝑀∼, and the 

order bidual of 𝑀 is denoted by 𝑀∼∼. A subset 𝐴 

of a Riesz space 𝑀 is said to be order bounded if 

there exist 𝑥 in 𝑀+ such that |𝑦| ≤ 𝑥 for all      

𝑦 ∈ 𝐴 [1]. The canonical embedding        

𝑄𝑀: 𝑀 → 𝑀∼∼ is defined by 𝑄𝑀(𝑥) = �̂�, 

 �̂�(𝑓) = 𝑓(𝑥), 𝑓 ∈ 𝑀∼, 𝑥 ∈ 𝑀 [1]. Let 𝐴 be a 

subset of the Riesz space 𝑀, if 𝑄𝑀(𝐴) is order 

bounded in 𝑀∼∼, then 𝐴 is called 𝑏-order 

bounded in 𝑀 [2]. A Riesz space 𝑀 is said to 

have b-property if every b-order bounded subset 

of 𝑀 is order bounded in 𝑀 [3]. An operator 

𝐻: 𝑀 → 𝑀 between two Riesz spaces is said to 

be regular if it can be written as a difference of 

two positive operators [1]. 

 

Alpay S. and Altın B. introduced the strongly 

order bounded operators and recall from [4], let 

𝑀, 𝑁 be two Riesz spaces and 𝐻 be an operator 

from 𝑀 into 𝑁. 𝐻 is said to be a strongly order 

bounded operator if for each net 0 ≤ 𝑢𝛼 ↑ 𝑢′′ for 

some 𝑢′′ in 𝑀∼∼, then 𝐻(𝑢𝛼) is order bounded 

in 𝑁; in the other words, an operator 𝐻: 𝑀 → 𝑁 

is a strongly order bounded if it maps b-bounded 

subsets of 𝑀 into order bounded subsets of 𝑁, 

and the class of all strongly order bounded 

operators will be denoted by 𝐿𝑠𝑏(𝑀, 𝑁), the 

operator 𝐻 is said to be the pre-regular operator 

if 𝑄𝑁𝐻 is order bounded operator from 𝑀 into 

𝑁∼∼ [5]. An operator 𝐻 from 𝑀 into 𝑁 is pre-

regular if and only if 𝐻(𝐴) is b-order bounded 

subset of 𝑁 for each b-order bounded subset 𝐴 of 

𝑀 [3]. The class of all pre-regular operators from 

𝑀 into 𝑁 and on 𝑀 are denoted by 𝐿𝑝𝑟(𝑀, 𝑁) and 

𝐿𝑝𝑟(𝑀) respectively. The class of all linear 

operator on 𝑀 is denoted by 𝐿(𝑀). 
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The demi notation was used firstly in [6] by 

Petryshyn. The class of weakly demicompact 

operators was studied in  [7]. After that, the class 

of demi Dunford-Pettis operators was introduced 

in  [8], and the class of order weakly 

demicompact operators was studied in [9]. More 

recently, another study on the demi class was 

studied by Benkhaled H. in [10]. 

 

In this study, we will introduce the class of demi-

strongly order bounded operators which are a 

generalization of strongly order bounded 

operators given by [4], and we also investigate 

some properties of the class of demi-strongly 

order bounded operators. 

 

In addition, we assume all Riesz spaces in this 

note have sperating order duals. For all other 

undefined terms and notations, we will adhere to 

the conventions in [1]. 

 

2. Main Results 

 

Let’s start giving the definition of the demi-

strongly order bounded operator. 

 

Definition 1 Let M be a Riesz space. An operator 

H from M into M is said to be a demi-strongly 

order bounded operator (d − sobo) if for every 

net {uα} in M+ whenever 0 ≤ uα ↑ ≤ u′′,
u′′ in M∼∼ and  {uα − H(uα)} is order bounded 

in M, then {uα} is order bounded in M. The class 

of all demi-strongly order bounded operators on 

𝑀 will be denoted by DLsb(M).  

 

Example 1 Let M be a Riesz space, then for all    

b ≠ 1, bI belongs to DLsb(M).  

 

Assume that 𝑏 ≠ 1, {𝑢𝛼} is a net in 𝑀+,                 

0 ≤ 𝑢𝛼 ↑≤ 𝑢′′, 𝑢′′ in 𝑀∼∼ and {𝑢𝛼 − 𝑏𝐼(𝑢𝛼)} is 

order bounded in 𝑀. Therefore, there exists 𝑦 in 

𝑀 such that 

 

|(𝑢𝛼 − 𝑏𝐼(𝑢𝛼))| ≤ 𝑦  

 

and  

0 ≤ |1 − b|uα ≤ y 

It follows that  

 

0 ≤ uα ≤
y

|1 − b|
. 

Thus, {uα} is order bounded in M, and bI is a       

d-sobo. 

 

The following theorem states that DLsb(M) 

includes Lsb(M) for each Riesz space M.  

 

Theorem 1 Every strongly order bounded 

operator is a d-sobo.  

 

Proof. Let M be a Riesz space, H ∈ Lsb(M), {uα} 

be a net in M+, 0 ≤ uα ↑ ≤ u′′, u′′ ∈ M∼∼ and 

{uα − H(uα)} be order bounded in M. Hence, 

there exists y1 in M such that 

 

 |(uα − H(uα))| ≤ y1 

 

for all α. Since H is in Lsb(M),  there exists  y2 in  

M such that 

 

|H(uα)| ≤ y2 

 

for all α. We can write it as follows: 

 

0 ≤ uα = uα − H(uα) + H(uα) 

 

≤ |(uα − H(uα))| + |H(uα)| 
 

≤ y1 + y2. 
 

Hence, we conclude that  

 

0 ≤ uα ≤ y1 + y2. 
 

Therefore, {uα} is order bounded in M, and H is 

a d-sobo.  

 

The following example shows the converse of the 

above theorem is not generally true. 

 

Example 2 Let an operator H: c0 → c0 and      

H =
1

2
I H is a d-sobo. Consider the sequence 

{un}, its first n terms are two, others are zero, and 

u = (2,2, . . . ). It is satisfied 0 ≤ un ↑ ≤ u in 

c0
∼∼ = l∞, but H(un) =

1

2
(un) is not order 

bounded in c0, hence H is not a strongly order 

bounded operator. 

The next example shows that the inclusion 

𝐷𝐿𝑠𝑏(𝑀) ⊆ 𝐿(𝑀) can be proper.  
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Example 3 Let en be a sequence nth term is one, 

the other terms are zero, k ∈ ℕ, and Hk: c0 → c0 

be an operator defined by Hk(x) = ∑k
i=1 xiei for 

each x = (xi) ∈ c0 where c0 is the set of all 

sequences of ℝ which converge to zero. Hk is the 

strongly order bounded operator, consider the 

sequence {un}, its first n terms are one, others are 

zero, and u = (1,1, . . . ). Then, we have                                        

0 ≤ un ↑ ≤ u in c0
∼∼ = l∞. Define  Sk = I + Hk 

for each k ∈ ℕ. 

 

|𝐼(𝑢𝑛) − 𝑆𝑘(𝑢𝑛)| = |𝐼(𝑢𝑛) − 𝐼(𝑢𝑛) − 𝐻𝑘(𝑢𝑛)| 
                             = |𝐻𝑘(𝑢𝑛)|. 
 

𝐻𝑘(𝑢𝑛) is order bounded in 𝑐0, but {𝑢𝑛} is not 

order bounded in 𝑐0. Hence, 𝑆𝑘 is not in 𝐷𝐿𝑠𝑏(𝑐0) 

for each 𝑘 ∈ ℕ.  

 

Theorem 2  Let M be a Riesz space, P: M → M 

be a d-sobo, and S be in Lsb(M), then P + S is a 

d-sobo.  

 

Proof. Let {𝑢𝛼} be a net in 𝑀+, 0 ≤ 𝑢𝛼 ↑ ≤ 𝑢′′, 
𝑢′′  in  𝑀∼∼ and {𝑢𝛼 − (𝑃 + 𝑆)(𝑢𝛼)} be order 

bounded in 𝑀. Hence, there exists 𝑦1 in 𝑀 such 

that  

 

|(𝑢𝛼 − (𝑃 + 𝑆)(𝑢𝑎))| ≤ 𝑦1 

 

for all 𝛼. Since 𝑆 is in 𝐿𝑠𝑏(𝑀), there exists 𝑦2 in 

𝑀 such that  

 

|𝑆(𝑢𝑎)| ≤ 𝑦2 

 

for all 𝛼. We can write also 

 
|𝑢𝛼 − 𝑃(𝑢𝛼)| = |(𝑢𝛼 − 𝑃(𝑢𝛼) − 𝑆(𝑢𝛼)

+ 𝑆(𝑢𝛼))| 
 

≤ |(𝑢𝛼 − (𝑃 + 𝑆)(𝑢𝛼)| + |𝑆(𝑢𝛼)| 
 

≤ 𝑦1 + 𝑦2. 
 

We obtain that {𝑢𝛼 − 𝑃(𝑢𝛼)} is order bounded in 

𝑀. Since 𝑃 belongs to 𝐷𝐿𝑠𝑏(𝑀), then {𝑢𝛼} is 

order bounded in 𝑀. Hence, 𝑃 + 𝑆 is a d-sobo.  

However, as the next example shows, 𝐷𝐿𝑠𝑏(𝑀) 

is not a vector space in general.  

 

Example 4 Let H be an operator on c0, defined 

as H =
1

2
I. H is a d-sobo, but H + H = I is not a            

d-sobo.  

The identity operator is not a d-sobo in general. 

For example, consider the identity operator I on 

M = c0 and the sequence {un}, its first n terms 

are one, others are zero. It is obvious that                                   

0 ≤ un ↑ ≤ u = (1,1, . . . ) in c0
∼∼ = l∞, and 

|I(un) − I(un)| = |(0)| is order bounded in M, 

but {un} is not order bounded in M. Hence, I is 

not a d-sobo on M. 

 

Recall that an operator 𝑇: 𝑀 → 𝑁 between two 

Riesz spaces is said to be order bounded if it 

maps order bounded subsets of 𝑀 into order 

bounded subsets of 𝑁, and the class of all order 

bounded operators from 𝑀 into 𝑁 will be denoted 

by 𝐿𝑏(𝑀, 𝑁) [1].  

 

The following theorem gives us a 

characterization of the b-property. 

  

Let 𝑀 and 𝑁 be two normed Riesz spaces and                      

𝐾 = 𝑀 ⊕ 𝑁 = {(𝑎, 𝑏): 𝑎 ∈ 𝑀, 𝑏 ∈ 𝑁} if 𝐾 is 

equipped with the coordinatewise order that is 

(𝑎1, 𝑏1) ≤ (𝑎2, 𝑏2) ⇔ 𝑎1 ≤ 𝑎2 and 𝑏1 ≤ 𝑏2 for 

each (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 𝐾 and the norm                       

∥ (𝑎, 𝑏) ∥𝐾=∥ 𝑎 ∥𝑀 +∥ 𝑏 ∥𝑁, then 𝐾 will be the 

normed Riesz space [1]. 

 

Theorem  3  Let M and N be two Riesz spaces. 

Then the following operators are d-sobo.  

 

(𝑖) All operators 𝑅 on 𝑀 which (𝐼 − 𝑅)−1 exists 

and is order bounded. 

 

(𝑖𝑖) (𝑆𝛽) is the class of operator on 𝐾, defined by 

the matrix (
0 0
𝑅 𝛽𝐼) on 𝐾 for the every order 

bounded operator 𝑅 from 𝑀 into 𝑁 where              

𝐾 = 𝑀 ⊕ 𝑁 and 𝛽 is a real number different to 

one. 

 

Proof. (𝑖) Assume that {𝑢𝛼} is a net in 𝑀+,           

0 ≤ 𝑢𝛼 ↑≤ 𝑢′′, 𝑢′′ in 𝑀∼∼ and {𝑢𝛼 − 𝑅(𝑢𝛼)} be 

order bounded in 𝑀. Thus, there exists  𝑦0 in 𝑀 

such that 

 

{𝑢𝛼 − 𝑅(𝑢𝛼) ∶ 𝛼 ∈ Λ} ⊆ [−𝑦0, 𝑦0] 
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for all 𝛼. Since [−𝑦0, 𝑦0] is order bounded in 𝑀 

and (𝐼 − 𝑅)−1 is order bounded, then there exists 

𝑥0 in 𝑀 such that  

(𝐼 − 𝑅)−1([−𝑦0, 𝑦0]) ⊆ [−𝑥0, 𝑥0]. 
 

Now, we can write 

 

𝑢𝛼 = (𝐼 − 𝑅)−1(𝐼 − 𝑅)(𝑢𝛼) 

⊆ (𝐼 − 𝑅)−1([−𝑦0, 𝑦0]) 

⊆ [−𝑥0, 𝑥0]. 
 

Hence, {𝑢𝛼} is order bounded; consequently, 𝑅 

belongs to 𝐷𝐿𝑠𝑏(𝑀).  

 
(𝑖𝑖) Let {𝑧𝛼} be a net in 𝐾, 0 ≤ 𝑧𝛼 ↑≤ 𝑧′′,  𝑧′′ in 

𝐾∼∼, 𝑧𝛼 = (𝑥𝛼, 𝑦𝛼) ∈ 𝐾, {(𝐼 − 𝑆𝛽)(𝑧𝛼)} ⊆

𝑀 ⊕ 𝑁 be order bounded. It will be shown that                  

{𝑧𝛼} = {(𝑥𝛼, 𝑦𝛼)}is order bounded in 𝐾. 

 

(𝑧𝛼 − 𝑆𝛽(𝑧𝛼)) = ((𝑥𝛼, 𝑦𝛼)

− (0, 𝑅(𝑥𝛼) + 𝛽𝑦𝛼)) 

 

= (𝑥𝛼 ,  𝑦𝛼 − 𝑅(𝑥𝛼) − 𝛽𝑦𝛼) 

 

= (𝑥𝛼 , (1 − 𝛽)𝑦𝛼 − 𝑅(𝑥𝛼)) 

 

Since {(𝐼 − 𝑆𝛽)(𝑧𝛼)} ⊆ 𝑀 ⊕ 𝑁 is order 

bounded and from the above equality, then {𝑥𝛼} 

and {(1 − 𝛽)𝑦𝛼 − 𝑅(𝑥𝛼)} are order bounded in 

𝑀 and 𝑁 respectively. Hence, there exists 𝑦1 in 

𝑁 such that  

|(1 − 𝛽)𝑦𝛼 − 𝑅(𝑥𝛼)| ≤ 𝑦1 

for all 𝛼. Since 𝑅 is order bounded, then {𝑅(𝑥𝛼)} 

is order bounded in 𝑁. There exists 𝑦2 in 𝑁 such 

that 

 

|𝑅(𝑥𝛼)| ≤ 𝑦2 

 

for all 𝛼. We can write also 

 

|(1 − 𝛽)𝑦𝛼| = |(1 − 𝛽)𝑦𝛼 − 𝑅(𝑥𝛼) + 𝑅(𝑥𝛼)| 
 

≤ |(1 − 𝛽)𝑦𝛼 − 𝑅(𝑥𝛼)| + |𝑅(𝑥𝛼)|. 
 

Hence, we obtain that  

|𝑦𝛼| ≤
1

1 − 𝛽
(𝑦1 + 𝑦2). 

 

Therefore, {𝑦𝛼} is order bounded in 𝑁, so            

{𝑧𝛼] = {(𝑥𝛼, 𝑦𝛼)} is order bounded in 𝐾.  

The following example gives that Theorem 3 is 

not valid in case 𝛽 = 1. 

 

Now, it is clear that 𝐾 = 𝑐0 ⊕ 𝑐0 is a Banach 

lattice with the coordinate wise order and the 

norm     ‖𝑥‖ = ‖𝑎‖ + ‖𝑏‖ for each 𝑥 = (𝑎, 𝑏) ∈
𝐾 [1].  

 

Example 5 Let an operator H: c0 → c0,                    

K = c0 ⊕ c0 equipped with coordinate wise 

order and operator S is defined by (
0 0
H I ). S 

does not belong to DLsb(𝐾). Indeed, consider the 

sequence zn = (0, un) and un the first n term 

equals one, and others are zero. It is clear that 

0 ≤ zn ↑ and ‖zn‖ = 1 for each n ∈ ℕ. Since 

{zn} is increasing, norm bounded and K is a 

Banach lattice {zn} is b-order bounded in K from 

Corollary 3.4 in [11]. Hence, there exists  u′′ in 

K′′ such that 0 ≤ zn ↑ ≤ u′′ where K′′ is the 

second norm dual of 𝐾.  

 

It is clear that 

 

(I − S)(zn) = (zn − S(zn)) 

 

= [(0, un) − (0, I(un))] = (0,0). 
 

Therefore, {(I − S)(zn)} is order bounded in K, 

but S is not a d-sobo, since {zn} is not order 

bounded in K.  

 

By the term of d-sobo of identity operator it is 

obtain that a characterization of the b-property.  

 

Theorem 4 Let M be a Riesz space, then the 

following assertions are equivalent. 

 

(i) All pre-regular operators H: M → M are d-

sobo. 

 

(ii) I: M → M is d-sobo. 

 

(iii) M has b-property.  

 

Proof. (i) ⇒ (ii) It is clear. 

 

(ii) ⇒ (iii) Assume that {uα} is a net in M+,              

0 ≤ uα ↑ ≤ u′′, 𝑢′′ in 𝑀∼∼. Since                              
|(I − I)(uα)| = 0 is order bounded in M and           
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I ∈ DLsb(M), then {uα} is order bounded in M. 

Hence, M has b-property.  

 

(iii) ⇒ (i) Let H be a pre-regular operator on M, 

{uα} be a net M+, 0 ≤ uα ↑ ≤ u′′, 𝑢′′ in 𝑀∼∼. 

H(uα) is b-order bounded in M from    

Proposition 1 in [3]. Since M has b-property, then 

H(uα) is order bounded in M, and we get H is in 

Lsb(M). Hence, H is d-sobo from Theorem 1.  

 

Let H, S be two operators on the Riesz space M 

and 0 ≤ S ≤ H. If H is a d-sobo, then S is not a d-

sobo in general. Hence, the class of demi-

strongly order bounded operators does not satisfy 

the domination property. 

 

Example 6 Let H, S be two operators on c0, S =
I and H = 2I. It holds 0 ≤ S ≤ H and H is a d-

sobo, but S is not a d-sobo.  

 

Domination property for d-sobo is satisfied under 

certain condition as follows. 

 

Theorem 5  Let S, H be two positive operators on 

the Riesz space M and 0 ≤ S ≤ H ≤ I. If H is a        

d-sobo, then S is also a d-sobo.  

 

Proof. Let {uα} be a net in M+, 0 ≤ uα ↑≤ u′′,  
𝑢′′ in 𝑀∼∼ and {uα − S(uα)} be order bounded 

in M. Hence, there exists y1 in M such that 

 

0 ≤ uα − S(uα) ≤ y1 

 

for all α. It is clear that  

 

0 ≤ (I − H)(uα) ≤ (I − S)(uα) ≤ y1. 
 

Hence, {(I − H)(uα)} is order bounded in M. 

Since H belongs to DLsb(M), then {uα} is order 

bounded in M; consequently, S belongs to 

DLsb(M).  

 

Theorem 6 Let M be a Riesz space, S and H be 

two operators on M and I ≤ S ≤ H. If S belongs 

to DLsb(M), then H belongs to DLsb(M).  

 

Proof. Assume that {uα} is a net in M+,                   

0 ≤ uα ↑ ≤ u′′, 𝑢′′ in 𝑀∼∼and {(H − I)(uα)} is 

order bounded in M. Hence, there exists y1 in M 

such that 

 

(H − I)(uα) ≤ y1 

for all α. It implies that  

0 ≤ (S − I)(uα) ≤ (H − I)(uα) ≤ y1. 
 

Thus, {(S − I)(uα)} is order bounded in M. Since 

S is a d-sobo, then {uα} is order bounded in M, so 

H is in DLsb(M).  

  

Theorem 7 Let M be a Riesz space, P, S, N: M →
M be three operators, and N ≤ S ≤ P ≤ I + N. If 

N is in Lsb(M) and P is in DLsb(M), then S is in 

DLsb(M).  

 

Proof. By the hypothesis                                           

0 ≤ S − N ≤ P − N ≤ I. Assume that N is in 

Lsb(M), and P is in DLsb(M). We have P − N is 

a d-sobo from Theorem 2 and  S − N is a d-sobo 

from Theorem 5. Since N is in Lsb(M), then by 

Theorem 2, S = S − N + N is in DLsb(M). 

 

Remark 1 

 

(1) An order bounded operator H may not be a d-

sobo whenever its adjoint is a d-sobo in general. 

For example, choice M = c0 and H as an identity 

operator on M. Since M ′ has b-property [3], then 

I ′: M ′ → M ′ is a demi-strongly order bounded 

operator, but I: c0 → c0 is not a d-sobo.  

 

(2) Since order dual of every Riesz space has b-

property and every adjoint of pre-regular 

operator  is order bounded [3], then the adjoint of 

every pre-regular operator is strongly order 

bounded. Hence, every adjoint of pre-regular 

operator is d-sobo.  

 

The following example gives us that the set of all  

d-sobo on a Riesz space M is not a lattice in 

general. 

 

Example 7 Let H be an operator on M = C[−1,1] 

defined by H(f)(k) = f (sin (
1

k
)) − f (sin (k +

1

k
)) if 0 < |k| ≤ 1 and H(f)(0) = 0. H is an 

order bounded, but it is not regular operator from 

Example 1.16 in [1]. Since M has b-property, H 

is in Lsb(M). Hence, H is a d-sobo, but |H| does 

not exist, since H is not a regular operator. 

Consequently, DLsb(M) is not lattice.  
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3. Conclusion  

 

In this study, the class of demi-strongly order 

bounded operators on a Riesz space which is a 

generalization of strongly order bounded 

operators, is defined. Furthermore, the 

relationship between strongly order bounded 

operators and demi-strongly order bounded 

operators is examined and the conclusion that 

demi-strongly order bounded operator includes 

strongly order bounded operator is obtained.  It is 

observed that the demi-strongly order bounded 

operators are not generally a vector space. A 

characterization of the b-property is obtained by 

the term of demi-strongly order bounded 

operators. It is obtained that the class of demi-

strongly order bounded operators does not satisfy 

the domination property, but the domination 

property is satisfied when it is bounded from 

above with the identity operator. It is concluded 

that the class of demi-strongly order bounded 

operators does not form generally a lattice.  
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