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Abstract

The international prudential regulation standard – the Basel standards – introduces a substantial 
change to its market risk framework. The change is part of a comprehensive revision of the standard 
to address the weaknesses discovered during the global financial crisis (GFC) of 2008. One of the key 
changes is the replacement of Value-at-Risk (VaR) with Expected Shortfall (ES) as the primary risk 
measure in the framework. By incorporating the tail events, ES partially answers the concerns raised 
about the VaR during the GFC. However, ES as well lacks a mechanism to extrapolate the historical 
shocks. This paper proposes an alternative measure – unexpected shortfall (US) – which aims to serve 
as a better safety barrier for financial institutions. Based on the evidence from 3 conventional currency 
pairs (EUR/USD, USD/TRY, EUR/TRY) and 1 cryptocurrency pair (BTC/USD), the new measure 
displayed violations in a reasonably close range of the expected values and backtest analyses suggested 
that the incurred excessive losses for US are less than both VaR and ES.
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1. Introduction

The global financial crisis (GFC) of 2008 has become one of the most significant turning points in 
the financial markets. The collapse of the US housing market has been followed by the bankruptcy 
of some major US banks such as Lehman Brothers and Bear Sterns. After such big failures in the 
market, the crisis has quickly spread globally. Although the first wave of the crisis has eased out 
by 2010, the global recession after the crisis has been prolonged for almost a decade.

Aftermath of the GFC, the failures in the financial system initiated a series of new regulations and 
rules. The Basel Committee on Banking Supervision (BCBS) also responded by introducing some 
new capital requirements as well as starting a comprehensive review of the existing ones. In 2016, 
after eight years from the crisis, an extensive review on minimum capital requirements for market 
risk – better known as the Fundamental Review of Trading Book (FRTB) – has been concluded with a 
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revised framework. Among others, one of the major changes of the new framework is the replacement 
of the Value-at-Risk (VaR) based internal model approach with Expected Shortfall (ES).

Starting from 1990s, VaR emerged as being the standard risk measure for risk practitioners 
and eventually it become the main risk measure of Basel framework with 1996 amendments. 
Although the technique initially introduced for market risk, it has been applied to all types of 
risks. However, especially during the GFC, the perception of VaR has been dramatically changed 
and VaR started to be considered as an inadequate or even misleading measure of risk. One 
source criticism to VaR was about its insensitivity to tail events. VaR as a measure gives a false 
sense of security as if in the case of a financial shock, the loss would be as much as VaR itself. 
However, VaR rather represents a threshold, or a truncation point of the tail, so the loss that 
exceeds the VaR may be quite larger than the VaR value itself. This is more likely especially if 
the financial portfolio contains derivative or highly leveraged financial products. The seconds 
popular criticism to VaR, also known as Black Swan theory, suggested that using the historical 
price movements to forecast the future losses is deemed to fail in case there is an unprecedent 
shock occurs. In its original form as pioneered by Taleb (2009), the Black Swan theory may imply 
that it is simply not possible to measure such risks. However, at least it indicates that a better risk 
measure should not rely solely on the historical changes, in some way it should also extrapolate 
and potentially amplify the historical losses.

ES addresses the first criticism by simply replacing the notion of worst loss at a certain significance 
level, with the value of the losses which exceeds the VaR. In this way, ES is sensitive to the extreme 
values in the tail. However, similar to VaR, ES as well doesn’t extrapolate the price movements, 
instead aims to represent what the historical return distribution implies as the potential loss.

This study proposes a new risk measure aims to extrapolate the risk by modelling directly 
the violations and their magnitude. The second section of the study explains the VaR and ES 
methodologies used as well as the new measure, unexpected shortfall. The third section delivers 
an empirical comparison of different risk measures. Finally, the last section summarises the 
findings of this study.

2. Methodology

VaR is a measure of the worst loss on a financial portfolio of assets due to changes in the risk 
factors over a given time horizon and at a confidence level. From a statistical point of view, VaR 
can be derived using the inverse of the cumulative distribution function (CDF) of the returns.
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ES, on the other hand, is the expected value of the losses exceeding VaR and can be formulated 
as follows; 
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where 𝐸𝐸𝐸𝐸!" is ES at time 𝑡𝑡 and at a significance level 𝛼𝛼, 𝔼𝔼(. ) is the expected value 
operator and 𝑟𝑟!%$ is the portfolio return at 𝑡𝑡 + 1. 

2.1. Parametric Approach 

The first group of VaR/ES models assumes the profit/loss distribution of 
the portfolio follows a parametric distribution. If we assume the portfolio/loss 
distribution follows a normal distribution, the estimation of VaR simply requires 
fitting the normal distribution to the historical data. The normal distribution is 
defined by mean and the standard deviation; 

 𝑟𝑟! ∼ 𝑁𝑁(𝜇𝜇! , 𝜎𝜎!)  

where 𝜇𝜇! is the mean and 𝜎𝜎! is the standard deviation. Therefore, to fit the normal 
distribution to a data set, one needs to estimate these two parameters. Referring to 
the market efficiency hypothesis, it is also quite common to assume 𝜇𝜇 = 0; in this 
case, VaR calculation would only require the estimation of standard deviation.  

After fitting the normal distribution, VaR can be calculated as; 
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where 𝑧𝑧" is the threshold value for significance level 𝛼𝛼 calculated using the inverse 
CDF of normal distribution and 𝕍𝕍! is the present value of the financial assets at 
time 𝑡𝑡. 

Since standard deviation or the volatility is the key element of the 
parametric approach, a difference in the volatility estimation between VaR 
calculations imply a different parametric VaR model.  This study reports the 
results of the parametric VaR uses moving average (MA), exponentially moving 
average (EWMA) and generalised autoregressive heteroscedacity (GARCH) 
(Bollerslev, 1986) volatility estimators. 

Under the normal distribution assumption (𝑁𝑁(0, 𝜎𝜎!	)), similar to VaR, ES 
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2.2. Simulation-based Approaches

The second class of VaR/ES calculation approaches is the simulation-based approach which relies 
on scenario creation and evaluation for generating the profit/loss distribution. Therefore, the 
general algorithm for all methods under this category shares the following common steps;

i. Generate the market scenario with the corresponding fx rates, yield curves etc.

ii. Calculate the value change of the portfolio under each scenario

iii. Calculate the desired percentile of the value changes (profit/loss) for VaR

iv. Calculate the mean of the losses exceeding VaR for ES

Then the differences between alternative simulation-based approaches arise in the way how a 
certain step above is implemented.

2.2.1. Historical Simulation

The main assumption of the historical simulation is that the best representation of the possible 
market scenarios that may occur in the next time horizon is the past movements of the risk 
factors.

For calculating under the historical simulation method, first, the past risk factor movements need 
to be calculated. Then the series of the past returns can be defined as; 
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market, the historical simulation is slow to respond.  
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The rest of the calculation follows the same steps as the standard 
historical simulation method described in the previous subsection.  

2.2.3. Weighted Historical Simulation 

Another method that attempts to improve the performance of the 
historical simulation is the weighted historical simulation (WHS) developed by 
Boudoukh et al. (1998). The WHS method follows the same steps for generating 
scenarios and deriving the profit/loss distribution as the standard historical 
simulation. However, in the calculation of the percentile, opposed to the regular 
percentile calculation where implicitly all the scenarios are treated as equally 
likely, WHS implements a time-dependent weighting scheme.  

WHS uses a decaying weighting for the scenarios based on the date of 
the realised returns used in the derivation of that particular scenario. The weight 
of each scenario in WHS is defined as; 

 𝑤𝑤! =
1 − 𝜆𝜆
1 − 𝜆𝜆- 𝜆𝜆
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where 𝜆𝜆 is the decay factor. Boudoukh et al. (1998) compare results of WHS using  
two values for the decay factor; 0.97 and 0.99. In this study, the results are 
calculated by setting the decay factor to 0.99.  

2.2.4. Bootstrapped Historical Simulation 

Bootstrapping is a technique in statistics for increasing the sample size 
by replacing the existing observations and re-sampling. The use of bootstrap 
techniques in VaR was relatively less popular, mainly due to the fact that re-
shuffling of the observations makes better sense when VaR is calculated for a time 
horizon longer than 1-day. Zenti and Pallotta (2000) have implemented 
bootstrapping for multi-day time horizons in one of the early studies. Since the 
new Basel IV increases the calculation time horizon for VaR/ES to 10-days; the 
use of the Bootstrapped Historical Simulation (BHS) might become more popular. 

Under the BHS method, the daily returns constitute the pool of samples. 
Then, for creating an n-day scenario, n daily returns are randomly drawn from the 
pool; and converted to n-day returns (in the case of logarithmic returns simply by 
summation).  

2.2.5. Monte Carlo Simulation 

The Monte Carlo simulation method for VaR/ES as well follows the same 
notion and incorporates stochastic processes for modelling the movement of the 
risk factors. Apart from the way how the scenarios are generated, the Monte Carlo 
simulation for VaR/ES follows the same steps as the historical simulation. 

There are several different stochastic processes developed for different 
classes of risk factors. However, for the asset prices such as commodities, stocks 
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2.2.5. Monte Carlo Simulation

The Monte Carlo simulation method for VaR/ES as well follows the same notion and incorporates 
stochastic processes for modelling the movement of the risk factors. Apart from the way how the 
scenarios are generated, the Monte Carlo simulation for VaR/ES follows the same steps as the 
historical simulation.

There are several different stochastic processes developed for different classes of risk factors. 
However, for the asset prices such as commodities, stocks and FX rates, the most commonly used 
model is the geometric Brownian motion (GBM) 1 which is shown in the following equation;

 

and FX rates, the most commonly used model is the geometric Brownian motion 
(GBM)1 which is shown in the following equation; 
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1
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2c 𝛿𝛿 + 𝜎𝜎𝜎𝜎√𝛿𝛿		 

where �̀�𝑥!%1 is the simulated return from 𝑡𝑡 to 𝑡𝑡 + 𝛿𝛿, 𝛿𝛿 is the time increment with 
0 < 𝛿𝛿 < 1 , 𝜇𝜇 is the average return of the risk factor, 𝜎𝜎 is the volatility of the risk 
factor, and 𝜎𝜎 is random with 𝜎𝜎~𝑁𝑁(0,1).  

Then a scenario price that is produced by the process can be shown as; 

 𝑠𝑠!%1 = 𝑠𝑠!𝑒𝑒.3$'( 

By repeating the same process 1/𝛿𝛿	 times, the scenario process for the 
next day (or next time interval) can be produced. Therefore, after 1/𝛿𝛿	 iterations, 
one scenario can be produced for VaR/ES calculation; however, by repeating the 
whole experiment many times, thousands of scenarios can be generated. In this 
study, a business day is represented by 100 iterations, therefore 𝛿𝛿 is set to 1/100. 

2.3.  New Measure: Unexpected Shortfall 

ES delivers a better risk buffer than VaR by taking to account the 
possibility of extreme events in the tail of the profit loss distribution. However, ES 
as well limited to the observed historical data and does not extrapolate the 
magnitude of the potential losses. As per its definition, ES deals with the expected 
value of the losses exceeding VaR, therefore does not aim to project the 
unexpected.  

The shortfall, by definition, is observed on the violation days. Therefore, 
the realised shortfalls can be used for modelling the distribution of the shortfall 
conditionally on a VaR estimate. However, considering the heteroscedasticity of 
VaR and ES, instead of the nominal shortfall, it would be preferable to define the 
shortfall as a magnitude relative to VaR. Then the shortfall magnitude can be 
defined as; 

 𝑆𝑆𝑀𝑀! = 1 −
𝑅𝑅!
𝑉𝑉!"
									𝑓𝑓𝑓𝑓𝑓𝑓		𝑅𝑅! < −𝑉𝑉!" 

By definition, 𝑆𝑆𝑀𝑀 will take values from zero to positive infinity. 
Intuitively, it is expected that 𝑆𝑆𝑀𝑀 follows a left-skewed size distribution. In the 
context of credit risk, CreditRisk+2 framework uses gamma distribution to model 
the severity multiplier of the losses (Gordy, 2002) which is conceptually very 
similar to 𝑆𝑆𝑀𝑀. The actuarial models as well use gamma distribution for modelling 

 
1 Glasserman (2004) can be seen for extensive review of stochastic processes in 

finance and particularly for the derivation of GBM. 
2 CreditRisk+ is a well-known Credit VaR methodology introduced by Credit 

Suisse. 
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is conceptually very similar to SM . The actuarial models as well use gamma distribution for 
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distribution, then we can calculate a VaR like unexpected shortfall magnitude (USM) at a certain 
significance level.
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distribution, then we can calculate a VaR like unexpected shortfall magnitude 
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where 𝑘𝑘 and 𝜃𝜃 are the shape and scale parameters of the gamma distribution and 
𝛾𝛾 is the significance level of 𝑈𝑈𝑆𝑆𝑆𝑆. The unexpected shortfall magnitude indicates 
the highest shortfall magnitude under the chosen significance level. The final step 
is to convert this magnitude of shortfall to the nominal loss amount, then the 
unexpected loss can be shown as; 

 𝑈𝑈𝑆𝑆! 	= (1 + 𝑈𝑈𝑆𝑆𝑆𝑆!) ∙ 𝑉𝑉!" 

The current BCBS framework requires the banks to calculate the VaR at 
a 1% significance level. Basel IV, on the other hand, mandates an ES calculation 
under 2.5% significance level. As far as US is concerned, there are 2 confidence 
levels involved; the first one for the underlying VaR, and the second is the 
significance level of the measure itself.  

In this study, 2 sets of confidence levels are considered. The first set uses 
Basel IV’s 2.5% significance level assumption for shortfall observations and 
combines it with 1% for US. The second set uses, 5% and 1% respectively.  

3. Model Validation and Comparison 

3.1.  Backtesting 

Since there are many methodologies to calculate VaR, validation of VaR 
is essential and an integral part of the capital adequacy framework. The process to 
measure the performance of VaR estimates and validate their statistical 
significance is called backtesting. The procedure involves the comparison between 
VaR estimate and the realised profit/loss. 

Backtesting methodologies check if the violation series - derived from 
VaR and the realised profit/loss series - fits into the expected statistical properties 
of such series. A violation occurs when the realised loss is larger than VaR 
calculated for a certain day. Then, the violation series can be defined as; 
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Christoffersen (1998) improved the idea by introducing a likelihood ratio test of 
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The current BCBS framework requires the banks to calculate the VaR at a 1% significance level. 
Basel IV, on the other hand, mandates an ES calculation under 2.5% significance level. As far as 
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significance level assumption for shortfall observations and combines it with 1% for US. The 
second set uses, 5% and 1% respectively.
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Backtesting methodologies check if the violation series - derived from 
VaR and the realised profit/loss series - fits into the expected statistical properties 
of such series. A violation occurs when the realised loss is larger than VaR 
calculated for a certain day. Then, the violation series can be defined as; 
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of such series. A violation occurs when the realised loss is larger than VaR 
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value of the 𝐼𝐼! is equal to 𝛼𝛼, the significance level of VaR. 

Kupiec (1995) introduced a statistical test focusing on the distance 
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significance level of VaR.

Kupiec (1995) introduced a statistical test focusing on the distance between the observed 
density of the violations and the assumed density. Christoffersen (1998) improved the idea 
by introducing a likelihood ratio test of conditional coverage which would be applied to the 
smaller samples. The likelihood ratio of both unconditional coverage (UC) and conditional 
coverage (CC) follows a Chi distribution asymptotically with degrees of freedom 1 and 2 
respectively.

3.2. Reality Check

Basel IV mandates the use of VaR for validating ES-derived capital adequacy numbers, but the 
horizon of the calculation is not consistent with the backtest either. In the literature, unfortunately, 
this aspect seems to be neglected and no study investigated backtesting VaR or ES results with a 
longer horizon (i.e 10-day). Considering, that the capital requirement aims to be a buffer for the 
potential losses, in this study, the results are compared against both the realised return after 10-
days and the maximum loss born in the same time interval.

4. Empirical Analysis

4.1. Data

Sample data consists of 3 pairs of FX rates and 1 crypto currency price from January 2014 to 
March 2022. The FX rates comprise 1 hard currency pair (EUR/USD) and 2 emerging market 
pairs (USD/TRY & EUR/TRY). On the other hand, the cryptocurrency analysed is BTC (BTC/
USD). All the data is obtained from Yahoo Finance.

Table 1 shows the descriptive statistics of all 4 data sets used. The sample data represents different 
volatility profiles. Both the standard deviation and the range of the returns indicates that EUR/
USD is less volatile while TRY rates shows higher volatility and BTC is the most volatile. This 
allows comparing the performance of the models under both high and low volatility. TRY pairs 
exhibit positive skewness and therefore more extreme values on the positive tail of the distribution.
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Table 1: Descriptive Statistics of Daily Logarithmic Returns

EUR/USD USD/TRY EUR/TRY BTC/USD
Mean -0.0089% 0.0973% 0.0871% 0.2439%
Median -0.0088% 0.0365% 0.0386% 0.2001%
St. Dev. 0.4875% 1.2596% 1.2539% 3.8827%
Min -2.7752% -18.8638% -17.8132% -37.1695%
Max 2.8545% 22.7990% 20.9004% 25.2472%
Skewness (0.0370) 1.7485 1.2498 (0.1357)
Excess Kurtosis 3.1957 83.2896 66.1116 7.2491
Count 2,149 2,149 2,150 2,753

The descriptive statistics of 10-daily logarithmic returns are shown in Table 2. In general, 10-daily 
returns exhibit the same features as the daily returns. However, the mean and the medians seem 
to diverge from zero for all series except EUR/USD. As it would be expected, another difference 
is that the standard deviations for all return series are higher.

Table 2: Descriptive Statistics of 10-Daily Logarithmic Returns

EUR/USD USD/TRY EUR/TRY BTC/USD
Mean -0.0886% 0.9774% 0.8749% 2.5204%
Median -0.0883% 0.5685% 0.5045% 1.4584%
St. Dev. 1.4552% 4.0406% 3.9717% 12.8479%
Min -7.1710% -21.9982% -21.9372% -45.0320%
Max 5.7399% 42.4045% 38.4444% 82.3086%
Skewness  (0.1098)  2.4040  2.0679  0.5393
Excess Kurtosis  1.4720  19.8108  16.0880  1.8901
Count  2,140  2,140  2,141  2,744

4.2. Backstest Result

The results in this section are calculated using 1512 daily VaR calculations at 99% 
significance level and 1-day liquidity horizon. Therefore, the expected value of the number 
of violations is 15.12.

Table 3 displays the likelihood ratio test results for EUR/USD. Considering a 10% significance 
level for the likelihood ratio test, 6 out of 11 models can pass the test for both unconditional 
coverage and conditional coverage tests. The historical simulation model can pass the likelihood 
ratio test only for conditional coverage.
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Table 3: LR Tests of EUR/USD VaR 99% with 1-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 27  7.64 0.57%  8.66 1.31%
FHS GARCH 26  6.51 1.07%  7.45 2.41%
FHS MA 24  4.47 3.45%  5.28 7.15%
HIS 23  3.58 5.86%  4.32 11.54%
MC EWMA 21  2.06 15.12%  2.68 26.18%
MC GARCH 25  5.45 1.96%  6.32 4.24%
MC MA 21  2.06 15.12%  2.68 26.18%
PAR EWMA 19  0.93 33.49%  1.44 48.69%
PAR GARCH 22  2.77 9.59%  3.45 17.80%
PAR MA 21  2.06 15.12%  2.68 26.18%
WHS 10  1.99 15.85%  2.14 34.38%

The likelihood ratio test results for USD/TRY are shown in Table 4. Majority of the models 
pass the LR tests for USD/TRY. The historical simulation model passes the unconditional 
coverage test, but fails the conditional coverage. It is also interesting to note that FHS MA 
models fails due to having more violations than expected, but WHS contrarily fails as it has too 
few violations.

Table 4: LR Tests of USD/TRY VaR 99% with 1-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 19  0.93 33.49%  1.44 48.69%
FHS GARCH 17  0.23 63.38%  0.64 72.74%
FHS MA 24  4.47 3.45%  5.23 7.33%
HIS 21  2.06 15.12%  6.66 3.58%
MC EWMA 11  1.25 26.31%  1.43 48.95%
MC GARCH 19  0.93 33.49%  1.44 48.69%
MC MA 16  0.05 82.17%  0.41 81.28%
PAR EWMA 10  1.99 15.85%  2.14 34.38%
PAR GARCH 17  0.23 63.38%  0.64 72.74%
PAR MA 16  0.05 82.17%  0.41 81.28%
WHS 6  7.20 0.73%  7.26 2.65%

The results for EUR/TRY data display more violations, and therefore less models pass the 
unconditional coverage test. However, 9 out of 11 models pass the conditional coverage test. 
This is largely because the violation numbers do not diverge largely from the expected values and 
independence criteria is satisfied.
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Table 5: LR Tests of EUR/TRY VaR 99% with 1-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 23  3.58 5.86%  4.32 11.54%
FHS GARCH 14  0.09 76.94%  0.37 83.26%
FHS MA 22  2.77 9.59%  3.45 17.80%
HIS 25  5.45 1.96%  17.57 0.02%
MC EWMA 9  2.93 8.71%  3.05 21.80%
MC GARCH 17  0.23 63.38%  2.02 36.42%
MC MA 21  2.06 15.12%  2.68 26.18%
PAR EWMA 9  2.93 8.71%  3.05 21.80%
PAR GARCH 17  0.23 63.38%  2.02 36.42%
PAR MA 19  0.93 33.49%  1.44 48.69%
WHS 3  14.63 0.01%  14.65 0.07%

The results for BTC/USD are displayed in Table 6. None of the VaR models can pass both of 
the likelihood ratio tests. Only WHS pass the conditional coverage test, however the rest of the 
models yielded quite large numbers of violations.

Table 6: LR Tests of BTC/USD VaR 99% with 1-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 33  15.97 0.01%  20.34 0.00%
FHS GARCH 25  5.45 1.96%  6.10 4.73%
FHS MA 32  14.41 0.01%  19.09 0.01%
HIS 31  12.92 0.03%  14.95 0.06%
MC EWMA 39  26.53 0.00%  26.58 0.00%
MC GARCH 45  39.00 0.00%  39.16 0.00%
MC MA 44  36.80 0.00%  38.67 0.00%
PAR EWMA 35  19.26 0.00%  19.35 0.01%
PAR GARCH 34  17.58 0.00%  17.70 0.01%
PAR MA 36  20.99 0.00%  22.22 0.00%
WHS 8  4.09 4.32%  4.18 12.34%

In the second part of this section, the likelihood ratio test results for VaR under 97.5% significance 
level and with a 10-day liquidity horizon are displayed. Considering there are 1512 data points, 
the expected value of the number of violations is 37.8 instances.

EUR/USD results exhibit dramatical differences from the 1-day VaR results calculated at 99%. 
Only FHS GARCH, MC EWMA and BHS models pass the unconditional coverage test and all 
models fail the conditional coverage test.
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Table 7: LR Tests of EUR/USD VaR 97.5% with 10-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 50  3.67 5.53%  146.04 0.00%
FHS GARCH 40  0.13 71.96%  21.33 0.00%
FHS MA 50  3.67 5.53%  173.75 0.00%
HIS 55  7.05 0.79%  237.06 0.00%
MC EWMA 31  1.34 24.79%  67.02 0.00%
MC GARCH 27  3.51 6.10%  14.42 0.07%
MC MA 106  85.40 0.00%  317.96 0.00%
PAR EWMA 28  2.86 9.09%  66.72 0.00%
PAR GARCH 25  5.04 2.48%  17.16 0.02%
PAR MA 108  89.76 0.00%  330.62 0.00%
WHS 23  6.89 0.86%  93.61 0.00%
BHS 35  0.22 64.05%  137.91 0.00%

USD/TRY results are also parallel to EUR/USD. FHS GARCH and BHS models pass the 
unconditional coverage test. However, none of the models passes the conditional coverage test.

Table 8: LR Tests of USD/TRY VaR 97.5% with 10-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 49  3.12 7.75%  131.21 0.00%
FHS GARCH 37  0.02 89.48%  34.99 0.00%
FHS MA 49  3.12 7.75%  148.76 0.00%
HIS 56  7.85 0.51%  212.53 0.00%
MC EWMA 2  60.71 0.00%  60.71 0.00%
MC GARCH 18  13.16 0.03%  24.37 0.00%
MC MA 56  7.85 0.51%  157.13 0.00%
PAR EWMA 1  67.25 0.00%  67.25 0.00%
PAR GARCH 15  18.22 0.00%  47.28 0.00%
PAR MA 55  7.05 0.79%  150.96 0.00%
WHS 22  7.95 0.48%  77.37 0.00%
BHS 35  0.22 64.05%  148.61 0.00%

The models performed slightly better with EUR/TRY data. Half of the models pass the 
unconditional coverage test and produced violation numbers reasonably close to the expected 
value. However, again all the models failed in the conditional coverage test.
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Table 9: LR Tests of EUR/TRY VaR 97.5% with 10-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 41  0.27 60.30%  117.36 0.00%
FHS GARCH 39  0.04 84.41%  38.57 0.00%
FHS MA 37  0.02 89.48%  111.09 0.00%
HIS 52  4.91 2.68%  206.67 0.00%
MC EWMA 1  67.25 0.00%  67.25 0.00%
MC GARCH 15  18.22 0.00%  39.07 0.00%
MC MA 47  2.13 14.40%  174.13 0.00%
PAR EWMA 1  67.25 0.00%  67.25 0.00%
PAR GARCH 14  20.17 0.00%  42.28 0.00%
PAR MA 43  0.70 40.18%  168.65 0.00%
WHS 26  4.24 3.96%  91.64 0.00%
BHS 37  0.02 89.48%  120.48 0.00%

BTC/USD data confirms the same message. This time WHS passes the unconditional coverage 
test, but none of the models pass the conditional coverage.

Table 10: LR Tests of BTC/USD VaR 97.5% with 10-Day Liquidity Horizon

VaR Method Violations UC Test UC Prob CC Test CC Prob
FHS EWMA 56  7.85 0.51%  132.56 0.00%
FHS GARCH 92  57.28 0.00%  144.97 0.00%
FHS MA 62  13.36 0.03%  130.29 0.00%
HIS 69  21.31 0.00%  268.04 0.00%
MC EWMA 28  2.86 9.09%  75.39 0.00%
MC GARCH 57  8.68 0.32%  48.00 0.00%
MC MA 114  103.30 0.00%  353.58 0.00%
PAR EWMA 15  18.22 0.00%  47.28 0.00%
PAR GARCH 53  5.58 1.81%  39.28 0.00%
PAR MA 91  55.44 0.00%  293.72 0.00%
WHS 43  0.70 40.18%  95.40 0.00%
BHS 58  9.54 0.20%  187.28 0.00%

4.3. Reality Check Results

In this section, VaR and ES results are compared using the realised shortfall. The results display 
the accumulated difference between the risk measure and the realised loss when the loss exceeds 
the amount predicted by the measure. Since the required base liquidity horizon is 10 days, the 
losses are derived using 10-day returns.

If the bank would have used the risk measure as a direct indicator of the capital buffer without 
any adjustments, how much loss would have been accumulated during the analysis period (last 
1250 observation).
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Table 11: Cumulative Realised Shortfall with 10-Day Returns

EUR/USD USD/TRY EUR/TRY BTC/USD
FHS EWMA VaR @99 -5.51% -11.16% -9.79% -79.91%

ES @97.5 -5.15% -10.67% -10.65% -88.53%
FHS GARCH VaR @99 -4.44% -14.62% -16.49% -231.10%

ES @97.5 -4.78% -14.45% -16.02% -191.70%
FHS MA VaR @99 -5.16% -16.80% -18.12% -102.53%

ES @97.5 -5.60% -15.92% -18.19% -101.96%
HS VaR @99 -21.82% -92.07% -89.47% -245.37%

ES @97.5 -21.14% -90.30% -90.87% -245.96%
MC EWMA VaR @99 -1.27% 0.00% 0.00% -44.64%

ES @97.5 -0.85% 0.00% 0.00% -41.51%
MC GARCH VaR @99 -3.44% -7.89% -8.23% -146.93%

ES @97.5 -3.38% -7.16% -7.09% -140.71%
MC MA VaR @99 -17.95% -19.47% -31.79% -288.80%

ES @97.5 -16.89% -17.65% -30.06% -277.03%
PAR EWMA VaR @99 -0.64% 0.00% 0.00% -15.38%

ES @97.5 -0.62% 0.00% 0.00% -14.51%
PAR GARCH VaR @99 -2.86% -5.86% -7.13% -113.00%

ES @97.5 -2.76% -5.68% -6.93% -110.73%
PAR MA VaR @99 -15.52% -15.95% -27.55% -180.74%

ES @97.5 -15.16% -15.52% -26.96% -176.00%
WHS VaR @99 0.00% -8.03% -8.62% -59.85%

ES @97.5 -2.09% -37.54% -26.84% -109.23%
BHS VaR @99 -13.95% -38.21% -27.69% -211.16%

ES @97.5 -13.75% -37.05% -26.07% -212.03%
FHS EWMA VaR @99 -5.51% -11.16% -9.79% -79.91%

ES @97.5 -5.15% -10.67% -10.65% -88.53%
VaR@99, VaR at 99% significance level; ES@97.5, ES at 97.5% significance level.

Although the BCBS requires banks to calculate the risk measure for a liquidity horizon of 10-days, 
the 10-day returns don’t reflect the worst loss during each 10-day period. Table 12 reports the 
cumulative shortfalls calculated using the maximum loss. The results indicate that the potential 
losses during the liquidity horizon could be quite larger than the simple return value.
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Table 12: Cumulative Realised Shortfall with 10-Day Min-Max Returns

EUR/USD USD/TRY EUR/TRY BTC/USD
FHS EWMA VaR @99 -8.81% -176.46% -243.12% -361.21%

ES @97.5 -8.45% -165.55% -240.36% -354.50%
FHS GARCH VaR @99 -26.05% -89.64% -84.16% -511.34%

ES @97.5 -25.98% -73.80% -82.29% -406.15%
FHS MA VaR @99 -21.93% -313.71% -250.28% -1013.44%

ES @97.5 -21.33% -288.70% -250.90% -988.50%
HS VaR @99 -19.48% -652.86% -584.25% -1056.47%

ES @97.5 -18.89% -621.74% -568.03% -1071.18%
MC EWMA VaR @99 -1.94% -18.97% -21.09% -79.89%

ES @97.5 -1.75% -18.24% -19.49% -74.02%
MC GARCH VaR @99 -16.89% -38.93% -38.54% -285.09%

ES @97.5 -16.12% -37.76% -37.18% -273.47%
MC MA VaR @99 -40.60% -301.39% -255.95% -1483.90%

ES @97.5 -37.75% -290.08% -249.37% -1448.46%
PAR EWMA VaR @99 -1.35% -9.47% -9.90% -22.44%

ES @97.5 -1.27% -9.00% -9.43% -21.36%
PAR GARCH VaR @99 -14.71% -35.56% -34.28% -225.41%

ES @97.5 -14.33% -34.93% -33.56% -221.50%
PAR MA VaR @99 -36.89% -271.47% -228.15% -1148.59%

ES @97.5 -36.12% -267.21% -223.80% -1131.80%
WHS VaR @99 -16.39% -563.72% -524.59% -886.77%

ES @97.5 -15.34% -598.10% -545.05% -1013.94%
BHS VaR @99 -15.37% -475.13% -383.86% -1201.36%

ES @97.5 -15.18% -467.11% -375.13% -1160.55%
FHS EWMA VaR @99 -8.81% -176.46% -243.12% -361.21%

ES @97.5 -8.45% -165.55% -240.36% -354.50%
Note: VaR@99, VaR at 99% significance level; ES@97.5, ES at 97.5% significance level.

4.4. Unexpected Shortfall Results

In this section, the unexpected shortfall results are reported. The results consist of the outcome 
of 2 significance level pairs.

Table 13 shows the US results for EUR/USD. Shortfall column displays the total of the realised losses 
exceeding the US for the entire analysis period of 1250 days. The number of US violations, similarly, 
shows the number of days where the realised loss was larger than the estimated US. Since, the US 
results are calculated at 99% significance level, it is expected 1 loss will exceed US out of 100 VaR 
violations. Therefore, when the VaR exhibit less violation, the expected number of the US violations 
will also be smaller. The expected number of US violations for the US measure which uses 97.5% 
VaR estimates is 0.3125. On the other hand, the US measure which uses 95% VaR has twice as 
many expected US violations, 0.625. In the light of these expected values, PAR MA result seems to 
produce too many US violations. The other models produce less than or equal to 2 US violations.
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Table 13: US Results for EUR/USD

Model US Sig Level Shortfall # of US Violation
FHS EWMA US@97.5/99 0.00% 0

US@95/99 -0.04% 1
FHS GARCH US@97.5/99 0.00% 0

US@95/99 -0.21% 1
FHS MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
HS US@97.5/99 -0.28% 1

US@95/99 -1.28% 2
MC EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC MA US@97.5/99 -0.07% 2

US@95/99 -0.47% 2
PAR EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR MA US@97.5/99 -0.02% 1

US@95/99 -0.41% 5
WHS US@97.5/99 0.00% 0

US@95/99 0.00% 0
BHS US@97.5/99 0.00% 0

US@95/99 -0.08% 1
Note: US@97.5/99, US using VaR results at 97.5% significance level and calculated at 99% significance level; US@95/99, 
US using VaR results at 95% significance level and calculated at 99% significance level.

Both USD/TRY and EUR/TRY results for US produced the US violations less than or equal 
to 2 violations. The results also exhibit the expected feature of having less US violations for 
US@97.5/99 results.

Table 14: US Results for USD/TRY

Model US Sig Level Shortfall # of US Violation
FHS EWMA US@97.5/99 -0.12% 1

US@95/99 -0.56% 2
FHS GARCH US@97.5/99 0.00% 0

US@95/99 -0.31% 1
FHS MA US@97.5/99 0.00% 0

US@95/99 -0.40% 1
HS US@97.5/99 0.00% 0

US@95/99 -0.99% 1
MC EWMA US@97.5/99 0.00% 0
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US@95/99 0.00% 0
MC GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
WHS US@97.5/99 0.00% 0

US@95/99 0.00% 0
BHS US@97.5/99 0.00% 0

US@95/99 0.00% 0
Note: US@97.5/99, US using VaR results at 97.5% significance level and calculated at 99% significance level; US@95/99, 
US using VaR results at 95% significance level and calculated at 99% significance level.

Table 15: US Results for EUR/TRY

Model US Sig Level Shortfall # of US Violation
FHS EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
FHS GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
FHS MA US@97.5/99 0.00% 0

US@95/99 -0.21% 2
HS US@97.5/99 -0.01% 1

US@95/99 -1.50% 2
MC EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR GARCH US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
WHS US@97.5/99 0.00% 0

US@95/99 -1.16% 2
BHS US@97.5/99 0.00% 0

US@95/99 0.00% 0
Note: US@97.5/99, US using VaR results at 97.5% significance level and calculated at 99% significance level; US@95/99, 
US using VaR results at 95% significance level and calculated at 99% significance level.
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The US measure produces promising results for BTC/USD as well. Again, all the violations 
are within the expected range. One major difference, however, is in the aggregate loss amount. 
Although, BTC/USD exhibits few US violations as the other dataset, the magnitude of the losses 
is much larger.

Table 16: US Results for BTC/USD

Model US Sig Level Shortfall # of US Violation
FHS EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
FHS GARCH US@97.5/99 -10.51% 1

US@95/99 -11.09% 1
FHS MA US@97.5/99 0.00% 0

US@95/99 0.00% 0
HS US@97.5/99 -7.88% 1

US@95/99 -8.84% 2
MC EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
MC GARCH US@97.5/99 -9.26% 1

US@95/99 -12.40% 1
MC MA US@97.5/99 -0.99% 1

US@95/99 -3.68% 2
PAR EWMA US@97.5/99 0.00% 0

US@95/99 0.00% 0
PAR GARCH US@97.5/99 -6.81% 1

US@95/99 -10.38% 1
PAR MA US@97.5/99 -0.35% 1

US@95/99 -1.53% 1
WHS US@97.5/99 -2.92% 1

US@95/99 -3.78% 1
BHS US@97.5/99 0.00% 0

US@95/99 -0.69% 1
Note: US@97.5/99, US using VaR results at 97.5% significance level and calculated at 99% significance level; US@95/99, 
US using VaR results at 95% significance level and calculated at 99% significance level.

5. Conclusion

The Basel IV reforms replace VaR with ES as the primary risk measure for the internal model 
approach. In this study, a capital measure unexpected shortfall is proposed as an alternative. The 
replacement of VaR with the ES addresses the problems related to the fat tails. However, similar 
to VaR itself, ES as well forecasts the risks as much as it has been observed in the past. In addition, 
the capital requirement amount is expected to provide a cushion for financial institutions. Neither 
VaR nor ES is directly translated into a capital requirement. Because, by definition, both measures 
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are expected to fail a number of times that is not acceptable for a safety cushion. Therefore, BCBS 
uses an arbitrary mechanism to transform the VaR results into capital requirement amounts. This 
calculation makes use of an average of the last 60 days of VaR, stressed VaR and some multipliers. 
Basel IV as well defines an arbitrary process for deriving the capital requirement from the ES 
results.

The proposed risk measure, the unexpected shortfall, addresses both of these issues. First, it allows 
extrapolating the violation information gathered from the VaR and forecasts the magnitude of 
upcoming shortfalls. Secondly, it delivers a measure suitable for the use of capital requirements 
without arbitrary transformations. In this study, the results for 99% US based on 95% VaR and 
99% US based on 97.5% are displayed. The expected violation for these US estimates is 0.025% 
and 0.05% respectively. In a real capital requirement context, more conservative significance 
levels might be selected to reduce the possibility of a US violation near impossible. However, for 
the sake of demonstrating the approach, less conservative significance levels are selected, to allow 
observing US violations.

The results for US are very promising. Almost all the models generated US violations in a 
reasonably close range of the expected values. Although the underlying VaR analysis displayed 
a large number of violations for a 10-day liquidity horizon, the US measure in a way fixed the 
inaccuracy of the model and delivered a reasonable capital cushion. Similarly, the US measure 
seems to work with BTC/USD data as good as the other datasets. However, the magnitude of the 
US violation for BTC/USD is relatively higher than the others.

The findings in this study suggest that the replacement of VaR by ES may partially address the 
problems faced in the GFC. However, the new capital framework doesn’t bring completely a new 
way of measuring the risk. In fact, the findings indicate that the results produced by both measures 
are quite parallel in many cases. This thesis also proposes an alternative way of approaching the 
problem; rather than modelling only the profit loss distribution, modelling the distribution of 
shortfall magnitude brings a new dimension.

References
Barone-Adesi, G., Giannopoulos, K., & Vosper, L. (1999). VaR without correlations for portfolios of 

derivative securities. Journal of Futures Markets, 583-602.
Basel Committee on Banking Supervision. (1996). Amendment to the capital accord to incorporate market 

risks. Bank for International Settlements.
Basel Committee on Banking Supervision. (2016). Minimum capital requirements for market risk. Bank for 

International Settlements.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 

121-131.
Boudoukh, J., Richardson, M., & Whitelaw, R. (1998). The best of both worlds. Risk, 64-67.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review, 841-862.
Glasserman, P. (2004). Monte Carlo methods in financial engineering. New York: Springer.



Ekrem KILIÇ

130

Gordy, M. B. (2002). Saddlepoint approximation of CreditRisk+. Journal of banking & finance, 26(7), 1335-
1353.

Hull, J., & White, A. (1998). Incorporating Volatility Updating Into The Historical Simulation Method for 
Value At Risk. Journal of Risk, 5-19.

J.P. Morgan. (1996). RiskMetrics – Technical Document (4th Edition).
Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & 

Sons.
Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models.  The Journal of 

Derivatives, 3(2).
Taleb, N. (2009). The Black Swan. Random House.
Zenti, R., & Pallotta, M. (2000). Risk analysis for asset managers: Historical simulation, the bootstrap 

approach and value at risk calculation. Available at SSRN 251669.


	_Ref104125783
	_Ref104148780
	_Ref105449822
	_Ref105449807
	_Ref105449881
	_Ref105591591
	_Ref105939831
	_Ref105945592
	_GoBack

