

S. Öztunç

# **Morphism Properties of Digital Categories**

Simge Öztunç\*

Celal Bayar University Faculty of Arts and Science, Departments of Mathematics, Şehit Prof. Dr. İlhan Varank Campus, Manisa/TURKEY simge.oztunc@cbu.edu.tr \*Corresponding Author/

> Received: 8 December 2016 Accepted: 15 May 2017 DOI: 10.18466/cbayarfbe.339314

## Abstract

In this paper we defined the  $Img_{\kappa}$  category and researched the properties of monomorphism, epimorphism and isomorphism for digital categories which are related with the categorical structure in [1]. Also initial and terminal objects in digital categories are defined by using  $\mathcal{K}$  – adjacency relation. Hence we determined the initial and terminal objects of digital categories which have digital image with  $\mathcal{K}$  – adjacency as objects. In addition to this we proved that the objects of the same type in a digital category are isomorphic. **Keywords** — Digital Image, Digital Category,  $\mathcal{K}$  – monomorphism,  $\mathcal{K}$  – epimorphism,  $\mathcal{K}$  – isomorphism.

#### **1. Introduction**

Digital Topology is a field of mathematical science which investigates the image processing and digital image processing. Many Researchers, for example Rosenfeld [2], Han [3], Kong [4], Boxer [5,6], Karaca [7] and others have contributed this area with their research. The notion of digital image, digital continuous map is studied in [2, 3, 4, 5, 6]. Their characterization and effective computation became a useful tool for our research. Then we carry this notion to category theory and we construct some fundamental category models in digital topology.

We introduce the  $Img_{\kappa}$  Category and give the monomorphism and epimorphism properties of  $Img_{\kappa}$  category. Also we define the initial and terminal objects in  $Img_{\kappa}$  and prove that initial and terminal objects are isomorphic in  $Img_{\kappa}$ .

### 2. Preliminaries

In this study we indicate the set of integers by  $\Box$ . Then  $\Box^n$  denotes the set of lattice points in Euclidean n-dimensional spaces. A finite subset of  $\Box^n$  with an adjacency relation is said to be digital image.

#### **Definition 2.1.** ([5] and [6])

- (1) Two points p and q in  $\Box$  are 2-adjacent if |p-q|=1.
- (2) Two points p and q in  $\square^2$  are 8-adjacent if they are distinct and differ by at most 1 in each coordinate.
- (3) Two points p and q in  $\square^2$  are 4-adjacent if they are 8-adjacent and differ by exactly one co-ordinate.
- (4) Two points p and q in  $\square^3$  are 26-adjacent if they are distinct and differ by at most 1 in each coordinate.
- (5) Two points p and q in  $\square^3$  are 18-adjacent if they are 26-adjacent and differ in at most two coordinates.
- (6) Two points p and q in  $\square^3$  are 6-adjacent if they are 18-adjacent and differ by exactly one co-ordinate.

Suppose that  $\mathcal{K}$  be an *adjacency* relation defined on  $\square^n$ . A digital image  $X \subset \square^n$  is  $\mathcal{K}$ -connected [5] if and only if for every pair of points  $\{x, y\} \subset X, x \neq y$ , there Celal Bayar University Journal of Science Volume 13, Issue 3, p 619-622

is a set  $\{x_0, x_1, \dots, x_c\} \subset X$  such that  $x = x_0, x_c = y$ and  $x_i$  and  $x_{i+1}$  are  $\kappa$ -neighbors,  $i \in \{0, 1, \dots, c-1\}$ .

**Definition 2.2.** Let X and Y are digital images such that  $X \subset \square^{n_0}$ ,  $Y \subset \square^{n_1}$ . Then the digital function  $f: X \to Y$  is a function which is defined between digital images.

**Definition 2.3.** ([5] and [6]) Let X and Y are digital images such that  $X \subset \square^{n_0}$ ,  $Y \subset \square^{n_1}$ . Assume that  $f: X \to Y$  be a function. Let  $\kappa_i$  be an *adjacency* relation defined on  $\square^{n_i}$ ,  $i \in \{0,1\}$ . f is called to be  $(\kappa_0, \kappa_1)$ -continuous if the image under f of every  $\kappa_0$ -connected subset of X is  $\kappa_1$ -connected.

A function satisfying Definition 2.3 is referred to be digitally continuous. A consequence of this definition is given below.

**Proposition 2.4.** ([5] and [6]) Let X and Y are digital images. Then the function  $f: X \to Y$  is said to be  $(\kappa_0, \kappa_1) - continuous$  if and only if for every  $\{x_0, y_0\} \subset X$  such that  $x_0$  and  $x_1$  are  $\kappa_0 - adjacent$ , either  $f(x_0) = f(x_1)$  or  $f(x_0)$  and  $f(x_1)$  are  $\kappa_1 - adjacent$ .

The basic notions of Category Theory is given in [8], [9]. Also digital and soft properties of categories are investigated in [1], [10].

**Definition 2.5.** [1] A category **C** consists of the following data:

- Objects: *A*, *B*, *C*,...
- Arrows:  $f, g, h, \dots$
- For each arrow f, there are given objects

called the domain and codomain of f . We write

$$f: A \to B$$

to indicate that A = dom(f) and B = cod(f)

• Given arrows  $f:A \to B$  and  $g:B \to C$  , that is, with

$$cod(f) = dom(g)$$

there is given an arrow

 $g \circ f : A \to C$ 

called the composite of f and g.

• For each object A, there is given an arrow 
$$1_A: A \to A$$

called the identity arrow of A.

This data required to satisfy the following laws:

Associativity: 
$$h \circ (g \circ f) = (h \circ g) \circ f$$
 for all  $f: A \to B$ ,  $g: B \to C$  and  $h: C \to D$ .  
Unit:  $f \circ 1_A = f = 1_B \circ f$  for all  $f: A \to B$ .

# 3. The Category Img<sub>r</sub>

- The objects of  $Img_{\kappa}$  are  $\kappa$  *adjacent* digital images,
- The morphisms of  $Img_{\kappa}$  are  $\kappa$  continuous (digitally continuous) functions,
- For each morphism f in  $Img_{\kappa}$

$$dom(f)$$
 and  $cod(f)$ 

are  $\kappa$  – *adjacent* digital images.

- Let (A, κ), (B, κ) and (C, κ) be κ-adjacent digital images, i.e., objects in Img<sub>κ</sub>. Given morphisms f:(A, κ) → (B, κ) and g:(B, κ) → (C, κ) with cod(f) = dom(g). Then the function g ∘ f:(A, κ) → (C, κ) is a κ-continuous function, since the composition of two digital continuous (κ-continuous) is continuous. Thus g ∘ f:(A, κ) → (C, κ) an Img<sub>κ</sub> morphism.
- For each  $(A, \kappa)$ ,  $Img_{\kappa}$  object, the identity map  $1_{(A,\kappa)}: (A,\kappa) \to (A,\kappa)$  is a  $\kappa$  - continuous function. Therefore  $1_{(A,\kappa)}$  is an  $Img_{\kappa}$  - morphism.
- Composition: For all  $f: (A, \kappa) \to (B, \kappa)$ ,  $g: (B, \kappa) \to (C, \kappa)$  and  $h: (C, \kappa) \to (D, \kappa)$   $Img_{\kappa} -$  morphisms, we have  $h \circ (g \circ f) = (h \circ g) \circ f$
- Identity: For each  $f: (A, \kappa) \to (B, \kappa)$   $Img_{\kappa}$ morphism

$$f \circ \mathbf{1}_{(A,\kappa)} = f = \mathbf{1}_{(B,\kappa)}$$

Thus we have construct the  $Img_{\kappa}$  category of digital images and digital continuous functions.

Let now investigate some properties of  $Img_{\kappa}$  category.

S. Öztunç

Celal Bayar University Journal of Science Volume 13, Issue 3, p 619-622

## 4. Epis and Monos in Img

**Definition 4.1:** Let  $(A, \kappa), (B, \kappa)$  and  $(C, \kappa)$  be  $Img_{\kappa}$  - objects which have the same cardinality. For given any  $h, g: (C, \kappa) \rightarrow (A, \kappa)$   $Img_{\kappa}$  - morphism, if  $f \circ g = f \circ h$  implies that g = h, then

$$f: (A, \kappa) \to (B, \kappa)$$

 $Img_{\kappa}$  – morphism is called a K – monomorphism.

$$(C,\kappa) \xrightarrow{g} (A,\kappa) \xrightarrow{f} (B,\kappa)$$

**Definition 4.2:** Let  $(A, \kappa), (B, \kappa)$  and  $(D, \kappa)$  be  $Img_{\kappa}$  - objects which have the same cardinality. For given any  $i, j: (B, \kappa) \to (D, \kappa)$   $Img_{\kappa}$  - morphism, if  $i \circ f = j \circ f$  implies that i = j, then

$$f: (A, \kappa) \to (B, \kappa)$$

 $Img_{\kappa}$  – morphism is called a K – epimorphism.

$$(A,\kappa) \xrightarrow{f} (B,\kappa) \xrightarrow{i} (D,\kappa)$$

**Definition 4.3:** In category  $Img_{\kappa}$ , an  $Img_{\kappa}$  – morphism  $f: (A, \kappa) \rightarrow (B, \kappa)$ 

is said to be an  $\mathcal{K}$ -isomorphism if there is a  $g:(B,\kappa) \to (A,\kappa) \operatorname{Im} g_{\kappa}$  - morphism such that

$$g \circ f = \mathbf{1}_{(A,\kappa)}$$
 and  $f \circ g = \mathbf{1}_{(B,\kappa)}$ .

It is written as  $(A, \kappa) \cong (B, \kappa)$ .

**Lemma** 4.4: If  $f: (A, \kappa) \to (B, \kappa)$  and  $g: (B, \kappa) \to (C, \kappa)$  be two  $\kappa$  - monomorphisms in  $Img_{\kappa}$  category, then  $g \circ f: (A, \kappa) \to (C, \kappa)$  is a  $\kappa$  - monomorphism.

**Proof:** Let  $f: (A, \kappa) \to (B, \kappa)$  and

 $g:(B,\kappa) \to (C,\kappa)$  be two  $\kappa$  – monomorphisms. Suppose that  $h,k:(C,\kappa) \to (A,\kappa)$  are  $Img_{\kappa}$  – morphisms. If

$$(g \circ f) \circ h = (g \circ f) \circ k$$

then it follows that

$$g \circ (f \circ h) = g \circ (f \circ k)$$

from the associativity property of  $Img_{\kappa}$  - morphisms. Since g is an  $\kappa$  - monomorphism, we obtain that  $f \circ h = f \circ k$ . On the other hand, since f is an  $\kappa$  - monomorphism, we have h = k. Therefore  $g \circ f$  is a  $\kappa$  - monomorphism.

**Lemma** 4.5: If  $f: (A, \kappa) \to (B, \kappa)$  and  $g: (B, \kappa) \to (C, \kappa)$  be two  $\kappa$  – epimorphisms in  $Img_{\kappa}$  category, then  $g \circ f: (A, \kappa) \to (C, \kappa)$  is a  $\kappa$  – epimorphism.

**Proof:** Let  $f: (A, \kappa) \to (B, \kappa)$  and  $g: (B, \kappa) \to (C, \kappa)$  be two  $\kappa$  – epimorphisms. Assume that  $h, k: (B, \kappa) \to (D, \kappa)$  are  $Img_{\kappa}$  – morphisms. If  $h \circ (g \circ f) = k \circ (g \circ f)$ ,

We have

$$(h \circ g) \circ f = (k \circ g) \circ f$$

From the associativity property. Since f is an  $\mathcal{K}$  – epimorphism, we obtain that  $h \circ g = k \circ g$ , and since g is an  $\mathcal{K}$  – epimorphism, we get h = k. Consequently  $g \circ f$  is a  $\mathcal{K}$  – epimorphism.

**Theorem 4.6:** Every isomorphism in  $Img_{\kappa}$  is both  $\kappa$  – monomorphism and  $\kappa$  – epimorphism.

**Proof:** Consider the following diagram:



S. Öztunç

Celal Bayar University Journal of Science Volume 13, Issue 3, p 619-622

$$i \circ e \circ m = j \circ e \circ m = i \circ 1_{(B,\kappa)} = j \circ 1_{(B,\kappa)}.$$

Thus we obtain that i = j. Consequently *m* is a K – epimorphism.

**Definition 4.7:** An object  $(U, \kappa)$  of a category  $Img_{\kappa}$  is said to be an initial object if for every object  $(X, \kappa)$  of  $Img_{\kappa}$ , the set  $Mor_{Img_{\kappa}}((U, \kappa), (X, \kappa))$  is a singeleton. Dually  $(U, \kappa)$  is said to be a terminal object if for every object  $(X, \kappa)$  of  $Img_{\kappa}$ , the set  $Mor_{Img}$   $((X, \kappa), (U, \kappa))$  is a singeleton.

**Theorem 4.8:** Let  $Img_{\kappa}$  be a category of digital images and digital continuous functions. Then any two initial objects in  $Img_{\kappa}$  are isomorphic.

**Proof:** Let  $(U_1, \kappa)$  and  $(U_2, \kappa)$  be initial objects in  $Img_{\kappa}$ . We must show  $Mor_{Img_{\kappa}}((U_1, \kappa), (U_2, \kappa))$  contains an isomorphism. If  $(U_1, \kappa)$  is an initial object for  $Img_{\kappa}$ , then  $Mor_{Img_{\kappa}}((U_1, \kappa), (U_2, \kappa)) = \{\alpha\}$  for any object  $(U_2, \kappa)$ . If  $(U_2, \kappa)$  is an initial object for  $Img_{\kappa}$ , then  $Mor_{Img_{\kappa}}((U_2, \kappa), (U_1, \kappa)) = \{\beta\}$  for any object  $(U_1, \kappa)$ . We get  $\alpha \circ \beta \in Mor_{Img_{\kappa}}((U_2, \kappa), (U_2, \kappa))$  by the composition property of morphisms. Therefore  $\alpha \circ \beta = id_{U_2}$ . Similarly we have  $\beta \circ \alpha = id_{U_1}$ . It follows that  $\alpha$  is an isomorphism with  $\beta = \alpha^{-1}$  and  $(U_1, \kappa)$  and  $(U_2, \kappa)$  are isomorphic.

**Theorem 4.9:** Let  $Img_{\kappa}$  be a category of digital images and digital continuous functions. Then any two terminal objects in  $Img_{\kappa}$  are isomorphic.

**Proof:** Assume that  $(O_1, \kappa)$  and  $(O_2, \kappa)$  are terminal objects in  $Img_{\kappa}$ . We want to show that  $Mor_{Img_{\kappa}}((O_1, \kappa), (O_2, \kappa))$  contains an isomorphism. If  $(O_1, \kappa)$  is a terminal object for  $Img_{\kappa}$ , then  $Mor_{Img_{\kappa}}((O_2, \kappa), (O_1, \kappa)) = \{f\}$  for any object  $(O_2, \kappa)$ . If  $(O_2, \kappa)$  is a terminal object for  $Img_{\kappa}$ , then  $Mor_{Img_{\kappa}}((O_1, \kappa), (O_2, \kappa)) = \{g\}$  for any object  $(O_1, \kappa)$ . We have  $g \circ f = id_{(O_2, \kappa)}$  and similarly

 $f \circ g = id_{(O_1,\kappa)}$  by the composition property of morphisms. Therefore f is an isomorphism with  $f = g^{-1}$  and  $(O_1, \kappa)$  and  $(O_2, \kappa)$  are isomorphic.

S. Öztunç

**Corollary 4.10:** The objects of the same type in  $Img_{\kappa}$  are isomorphic.

**Proof:** The proof is obtained by Theorem 4.8 and Theorem 4.9.

#### 5. Conclusion

We have construct the category  $Img_{\kappa}$  and worked on some properties of  $Img_{\kappa}$  in this paper. We have obtained some foldings deal with monomorphism and epimorphism properties of  $Img_{\kappa}$ . Also we concluded that the objects of the same type in the category  $Img_{\kappa}$  are isomorphic.

#### 6. References

1. Öztunç S., Mutlu A., Categories in Digital Images, *American Journal of Mathematics and Statistics*, January 2013;Vol.3, No.1.

2. Rosenfeld A., 'Continuous' functions on digital pictures, *Pattern Recognition Letters*, 1986; Vol. 4, 177–184.

3. Han, S.E. An Extended Digital 01 ( $k_0$ , $k_1$ )-Continuity. *J. Appl. Math. Comput.* 2004, 16, 445-452.

**4.** Kong T.Y., Roscoe A.W., and Rosenfeld A., Concepts of digital topology, *Topology and its Applications*, 1992, 46, 219–262.

5. Boxer L., Digitally continuous functions, *Pattern Recognition Letters*, 1994, 15 833–839.

6. Boxer L., Properties of Digital Homotopy, *Journal of Mathematical Imaging and Vision*, 2005, 22 19–26.

7. Karaca I., Boxer L. and Öztel A., Topological Invariants in Digital Images, *Jour. of Mathematical Sciences: Advances and Applications*, 2011, 2, 109-140.

**8.** Awoday S., Category Theory, Oxford Science Publication, 2010.

9. Blyth T.S., Categories, Longman 1986.

**10.** Öztunç S., Some Properties of Soft Categories, *International Journal of Modeling and Optimization*, 2016; 6(2),91-95.