
Opposition to Synchronization of Bistable State in Motif
Configuration of Rössler Chaotic Oscillator Systems
J. H. García-López ID 1,α, R. Jaimes-Reátegui ID 2,α, G. Huerta-Cuéllar ID 3,α and D. López-Mancilla ID 4,∗
αOptics, Complex Systems, and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, 47463, Jalisco,
Mexico, ∗Control Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, 47463, Jalisco, Mexico.

ABSTRACT This paper presents the study of the opposition to the synchronization of bistable chaotic oscillator
systems in basic motif configurations. The following configurations were analyzed: Driver-response oscillator
systems coupling, two driver oscillator systems to one response oscillator, and a three-oscillator systems
ring unidirectional configuration. The study was conducted using the differential equations representing the
piecewise linear Rössler-like electronic circuits; the initial conditions were changed to achieve a bistable
characteristic Homoclinic H-type or Rössler R-type attractor. Analyzing a sweep of the initial conditions, the
basin attractor was obtained. It can be observed that each system has a preferred Homoclinic chaotic attractor
with any perturbation or change in initial conditions. A similarity analysis based on the coupling factor was also
performed and found that the system has a preferentially Homoclinic chaotic attractor.
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INTRODUCTION

According to the Britain English dictionary, the meaning of the
term synchronization is to occur at the same time. This phe-
nomenon is now known as synchronization and represents the
adjustment of the rhythm of the oscillations of two or more sys-
tems due to the weak interaction between them. Synchronization
is commonly understood as a collective state of a coupled system.
In general, it indicates the existence of some relation between func-
tions of the different processes due to interaction (Boccaletti et al.
2001). Synchronization is also a process during which coupled
system adjust their individual frequency in an organized fashion.
Synchronization is a process where, due to their interaction or an
external driving force, a dynamic system adjusts some properties
of their trajectories so that they eventually operate macroscopically
coherently.

The first studies on synchronization are historically attributed
to the Dutch scientist Christian Huygens who invented two pendu-
lum clocks attached to the same beam supported by two chairs in
1657. Studying synchronization in dynamic systems is extremely
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important in science and engineering and has numerous applica-
tions in many fields, from mechanics and electronics to physics,
chemistry, biology, and even economics. Synchronization is ubiq-
uitous in a natural and man-made system (Rosenblum and Kurths
2003; Boccaletti 2008). As examples of synchronization motion
that are observed in a real-world system, we can mention a sym-
phony orchestra is synchronized by the conductor, a school of fish
changing its shape when attacked by sharks, the unison song of
crickets, the synchronous rhythmic flash of fireflies observed in
Borneo forest, the spontaneous synchronizations of clapping in a
human platea.

Another manifestation of synchronization is the study con-
ducted by Farkas et al. (2002) focusing on "La ola," which serves
as an example illustrating how synchronization behaviors emerge
within complex dynamical systems. Under specific initial condi-
tions, this system transitions from a dormant state with sporadic
fluctuations (where most individuals are seated, occasionally with
a few raised hands) to a collective action phase. During this phase,
the crowd synchronizes coherently by standing up with raised
arms and sitting down, creating a phenomenon resembling a trav-
eling wave – commonly known as "La ola" – that periodically
traverses the stadium.

In man-made systems, physical devices exist where syn-
chronous behavior enhances overall performance. An example
is the Van der Pol electrical circuit (1889-1959), which employed
vacuum tubes and discovered that they exhibit stable oscillations.
When these circuits were driven by a periodic signal near the limit
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cycle, their oscillation frequency became entrained by the external
driven. This discovery had a great deal of practical importance
because the vacuum tube was, at that time, the basic element of
the radio communications systems (Pol and Mark 1927).

Furthermore, an arrangement of Josephson junctions exhibits
heightened output power when these junctions oscillate in syn-
chrony, as Barbara et al. (1999) demonstrated. Synchronous peri-
odic states have been documented in numerous dynamic processes
across diverse scientific and engineering domains. For a compre-
hensive exploration of this topic, we recommend readers consult
the outstanding monograph authored by Pikovsky et al. (2001).
Therefore, the examination of synchronization within complex sys-
tems holds a dual significance: from a theoretical standpoint, it
provides valuable insights into understanding natural phenomena,
and from a technological point of view, it proves to be advan-
tageous for the development of high-performance devices and
systems. During these years, chaotic synchronization has attracted
great interest in applications such as the design of private and
secure communication systems from the paper by Sharma and Ott
(2000), to Méndez-Ramírez et al. (2023).

Currently, various forms of chaos synchronization can be dis-
tinguished. These include Complete Synchronization: The most
robust form of synchronization where the state variables of two
systems perfectly coincide Pikovsky et al. (2001); Phase Synchro-
nization: Which involves a phase difference between chaotic os-
cillations locked within a range of 2π, representing the weakest
manifestation of synchronization in chaotic systems Pecora and
Carroll (1990); Antiphase Synchronization: Defines a state where
the variables of two interacting systems have the same ampli-
tude but differ in sign Rosenblum et al. (1996); Lag Synchroniza-
tion: Characterized by the coincidence of two chaotic trajectories
with a constant time lag Liu et al. (2006); Anticipating Synchro-
nization: The opposite of lag synchronization, wherein chaotic
trajectories coincide with a constant anticipated time Rosenblum
et al. (1997); Generalized Synchronization: Involves trajectories
of coupled systems that exhibit a specific functional dependence
on each other, often utilized to describe synchronous behavior in
coupled non-identical systems Rulkov et al. (1995). Additionally,
there are unstable synchronization states like Intermittent Syn-
chronization, which occurs when any form of synchronization is
intermittently interrupted by asynchronous oscillations or the sys-
tem changes synchronization type periodically, such as switching
between phase synchronization and lag synchronization reported
by Gauthier and Bienfang (1996); Buldú et al. (2006); Pisarchik and
Jaimes-Reategui (2005).

Most research on synchronization has primarily focused on
monostable systems, which are relatively straightforward dynam-
ical systems characterized by a single attractor when they are
uncoupled. However, the prediction of synchronization in multi-
stable systems remains a topic of significant debate, even in seem-
ingly uncomplicated systems like iterative maps. Multistability is
a phenomenon that arises in dissipative systems when multiple
stable attractors coexist for a specific set of system parameters.
This phenomenon has been observed across various scientific do-
mains, including electronics Maurer and Libchaber (1980), optics
Brun et al. (1985), mechanics Stewart et al. (1986), and biology Foss
et al. (1996). The mechanisms underlying multistability can be di-
verse, encompassing delayed feedback and homoclinic tangencies
in weakly dissipative systems Boccaletti et al. (2018). Nonetheless,
despite potential differences in the origins of multistability, mul-
tistable systems share several common traits. They all exhibit an
extremely high sensitivity to initial conditions, where even the

slightest perturbations can significantly change the final attractor
state. Additionally, their qualitative behavior often undergoes dra-
matic shifts with only minor parameter variations Boccaletti et al.
(2018).

Recently, Ahmed et al. (2016) conducted a study on robust syn-
chronization in multistable systems evolving on manifolds within
an Input-to-State Stability framework. Parallelly, Pm and Kapita-
niak (2017) explored synchronization in coupled multistable sys-
tems featuring hidden attractors. Additionally, Khan et al. (2017)
achieved the design of multistable systems through partial synchro-
nization. It is noteworthy that highly multistable synchronized
systems can be engineered, wherein all states of one system syn-
chronize with their corresponding states in the other system, as
demonstrated by Chakraborty and Poria (2019) and Khan et al.
(2021). Furthermore, Dudkowski et al. (2021) illustrated that multi-
stable synchronous states, encompassing in-phase, anti-phase, and
phase-locked synchronization, can emerge based on parameters
and initial conditions.

Moreover, Moskalenko et al. (2021) made a significant contribu-
tion by discovering multistability within the intermittent general-
ized synchronization regime in unidirectionally coupled chaotic
systems. Additional noteworthy work on synchronization in mul-
tistable systems has been conducted by Ruiz-Silva et al. (2021);
Vaidyanathan et al. (2022). Similarly, the synchronization of chaotic
oscillator system with the application to new technologists has
become an area of great importance as it allows us to perform
information security analysis in various communication schemes,
such as information encryption, data hiding, secure wireless com-
munication, machine-to-machine communication, watermarking,
synchronization of chaos, image encryption by Rodríguez-Orozco
et al. (2018); García-Guerrero et al. (2020); Sarosh et al. (2022) and
Trujillo-Toledo et al. (2023).

Nevertheless, developing the states within multistable systems
when these systems are coupled remains a largely unresolved
question, particularly when dealing with complex scenarios like
the coupling of three chaotic bistable systems arranged in a motif
configuration. One may naturally speculate about the behavior of
the motif system as the coupling strength is increased. It might
seem intuitive that the motif system would initially adjust its state
to that of one of the bistable systems, transforming the problem
into a well-understood case involving identical chaotic monos-
table systems. However, this simplistic view only captures part
of the truth. In this context, the synchronization of multistable
systems has received relatively little attention. In a preliminary
investigation, we explored the synchronization of two identical
chaotic bistable systems coupled in a driver-response oscillator
configuration, exemplified by Homoclinic H-type or the Rössler
R-type of the attractor Pisarchik et al. (2006).

A homoclinic orbit normally changes its period when the num-
ber of loops of the orbit increases or decreases by one saddle point
by adding or omitting a loop while varying a control parameter
by Pisarchik et al. (2005). Our findings revealed that the dynam-
ics of coupled multistable systems are remarkably intricate, en-
compassing various forms of phase synchronization. The main
objective of this work is to study of the opposition to synchroniza-
tion of bistable chaotic oscillator systems. Our focus here is on
synchronizing three coupled chaotic bistable systems arranged in
a motif configuration. We examine electronic circuits that resem-
ble Rössler-like systems as previously used by Pecora and Carroll
(1990); Carroll and Pecora (1995) in their synchronization studies
in chaotic systems.
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The next sections of this manuscript are outlined as follows. In
Section 2, we provide an overview of the mathematical model. Sec-
tion 3 offers a detailed examination of the dynamics of an isolated
Rössler oscillator, encompassing the bifurcation diagram and the
system’s time series. Section 4 investigates the synchronization
stage of two coupled Rössler oscillators. Section 5 extends this
analysis to three coupled Rössler oscillators, presenting the out-
comes of numerical simulations and a comprehensive description
of the synchronization stages observed. Finally, the conclusions
derived from this numerical study are resumed in Section 6.

MATHEMATICAL MODEL

Presenting our analysis without generalization, let us consider
the following case: (a) First case two identical unidirectional cou-
pled chaotic oscillators, where the driver system is represented by
Eqs. (1) and the response system by Eqs. (2), see Fig. 1; (b) Second
case is shown in the Fig. 2: Three identical coupled chaotic oscilla-
tors in network motif configuration, two driver oscillators and one
response oscillator represented by the systems of Eqs. (3), Eqs. (4)
and Eqs. (5); (c) Third case in a ring configuration where all oscil-
lators act together as a driver and response system, represented in
this case by the systems of Eqs. (6), Eqs. (7) and Eqs. (8) and shown
in the Fig. 3. For all cases, piecewise linear Rössler-like oscillators.

Two identical unidirectional driver-response coupled chaotic os-
cillators

ẋ1 = −δx1 − βy1 − λz1,

ẏ1 = x1 + γy1,

ż1 = g(x1)− z1,

(1)

ẋ2 = −δx2 − β[y2 − ϵ(y2 − y1)]− λz2,

ẏ2 = x2 + γ[y2 − ϵ(y2 − y1)],

ż2 = g(x2)− z2,

(2)

where

g(x1,2) =

0, if x1,2 ≤ 3

µ(x1,2), if x1,2 > 3
with δ = 0.05 , β = 0.50, λ = 1.00, γ = R

Rc
, (in the experimental

circuits R = 10kΩ and Rc = 32kΩ) and ϵ ∈ [0, 1] is the coupling
strength.

Three identical coupled chaotic oscillators, two drivers and one
response

ẋ1 = −δx1 − βy1 − λz1,

ẏ1 = x1 + γy1,

ż1 = g(x1)− z1,

(3)

ẋ2 = −δx2 − βy2 − λz2,

ẏ2 = x2 + γy2,

ż2 = g(x2)− z2,

(4)

ẋ3 = −δx3 − β[y3 − ϵ(y3 − y2 − y1)]− λz3,

ẏ3 = x3 + γ[y3 − ϵ(y3 − y2 − y1)],

ż3 = g(x3)− z3,

(5)

where g(x1,2,3) =

0, if x1,2,3 ≤ 3

µ(x1,2,3), if x1,2,3 > 3
with the same values for the parameters δ, β, λ, γ = R

Rc
and ϵ ∈

[0, 1] with similar coupling strength for all systems of equations.

Three identical coupled chaotic oscillators in a unidirectional ring
configuration (or a motif configuration in which all oscillators act
as driver and response form)

ẋ1 = −δx1 − β[y1 − ϵ1(y1 − y3))]− λz1,

ẏ1 = x1 + γ[y1 − ϵ1(y1 − y3)],

ż1 = g(x1)− z1,

(6)

ẋ2 = −δx2 − β[y2 − ϵ2(y2 − y1)]− λz2,

ẏ2 = x2 + γ[y2 − ϵ2(y2 − y1)],

ż2 = g(x2)− z2,

(7)

ẋ3 = −δx3 − β[y3 − ϵ3(y3 − y2)]− λz3,

ẏ3 = x3 + γ[y3 − ϵ3(y3 − y2)],

ż3 = g(x3)− z3,

(8)

where g(x1,2,3) =

0, if x1,2,3 ≤ 3

µ(x1,2,3), if x1,2,3 > 3
in this third case was used same values for the parameters δ, β,
λ, γ = R

Rc
and ϵ1,2,3 ∈ [0, 1] with similar coupling strength for all

systems of equations.

DYNAMIC OF AN ISOLATED OSCILLATOR

When the driver and response chaotic oscillator, systems of Eqs.1
and Eqs.2 are not coupled (ϵ = 0), each of them exhibits a complex
dynamical behavior depending on the control parameter Rc and
the initial condition. Fig. 4 (a) shows the bifurcation diagram of
the local maximum of the variables x1 of Eqs.1 as a function of
the parameter Rc. This bifurcation diagram is computed under
different initial conditions and shows different coexisting attractors.
For large values of 28kΩ < Rc < 141kΩ, the variable x1 < 3
the dynamics of the system Eqs.1 or Eqs.2 similar to the classical
Rössler oscillator. It exhibit route to the Rössler chaos from a limit
cycle with one period and a period-doubling when Rc decreases.

An interesting result was found at relatively low values of the
control parameter Rc < 34kΩ, once the variable x1 > 3, a sec-
ond, different chaotic attractor appears, a Homoclinic-type chaotic
attractor coexisting with Rössler-type chaotic attractors. The en-
larged part of the bifurcation diagram in the region of small values
of Rc < 34kΩ is shown in Fig. 4 (b). The diagram contains two
branches, the red and blue dots, which are obtained by taking dif-
ferent initial conditions. The branch with the red dot corresponds
to the typical dynamics of the classical Rössler chaotic attractor,
while the branch with the blue dot corresponds to the Homoclinic
chaotic attractor. The left column in Fig. 5 represents the Rössler
chaotic attractor, in which we plot the time series in Fig. 5 (a), the
phase space 5 (c), and the power spectra 5 (e). Fig. 5 right column
shows the homoclinic chaotic attractor, where the time series Fig. 5
(b), the phase space 5 (d), and the power spectrum 5 (f) are shown.

In Fig. 6 we show the Poincare section for z1 of the Eqs.1 or
Eqs.2 without coupling. The initial condition for the system Eqs.1
or Eqs.2 representing a homoclinic chaotic attractor H is reached
using I.C.: x10 = 2.38019, y10 = −5.31956 and z10 = 2.32858, see
Fig. 6a and showing a Rössler chaotic attractor R is reached using
I.C.: x20 = 3.034636, y20 = −4.64063 and z20 = 0.00920 see Fig.
6b. In this Poincare section, the basin attraction of the Rössler and
Homoclinic chaotics attractors are presented in green and blue
colors, respectively. In both plots of the Fig. 6 we can see that the
basin attraction of the homoclinic-type chaotic attractor is much
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Rössler chaotic oscillators
Driver

Rössler chaotic oscillators
ResponseFigure 1 Two identical oscillators, unidirectionally coupled (up) and piecewise linear Rössler-like electronic circuits (down)

Rössler chaotic oscillator
Response

Rössler chaotic oscillator
Driver 2

Rössler chaotic oscillator
Driver 1

Figure 2 Two drives and one response motif configuration, unidi-
rectionally coupled

larger than the basin attraction of the Rössler-type chaotic attractor
and while that the yellow region shows that the system of equation
1 or equation 2 without coupling has no solution.

To study the synchronization of multistable systems, we fixed
the control parameter Rc = 32kΩ, where our system exhibits the
coexistence of two different chaotic attractors. Then we chose the
initial condition for drive system Eqs.1 and response system Eqs.2
so that their chaotics state would be different without coupling
ϵ2 = 0.

Quantitatively, phase synchronization between a pair of oscilla-
tors i and j can be characterized by the difference phase between
their instantaneous phases Rosenblum and Kurths (2003),

Rössler chaotic oscillator

Rössler chaotic oscillator

Rössler chaotic oscillator

Figure 3 Rössler system unidirectional (A ring of three nodes)
motif configuration

θi,j = ϕi − ϕj (9)

ϕi,j = arctan(
yi,j

xi,j
) (10)

whereas identical or complete synchronization between a pair
of Rössler chaotic oscillators can be determined by the synchro-
nization error Euclidean norma as∥∥∥eij

∥∥∥ =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (11)

As soon as the oscillator’s phases have synchronized, synchro-
nization quality can be characterized by comparing amplitudes
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Figure 4 Bifurcation diagram for a Rössler circuit (a) Bifurcation
diagram, In blue color from 140 to 0kΩ, and in red from 0 to
140kΩ, (b) A close up of 30 to 34kΩ in the Bifurcation diagram.

of coupled oscillators The commonly used measure for delay syn-
chronization is similarity function S defined as

S2
i,j(τ) = ⟨

[xj(t)− xi(t + τ)]2√
⟨xj(t)2⟩⟨xi(t)2⟩

⟩ (12)

where τ is the time shift between two signals. The lower the mini-
mum of similarity function Smin, means the better synchronization

SYNCHRONIZATION TWO IDENTICAL RÖSSLER CHAOTIC
OSCILLATORS COUPLED

Within this section, phase synchronization in a system of two iden-
tical chaotic Rössler oscillators is shown. Specifically, a dynamic
system comprising two Rössler chaotic oscillators coupled in a

Figure 5 Dinamic of an isolated oscillator (left) Rössler type at-
tractor: Temporal series, space state, and power spectrum, (rigth)
Homoclinic type attractor: Temporal series, space state, and
power spectrum.

unidirectional manner is examined, as described by Eqs. (1) and
Eqs. (2), where ϵ ∈ [0, 1]. In this setup, the response system, de-
fined by Eqs. (2), is influenced by the variable y1. It’s important
to note that the concept of phase lacks a precise definition for
complex, chaotic systems, and thus, synchronization stages are
interpreted as dimensions. In this context, we delineate three cou-
pling ranges: (i) At very low coupling strength (ϵ ≪ 1), the driver
signal given by Eqs. (1) is extremely small, resembling noise that
doesn’t significantly impact the overall structure of the phase space
and the attractors in the response system described by Eqs. (2). (ii)
the relatively robust chaotic driving from Eqs is at intermediate
coupling strength. (1) increases the dimension of the phase space,
potentially leading to the emergence of new attractors. And (iii)
For very strong coupling (ϵ < 1), the large amplitudes reduce the
phase space dimension in the coupled identical multistable system.

To study the synchronization of multistable systems, the param-
eter Rc is set to Rc = 32Ω, where the system has the coexistence of
two different chaotic tractors. Then, we choose the initial condition
for the system Eqs.1 representing a homoclinic chaotic or Rössler
chaotic attractor. The analysis of synchronization is performed
for two different cases: (a) driver system in Homoclinic H chaotic
attractor and response system in Rössler R chaotic attractor, (b)
driver system in Rössler R chaotic attractor and response system
in Homoclinic H chaotic attractor.
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Figure 6 Basin attractor, the area for Homoclinic (green) is big-
ger than Rössler (blue) behavior. Using initial conditions to a)
Homoclinic (H) and b) Rössler (R) attractor.

Case (a) driver system in Homoclinic chaotic attractor and re-
sponse system in Rössler chaotic attractor

The time series of the coupled variables x1 and x2, the phase dif-
ference θi,j (see Eq.9) and similarity function Si,j(τ) (see Eq.12 are
shown in Fig. 7 (a)-(c) for a very low coupling strength (ϵ = 0.002).
θi,j increases linearly with time, indicating no synchronization. At
a very low coupling strength (ϵ = 0.004), the driven signal does
not affect the response system, and the states are defined by the
initial condition. Both oscillators are isolated, and their trajectory
occupies a different space phase; see Fig. 5 and fig. 7 (d)-(f). There
is a critical value of the coupling strength ϵc = ϵ = 0.005 at which
the response oscillator system jumps from the Rössler chaotic at-
tractor R to a new Homoclinic chaotic attractor H2 different from
the Homoclinic chaotic attractor H1 of the driver oscillator system,
i.e., the response oscillator system is sensitive to the driver when
the response oscillator system switches to the attractors similar to
the driver oscillator system, see Fig. 7 (g)-(i). This behavior for
parameter ϵ2 = 0.005 is a precursor of phase synchronization in
the multistable system. In Fig. 7 (h) we see how the phase looked
θi,j approaches θi,j ≈ 80 and while Fig. 7 (i) the minimum Smin

of the similarity function S2
i,j(τ) is close to S ≈ 1.1, which means

that the response and the driven system are synchronized in the
delayed phase synchronization, see time series 7 (g).

Further increasing the coupling parameter ϵ = 0.012, the phase
synchronization is most evident where the response oscillator sys-
tem remains in the Homoclinic attractor, similar to the driver sys-

tem’s attractor. In the Fig. 7 (j)-(l) we can see that the phase looked
θi,j decreases to θi,j ≈ 20, see Fig. 7 (k), just as the minimal simi-
larity function Smin suffers a decrease Fig. 7 (k) and likewise the
response time series is delayed for the driver oscillator time series
Fig. 7 (j). While the coupling strength continues to increase at
ϵ = 0.018, Fig. 7 (m)-(p), the response oscillator system responds
not only to the single peaks of the driver oscillator system, causing
a change from the Rössler attractor to the Homoclinic attractor
in the response oscillator system but also to the phase oscillation
when the system remains in the similar attractors. It is noteworthy
that phase synchronization is always accompanied by delay syn-
chronization, where the shift time τ > 0 of the similarity function
is positive and the minimum Smin of this function also decreases
S ≈ 1, see Fig. 7 (p), which means that the response and drive
oscillator systems reach phase synchronization, with the phase
difference θi,j reaching θi,j ≈ 0, see Fig. 7 (n), and while the time
series Fig. 7 (n) show that the delayed phase synchronization of
the driver and response oscillator system has been achieved. For
stronger coupling parameter ϵ2 > 0.02 the response oscillator sys-
tem becomes unstable and there is no numerical solution the of the
equation system (1).

Similar work on synchronization of a multistable system was
done by Pisarchik et al. (2008). In this work, the authors show
a detailed study of synchronizing two unidirectionally coupled
identical systems with coexisting chaotic attractors and analyze
the system dynamics observed on the route from asynchronous
behavior to complete synchronization when the coupling strength
is increased. In contrast to our work, they have studied two simi-
lar coexisting chaotic Rössler attractors. However, in the present
work, we study the phase synchronization of two different chaotic
attractors: the Homoclinic chaotic attractor and Rössler chaotic
attractor. Because the system of equations (1) becomes unstable,
complete synchronization was not found for the stronger coupling
parameter ϵ > 0.02. In Fig. 8 (a), the average synchronization
error, see system equation (9) as a function of the coupling strength
ϵ is shown. This figure shows that the synchronization error e
increases when the control parameter ϵ is increased, i.e., complete
synchronization between driver and response oscillator systems
was not found. On the other hand, Fig. 8 (b) shows the aver-
age phase synchronization < θi,j > as a function of the coupling
strength ϵ, where we can see that < θi,j > approaches zero when
the control parameter ϵ is increased, indicating that phase or delay
phase synchronization has been achieved.

Similarly, the bifurcation diagram of the local maximum of
the state variables x1 driver and x2 response oscillator are shown
in Figs. 9( a) and (b), respectively, as a function of the coupling
strength ϵ. In this figure, we can see when the response oscillator
system (Fig. 9 (b)) jumps from the Rössler chaotic attractor R to
a new Homoclinic chaotic attractor H2, which is different from
the Homoclinic chaotic attractor H1 of the driver oscillator system,
i.e., there is a critical value of coupling strength ϵc = ϵ = 0.005 at
which the response oscillator system changes its local maximum
from xmax

2 ≈ 3.6 (Rössler attractor) to xmax
2 ≈ 4.3 (Homoclinic

attractor H2).

Case (b) driver system in Rössler chaotic attractor and response
system in Homoclinic chaotic attractor

Similar to the synchronization analysis performed in the Figs. 7 -9,
in the Figs. 10- 12, a synchronization analysis is also performed, but
in this case, we have the initial condition for the driver oscillator
system equations.

The initial condition for the system Eqs.1 or Eqs.2 representing a
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Figure 7 The time series of the coupled variables x1, x2 (left) and
the phase difference θi,j (center) and Similarity Function (right).

Figure 8 Show the average synchronization error equation sys-
tem < ei,j > equation (9) as function of the coupling strength ϵ,
the average phase synchronization < θi,j > as function of the
coupling strength ϵ.

Homoclinic chaotic attractor H is reached using I.C.: x10 = 2.38019,
y10 = −5.31956 and z10 = 2.32858, see Fig. 6a and showing a
Rössler chaotic attractor R is reached using I.C.: x20 = 3.034636,
y20 = −4.64063 and z20 = 0.00920 see Fig. 6b.

Eqs. 1 representing the Rössler chaotic oscillator R (I.C. x20 =
3.034636, y20 = −4.64063 and z20 = 0.00920) and while the ini-
tial condition of the response system represents a Homoclinic
chaotic oscillator H1 (I. C. x10 = 2.38019, y10 = −5.31956 and
z10 = 2.32858). The time series of the coupled variables x1 and
x2, the phase difference θi,j, and the similarity function Si,j(τ) for
different values of the coupling strength (ϵ) are shown in Fig. 10.
In this figure, we can see that the phase synchronization was not
achieved. Similarly, the average error synchronization < e > and
the average phase synchronization < θi,j > as a function of the
coupling strength ϵ are shown in the Fig. 11 (a),(b) respectively,
where no complete and no phase synchronization was found.

Also, the bifurcation diagrams of the local maximum of the
state variables x1 drive and x2 response are shown in Fig. 12 (a)

Figure 9 The bifurcation diagram of the local max of the state
variables x1 and x2 as a function of the coupling strength ϵ.

and (b), respectively, as a function of the coupling strength ϵ. It
can be observed that there is no critical value for the coupling
strength ϵc at which the response oscillator system changes its
local maximum from the xmax

2 form of the Homoclinic attractor to
the xmax

2 Rössler attractor. It is worth noting that for larger values
of the coupling strength ϵ the response oscillator system has no
solution or it becomes an unstable system.

Thus, this result indicates an opposition to the synchronization
of the response oscillator system when it operates as a Homoclinic
chaotic attractor and the driver oscillator system operates as a
Rössler chaotic attractor. Remarkably, to our knowledge, this is
the first study of the opposition to the synchronization of bistable
chaotic oscillator systems. In particular, the Homoclinic chaotic
attractor of the response oscillator system resists entrainment or
synchronization with the Rössler signal of the driver oscillator sys-
tem. In contrast, in the cases where the response oscillator system
is fixed in the Rössler chaotic attractor and the driver oscillator sys-
tem is fixed in the Homoclinic chaotic attractor, there is a threshold
coupling strength ϵ at which the Rössler chaotic attractor jump a
new Homoclinic chaotic attractor and, depending on the coupling
strength, the driver-response oscillator systems achieves delayed
phase synchronization.

SYNCHRONIZATION OF THREE IDENTICAL RÖSSLER OS-
CILLATOR SYSTEMS COUPLED IN MOTIF CONFIGURA-
TION.

In this work, we also study opposition to synchronization of multi-
stable systems for another type of coupling, such as motif config-
uration of three identical bistable Rössler oscillator systems uni-
directionally coupled. For example, two driver oscillator systems
coupled to one response oscillator system, see equation systems
Eqs.3, Eqs.4 and Eqs.5 where the two driver oscillator systems
operate as a Rössler chaotic attractor and the response oscillator
system operates in Homoclinic chaotic attractors, see the Fig.13.a)
and Fig.14.a) for the average error synchronization < ei,j >, and
the average phase synchronization < θi,j > respectively, and also
the Fig.15.a) the bifurcation diagrams of the local maximum of the
state variables x1 driver and x2 response oscillator, as a function
of the coupling strength ϵ. In these figures, it is clear that com-
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Figure 10 The time series of the coupled variables x1 (left), x2
and the phase difference θi,j (center) and Similarity Function
(right).

Figure 11 Show the average synchronization error equation sys-
tem < ei,j > equation (9) as function of the coupling strength ϵ,
the average phase synchronization < θi,j > as function of the
coupling strength ϵ.

plete and phase synchronization between the driver and response
oscillator systems has not been achieved.

In contrast, when the two driver oscillator systems operate in
the Homoclinic chaotic attractor and the response oscillator system
operates in the Rössler chaotic attractor, delayed phase synchro-
nization between the driver and response oscillator systems is
achieved since a value threshold of coupling strength ϵ. To observe
these results, see Fig.13.b), Fig.14.b) and Fig.15.b) for the bifurca-
tion diagrams, the average error synchronization < ei,j >, and the
average phase synchronization < θi,j > respectively.

In addition, this study also considered the opposition to syn-
chronization of bistable chaotic oscillator systems in a configu-
ration ring with unidirectional coupling schemes, where all os-
cillators act simultaneously as drivers and as response oscillator
systems, see equation systems Eqs.6, Eqs.7 and Eqs.8. In this

Figure 12 The bifurcation diagram of the local max of the state
variables x1 and x2 as a function of the coupling strength ϵ.

configuration, it is sufficient for only one oscillator operating in
Homoclinic chaotic attractors to trigger the entrainment of other
two oscillators operating in Rössler chaotic attractors jump to new
Homoclinic chaotic attractor since a value threshold of coupling
strength ϵ.

The following figures show the dependence of the average
error synchronization < ei,j > see Fig. 16 a), b), the average phase
synchronization < θi,j > see Fig. 17 a),b), and the bifurcation
diagrams of the local maximum of the state variables x1 driver and
x2 response oscillator systems in Fig. 18 a), b), for the coupling
strength ϵ. This means that all oscillators achieve synchronization
in phase synchronization. This is an unexpected result since one
might expect that these two oscillator systems operating in the
Rössler chaotic attractor should cause the other oscillator operating
in the Homoclinic chaotic attractor to jump to the Rössler chaotic
attractor and that all oscillators should be able to synchronize
in-phase synchronization.

The above result shows that the Homoclinic chaotic attractor
opposes synchronization with Rössler chaotic attractor. In contrast,
the homoclinic chaotic attractor is the one that stimulates the other
two oscillators operating in the Rössler chaotic attractor to jump to
the new Homoclinic chaotic attractor and then all these oscillators
achieve phase synchronization.
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Figure 13 Synchronization error as function of the coupling
strength (ϵ), a) Two drivers Rössler type, one response Ho-
moclinic type, b) Two drivers Homoclinic type, one response
Rössler type.

Figure 14 Phase synchronization as function of the coupling
strength (ϵ), a) Two drivers Rössler type, one response Ho-
moclinic type, b) Two drivers Homoclinic type, one response
Rössler type.
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Figure 15 The bifurcation diagram of the local max of the state
variables x1, x2 and x3 as function of the coupling strengthϵ, a)
Two drivers Rössler type, one response Homoclinic type, b) Two
drivers Homoclinic type, one response Rössler type.

Figure 16 Synchronization error as function of the coupling
strength (ϵ), a) Ring with two Rössler type, one Homoclinic type,
b) Ring with two Homoclinic type, one Rössler type.
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Figure 17 Phase synchronization as function of the coupling
strength (ϵ), a) Ring with two Rössler type, one Homoclinic type,
b)Ring with two Homoclinic type, one Rössler type.

Figure 18 The bifurcation diagram of the local max of the state
variables x1, x2 and x3 as function of the coupling strengthϵ, a)
Ring with two Rössler type, one Homoclinic type, b) Ring with
two Homoclinic type, one Rössler type.
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CONCLUSION

We have performed numerical investigations with Rössler oscilla-
tor system the opposition to synchronization of a bistable chaotic
dynamical system coupled in different configurations: (a) two iden-
tical bistable chaotic oscillators coupled in a driver and a response
system; (b) three identical bistable chaotic oscillators coupled in
motif configuration; two drivers and one response oscillator, and
(c) three identical coupled oscillators in a ring configuration where
all oscillators act together as driver and response system. We have
chosen the initial conditions of the driver or response oscillator
system to be either a Homoclinic chaotic attractor or a Rössler
chaotic attractor. In the first (a) case, when the driver oscillator
system operates in the regime of the Homoclinic chaotic attractor
and the response oscillator system in the regime of the Rössler
chaotic attractor, there is a critical value of the coupling strength
ϵc = ϵ = 0.005 at which the response oscillator system jumps from
the Rössler chaotic attractor R to a new Homoclinic chaotic attrac-
tor H2 that is different from the Homoclinic chaotic attractor H1 of
the driver oscillator system, i.e., the response oscillator system is
sensitive to the driver signal.

Further increasing the coupling parameter ϵ > 0.005, the phase
synchronization is most evident where the response oscillator sys-
tem remains into a homoclinic chaotic attractor, which is similar
to the attractor of the driver oscillator system. An unexpected
result was found when the driver oscillator system operates in the
Rössler chaotic attractor regime and the response oscillator system
operates into the Homoclinic chaotic attractor regime, as one might
expect the driver oscillator system to cause the response oscillator
system to jump to the Rössler chaotic attractor and the driver re-
sponse oscillator system to be able to synchronize in phase, but
this was not found. On the contrary, the result shows that the
Homoclinic chaotic attractor opposes synchronization with Rössler
chaotic attractor. The above results are because the basin attrac-
tion of the Homoclinic chaotic attractor is greater than the basin
attraction of the Rössler chaotic attractor. When the response sys-
tem operating in the homoclinic regime receives the signal of the
Rössler chaotic attractor from the driver system, the response oscil-
lator system does not change the attractor but maintains its original
regime of the Homoclinic chaotic attractor, so that synchroniza-
tion between the Homoclinic and Rössler chaotic attractors is not
possible.

In contrast, the basin of attraction of the Rössler chaotic attrac-
tor is smaller than that of the Homoclinic chaotic attractor. When
the response system operating in the Rössler chaotic attractor re-
ceives the homoclinic signal from the driver oscillator system, the
response oscillator system is sensitive to the signal from the driver
oscillator system, which acts like an external signal and causes
the response oscillator system to jump from the Rössler chaotic
attractor to the Homoclinic chaotic attractor, achieving the phase
synchronization regime between the driver and response oscillator
systems. A similar result was found regarding the opposition of the
Homoclinic chaotic attractor to synchronization with the Rössler
attractors when the network of three coupled bistable chaotic dy-
namical systems is considered: (b) three identical bistable chaotic
oscillators coupled in motif configuration; two drivers and one
response oscillator, and (b) three identical coupled oscillators in a
ring configuration where all oscillators act together as driver and
response oscillator system.
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